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ABSTRACT

Using a decomposition of the characteristic function of the logarithm of the product of
independent Generalized Gamma Ratio random variables we obtain explicit expressions
for both the probability density and cumulative distribution functions of the product of
independent central or non-central random variables with generalized F' or Generalized
Gamma Ratio distributions under the form of particular mixtures of Pareto and inverted
Pareto distributions. The expressions obtained do not involve any unsolved integrals and
are much adequate for computer implementation and the development of asymptotic and
near-exact distributions. By considering not necessarily positive power parameters we were
able to obtain as particular cases not only the product of Beta prime, folded T, folded
Cauchy and F' random variables but also the densities and distributions for the ratio of
two independent Generalized Gamma Ratio random variables or two independent products
of such variables. Products of Generalized Gamma Ratio distributions may be applied
in the study of multivariate linear functional models. As a by-product we also obtain
closed form representations for the distribution of the difference of two independent sums
of a finite number of Gamma random variables with different rate parameters and integer
shape parameters, under the form of finite mixtures of Gamma distributions, as well as the
distributions for the product and ratio of generalized Pareto distributions, under the form
of finite mixtures of Pareto and inverted Pareto distributions.

Key words: particular mixtures, Pareto and inverted Pareto distributions, GIG distribution, sum of
Exponentials, difference of Exponentials, folded T, folded Cauchy, Beta prime, Beta second kind

1 Introduction

The problem of obtaining an explicit expression, without involving any unsolved integrals, for both
the probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of the product of
independent Generalized Gamma Ratio random variables (r.v.’s) or Generalized F r.v.’s, as they are
also called, is a challenging one, moreover since the characteristic function is not readily available for
such r.v.’s. In this paper we present the distribution for the product of independent central and doubly
non-central Generalized Gamma Ratio (GGR) random variables under the form of particular mixtures
of Pareto and inverted Pareto distributions. Expressions for the p.d.f. (and c.d.f. ?) of the central case
of such a product were obtained by Shah and Rathie (1974) in terms of Fox’s H function. Yet, only for
the central case, also Pham-Gia and Turkkan (2002) obtained expressions for the p.d.f. of the product
of only two independent generalized F' r.v.’s in terms of the Lauricella hypergeometric D-function of
two variables. However, even nowadays when good softwares for symbolic and numeric computation
are available the computation of Fox’s H function and the Lauricella function is not readily available,
being usually computed in terms of the integrals that define them. Although Pham-Gia and Turkkan
(2002) developed an efficient computer code to compute the Lauricella hypergeometric function, their
approach is not extensible to the product of more than two r.v.’s and as these authors strengthen, when
we consider the product of more than two GGR r.v.’s it seems that ”frequently, however, no closed
form solution for these operations can be obtained and one has to resort to approximate approaches,
including simulation”. The same authors, when referring to the results in Shah and Rathie (1974)
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say that ”these results, although very convenient notationwise, are difficult to be programmed on a
computer and hence are difficult to be used in applications”. Yet the same authors say that ”they
are, however, essential when the number of variables in the product, or quotient, is larger than 2”. In
this paper our aim is to obtain explicit simpler expressions for the p.d.f. and c.d.f. of the product of
independent Generalized Gamma Ratio r.v.’s which may be readily implemented computationally and
that, given its structure, may also give us ready access to asymptotic and near-exact distributions.
Given the approach followed, not only the distributions for the non-central case are readily at hand
but also the distribution for the product of any non-null power of GGR r.v.’s.

As particular immediate cases we have the product of central and non-central independent gen-
eralized second kind Beta or Beta prime, folded T" and folded Cauchy r.v.’s and yet, of course, F’
r.v.’s.

Given the fact that the characteristic functions for the GGR random variables are not readily
available and given the fact that we are dealing with a product of random variables, it is handier
to carry our work through the decomposition of the characteristic function of the logarithm of the
product of the GGR random variables. Thus, this was our choice.

Another novelty is that, although usually only positive power parameters are considered for the
GGR distributions, actually nothing forces those parameters to be positive, given that the correct
approach is taken, being the case that actually a negative power parameter in the GGR distribution
only takes us to consider the reciprocal of that given random variable with the symmetrical positive
power parameter. Given the way he problem is approached, even negative power parameters may be
easily considered in the GGR distributions and also the distribution of the ratio of two GGR random
variables or of the ratio of two products of GGR random variables are particular cases of the results
obtained in the paper.

Products of several independent GGR random variables are related to a test statistic used in the
multivariate linear functional model (Provost, 1986).

2 Some preliminary results

2.1 The Generalized Gamma Ratio (GGR) distribution

In order to establish some of the notation, nomenclature and a result used ahead we will start to
define what we intend by a Generalized Gamma Ratio (GGR) distribution. Let

X1 ~ F(T1,>\1) and XQ ~ F(T’Q,)\Q)

be to independent r.v.’s with Gamma distributions with shape parameters r; and ro and rate param-
eters \; and Ao, that is, for example, X; has p.d.f. (probability density function)

)\’{1 —A1 1—1
= Tl gy A > 0531 >0
fX1(x) F('f'l) € x ) r,AL > Up x>
Let then X X
vi=x", va=x"" peRr\{0}
and
7 =Yi/Ys.

We will say that Y7 and Y5 have Generalized Gamma distributions and that Z has a GGR distribution.
Using standard methods we have the p.d.f® of ¥; (i = 1,2) and Z given by

Bl P prie ,
Iy, (yi) = |F|(r4) e MY y;g Yoyi>0, (i=1,2)
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where k = A1 /X2 and B(-, ) is the Beta function.
We will denote the fact that Z has the GGR distribution with parameters k, r1, 7o and § by
Z ~ GGR(k,r1,72,0).
The non-central moments of Z are easily derived as
2 D(r1+h) T(roa — h)
B =R e
If 8 =1,r =m/2and ro = n/2, with m,n € IN, then Z has an F distribution with m and

n degrees of freedom. This is the reason why the distribution of Z is also called a Generalized F
distribution (Shah and Rathie, 1974).

(77’1 <h< 7’2).

2.2 The Generalized Integer Gamma (GIG) distribution

In this subsection and in the two following ones we will establish some distributions that will be used
in the next section. Let

Xj NF(’I‘j7/\j) jzl,...,p
be p independent r.v.’s with Gamma distributions with shape parameters r; € IV and rate parameters
Aj>0(j=1,...,p). We will say that then the r.v.

Y:ZXj

Jj=1

has a GIG distribution of depth p, with shape parameters r; and rate parameters A;, (j = 1,...,p),
and we will denote this fact by

Y ~ GIG(rj,A\;;p) j=1,...,p.

The p.d.f. and c.d.f. (cumulative distribution function) of Y are, see Coelho (1998), respectively given
by

p
fy(y) = K> Pi(y)e v (1)
j=1
and .
Fy(y) =1-KY Pi(y)e ™"
j=1
where ,
p j
K=][X’, P=Y cuy (2)
j=1 k=1
and
T k—1 i
Pj*(y) = chk (k 1)' Z %
k=1 i=0 A
with
1 u . )
Cj,r_j(paf):mH(Ai_)‘j) Y j=1...,p, (3)
J Ti=1
i#j
and i
1 (ri—k+i-11
Cjry—k = 7 Z m R(i,3,0,7,A) Cjorj—(k—i) » (k =1,...,mr;,—1) (4)
i=1 J (G=1,...,p)
where
p .
r=|[ri,ro,...,7)", and R(i,j,p,r,\) = Zrk A=) (i=1,...,1—1). (5)
k=1
kit



2.3 The distribution of the sum of random variables with Exponential dis-
tribution and the distribution of the difference of two of these random
variables

Let
X; ~ Exzp(\) i=1,...,p

be p independent Exponential r.v.’s with rate parameters A; (i = 1,...,p), and let

Y = zp:Xi.
i=1

The distribution of the r.v. Y is a particular case of the GIG distribution (Coelho, 1998) of depth p,
with all the shape parameters equal to 1, whose p.d.f. may be written as

P
fy(y) = Kche Ao
j=1
where
P P 1
K:H)‘J and ¢; SV (G=1,...,p)
j=1 k=1 "k
kg

We will denote the fact that Y has this distribution by
Y ~ SE(\;,je{l,...,p}).

Let then
Yi ~SE(\,j€{1,...,p}) and Yy ~ SE(v;,j€{l,...,p})

be two independent r.v.’s and let
Z =Y —-Y;.

The p.d.f? of Y7 and Y5 may then be respectively written as

Iy, (y1) KlZC e Y and  fy, (y2) Kzzd e v

where
P P
Kl_H/\J’ KQ—HV] (6)
Jj=1 Jj=1
and, for j=1,...,p,
L | LS|
¢ . dj = (7)
J kl;[l Aj— Ak J I];[l v — Uy
k#j k#j
so that the p.d.f. of Z will be given by
+oo P p
folz) = / K1 K> Z e~ dje =2 | dy,
max(z,0) =1 —

J

o0
— KlKQZZerzc dk/ e~ it dy

=1 k=1 max(z,0)



or,

f2(2) = ; (®)
KlKQZHdejBVjZ 2<0
j=1
where
p P n
Hy; = and Hy; =
J hZ::l )\j + vy J hz_:l A+ Vj
Then if we take
W = k7 1e?
we will have
p
1
KlKQZHlj Cj (kw)*’\j— w > k1
w
j=1
fur(w) = ; 1 )
KlKQZHQj dj (kw)”fa O<w§/€’1.
j=1
The c.d.f? of Z and W are, respectively,
KlKQi H2'$+H1‘ﬁ(1—67>\j2) z>0
S\ Ty TN -
Fy(z) = .y (10)
KlKQZHQj;jerZ ZSO
Jj=1
and
- d; ¢ Yy 1
KlKQZ ng;-i-Hle(l—(kw) J) ka
j=1 J J
Fy(w) = . (11)
KKy Hy; 4 (kw)¥s 0<w<k!.
= v -

The distribution of Z is also the distribution of the sum of p independent r.v.’s with the distribution
of the difference of two independent r.v.’s with exponential distribution (either with similar or different
parameters).

We should note that although namely in (6) it may seem that it would not be reasonable to take
p — 00, as a matter of fact in both (8) and (9) taking p — oo will yield proper legitimate distributions
(p.d.f5).

If we take into account that if the r.v. X has an Exponential distribution with rate parameter A,
with p.d.f.

fx(z) = e 7, A>0;2>0),

the r.v. Y = k xeX has a Pareto distribution with rate parameter A and lower bound parameter k,
with p.d.f.
f ()—A(y)fAl A> 0y k
y\y) = k y ) YR
We will also say that the r.v. X; = —X with p.d.f.

fx, (@) =xer,  A>02<0



has a symmetrical Exponential distribution with rate parameter A and that the r.v. Y1 = 1/Y with
p.d.f.

Pl = A ()

has an inverted Pareto distribution with rate parameter A and lower bound parameter k!.
We may then also note that while the distribution of Z, for z > 0, may be seen as a particular

mixture of Exponential distributions with rate parameters A\; (j =1,...,p), with weights
Cj .
pj:KlKQHle7 j:17"'apa
J
with

p
> pj = PlZ=0]
j=1

and for z < 0 as a particular mixture of symmetrical Exponential distributions with rate parameters
v;, with weights
d; .
Sj:KlKQHQjJa j:17"'ap7
Vj
with

p
> s =PZ<0],
j=1

the distribution of W may, for w > k!, be seen as a particular mixture of Pareto distributions with
rate parameters \; (j = 1,...,p) and lower bound parameters k~!, with weights p; (j = 1,...,p),

with
p

Y pj=PW >k,

j=1

for w < k7!, it may be seen as a mixture of inverted Pareto distributions with rate parameters vj
(j =1,...,p) and lower bound parameters k, with weights s; (j = 1,...,p), with

p

> sp=PW <k

=1
2.4 The distribution of the difference of two GIG distributions
Let,for j=1,...,p1and [ =1,...,ps,

Y1 ~ GIG(rij,Aj,p1), and Yy ~ GIG(ro, v, p2),

be two independent r.v.’s and let
Z =Y —Ys,.

Then, considering (1) and taking K; and c;; defined in a similar manner to K and ¢ in (2) and
(3)-(5) respectively, and Ky and dj;, defined in a corresponding manner, using po instead of py, 7o
instead of 71;, and v; instead of A;, for { =1,...,py and j =1,...,p1, the p.d.f. of Z is given by

+00 p1 [ Tij
) = [ (35 (St )

max(z,0) \ ;=1 \k=1



P1 P2 1 o1
= ke / 2.2 (Z ey ) (Z dun(y1 — Z)h_1> emRatrun g = gy,
m h=1

ax(zO)] 10=1

T1j 1o

p
= K1K2ZIZ/ chﬂvdlh% 1 Y1 — Z)h_l e—(Aj—i-l/z)?h evzzdyl

j=1 1=1 Ymax(z,0) g1 p—1

p1 P2 T1j Tog - oo ‘
= K1K2 Zzeuzz ch]k dlh Z ( ) h 1— 1/ e—()\j+ul)y1 yig+z_1 dyl

j=11=1 k=1h=1 max(z,0)
(12)
what, taking, for m > 0 and k € INp,
k .
s Kl 2
+oo € Z F W z Z 0
/ e "™ yk dy = =0 (13)
max(z,0) k!
mi T 2=0
gives
KJQZP** e N2 2>0
f2(2) = - (14)
KiKy» Pyf(z)e”* <0
j=1
where
15 P2 T2 h—1 k+i—1 .
ol -1 1 (k+i—1)! 2t
P = ey Sy () ot S B s 9
k=1  I=1h=1  i=0 \ ' o ' (Aj +u)
and

” AR - T ypeis (B i= D)
P (= Z ek YD dm ) YA (16)
k=1 1=1 h=1 i=0 J J

It is however interesting and useful to observe that, given that the distribution of Y7 — Y5 and
Y5 — Y] are symmetrical, and that we may in (12) integrate in order to ys instead of y;, we may obtain
the p.d.f. of Z given by a similar expression to the one in (14), with

15 P2 T2 .
P E Cik E E din, g ( i > Zk ! W (17)

k=1 =1 h=1 i=0

and

** T1j P2 To 1 h+i—1 (h+7,71)' Zt
P = e Y (1) 0y

k=1 =1 h=1 =0 t=0

moreover since indeed

g(”)zf“k Ctiont S gcﬂykuw+im
3 — t! ()‘J + Vl)k—i—i—t — i (AJ + Vl>h+i .

=0

This way, in order to obtain a simpler expression for the p.d.f. of Z we may consider the p.d.f. in
(14) with P/ (z) given by (17) and P5;(2) given by (16).



Then, using (13), the c.d.f. of Z may be written as

P1
KiKy» Pii*(z)e ™7 220
j=1

Fu(z) = " (19)
K1Ky Y Psr*(z)e”* 2<0
j=1
with - -
T1j p2 T2 — —1 .
. h+z—1 (k—1—4)! 2
Py = Y Y d (V) (s & e @
k=1 =1 h=1 i=0 t=0 ’ J
and

T1j P2 Top h—1—1 .
s h—1 k—i—z—l (h—1-19)! (=2)*
EACED 09 9 Bl () Pt DR TS R
0

k=1 =1 h=1 1= t=0

If we consider, for k > 0, the r.v.

W =k te?
we have
KlKQZQ (log(kw)) (kw)=> & w > k-1
w
Jj=1
fw(w) = . (22)
KJ@ZQ (log(kw)) (k) = 0<w< k™
Jj=1
where
T1j P2 T2 .
1 (h+i=1)!
(log(kw)) c d (log(kw kll(i, 23
@iy el ;jk;; lhzzc:)( ) (k) (Aj + )i (23)
and
T1j P2 T2 4 . .
Q3 (log(kw)) chkZZdlh Z ( ) (= log(kw))—17¢ L}i)ﬂ (24)
- =ihm im0 N (A +v5)
K1 K, ZQ (log(kw)) (kw)™  w > k™"
j=1
Fy (w) = (25)
K1 K> ZQ*** (log(kw)) (kw)"s 0<w< k!
j=1
with

T1j P2 To . k—1—1
i st = S0 35 5 () U0 S G0t ot
k= 7 J

1 I=1h=1 =0 t=0
and
715 P2 T2 . h—1
-, 1\ (k+i—1)! (h—l—z) (—log(kw))?
(log(k d - .27
0 st = 333 z( Yt o o R e

As we did with (8) and (9), also in (14) through (18) we may take both p; — oo and ps — oo, still
holding proper distributions.



3 The distribution of the product of m independent random

variables with GGR distributions

3.1 The case with all distinct shape parameters for the numerator and

denominator

Let
X]‘ ~ GGR(kj7r2j7T1j,,6j) j:L...,m

be m independent r.v.’s.
We want an explicit and concise expression for the p.d.f. and c.d.f. of the r.v.

Based on the results in subsection 1.1 we have

ny _ .~/ D(rag +h/Bi) L(ryy — h/B;)
B(XF) =k, [(r15) T'(r2;)

and if we take "
Y; = kj T X

then we have

D(rej +1/B;) T(r1; — h/B;)

E(Y") = :
(7) L(ri;) T(ra;)
so that if we take .
w = 1]V
j=1
we have
m m
W= H /0 HY = KW'
j: : :
%/_/
=K*
and then if .
Z =log W = log ¥,
j=1
we have, for i = v/—1,
ez(t) = [[®wev,t) = [TE (V)
j=1 j=1
_ ﬁ (raj +it/B;) U(r1; — it/ ;)
e L(r15) D(r2;)

what, using

e - v z/i
I(z) = z H i+ 2z c
i=1

where v is the Euler gamma constant, may, after some simplifications, be written as

= HH (roj + k) (Bj(rag + k) +it) ™" Bi(ri; + k) (Bi(r1; + k) —it) .
j=1k=0

(28)



Since the 8; (j = 1,...,m) are not necessarily all positive we take

. 714 if ﬁ]‘ >0 725 if ﬁ]‘ >0
By =181, s = . and 595 = .
T24 if ﬁj <0 T1j if ﬁj <0

so that we may write

e’}
1

:IIII (525 + k) (85 (525 + k) +it) " B(sny + k) (B3 (s + k) —it) ",

what shows that, if 87s1; # Bysik and Bfsa; # Bjsak, Vi # k, j,k € {1,...,m}, the distribution of

Z is the same as the distribution of a sum of infinitely many independent r.v.’s distributed as the

difference of two independent Exponential distributions, with parameters (37 (s2; + k) and 55 (s1; + k)

(j=1,...,m;h=0,1,...). Alternatively, Z is distributed as the difference of two independent r.v.’s,

each one with the distribution of the sum of infinitely many independent Exponential distributions.
Thus, since

* * - 71Bj
W = K*e? : K:ij/ ; (30)

taking s7;, = B;(s1; + h) and s3;, = B} (s2; + h) and using (10) and (11) above as a basis, we get

hmku@zxz<

j=1h=0

(- (w/K*)_s;,.h)> s

1]h

lim K,

n—oo

(w/K*)*2m 0<w<K*

j=1 h=0 S2ih
(31)
where K1 and K> are defined in a similar manner as above, that is,

HH (s15+h), HH (s2; + h),
j=1h=0 j=1h=0
and, for j=1,...,mand n=0,1,...,
T 1) e e e T TR 1 | e et
a7 (513 ) = B (1 +v) AL L By 1) = By (s2g +v)
n#j v#h n#j v#h

and

U di Cri
Hy; H
i Z By (sak +1) — B5 (1 + h) 2k = Z Z B (sik +1) — B3 (s95 +h)

k=1 1=0 k=11=0
To lighten the writing we may replace the pair of indexes (k, j) by h = km + j, setting
sip = Bj(sij+ k), for i=1,2 j=1,....m; k=0,...,n. (32)

We may now define K1, Ks, ¢j, dj, Hij and Hej (j =1,...,m(n+1)), (with n — 00) in a way similar
to the one used in subsection 1.2, that is,

m(n+1) m(n+1)
K= ]I s K= ] s,
Jj=1 Jj=1

10



and, for j=1,...,

m(n+1) m(n+1)

1 d 1
e |
J * x ) J * *

1 51 T Sk el 525 7 S2k
o K
and
m(n+1) d m(n+1)
Z h Z Ch
Hlj = * * ) HQj = * *
S1, — S S — 8o,
h=1 1] 2h h=1 1h 2J

so that we may write the p.d.f. of the r.v. W as

m(n+1) d
lim K K5 Z (HQJ o +H1j o (1—(11)/K) Slj)) , w > K*

F n—oo j:l 2] 1] 33
w(w) = S (33)
lim KKy . Hy—> (w/K*)* 0<w<K*.
n—oo S
j=1 2

3.2 The general case

In the general case we will admit that it is possible that some of the parameters $1; = B7s1;, j €
{i,...,m}, will be equal and that also some of the parameters 395 = 37s2;, j € {i,...,m}, will be
equal. More precisely, and without any loss of generality, let us suppose that 71 of the m parameters
51; are equal to 311, T2 are equal to 512, and so on, and that 7,, are equal to 51,,, with p; < m and

p1
E Tj =m,
j=1

and that, similarly, 1, of the m parameters 55, are equal to 521, 12 are equal to 522, and so on, and
that n,, are equal to 52p,, with ps < m and

D2
E ny=m.
j=1

Then the characteristic function in (29) may be written as

pP1 oo
z(t) = [[I] (5 +8k)7 (i + Bk —it) ™ HH (325 + B1k)"™ (525 + Bk —it) ™"
Jj=1k=0 j=1k=0
P11 n . s P2 n )
= lim JT]T (o +65k)7 (30 + 87k —it) HH (32 + Bk)" (325 + Bk —it) ™
j=1k=0 j=1k=0

that is the characteristic function of the difference of two independent r.v.’s with GIG distributions,
the first one, that is, the one with positive sign, with depth p;x(n + 1) (with n — o), with rate
parameters and associated shape parameters

~ * ~ * ~ *
SsutOik, oo, Sy +Bk, .., S +B8k
——— N ~ ~————
k=0,...,n k=0,...,n k=0,...,n
TlyeoesTl 5 vve s TjyeeesTj 5 oo 5 Tpyy--esTpy
n+1 n+1 n+1

and the second one, that is, the one with negative sign, with depth pax(n + 1) (with n — o), with
shape parameters and associated rate parameters

8214—/6;]{7, ey 82j+ﬁ;k‘, cee oy 82p1+ﬂ;2]€
S———— —— ————
k=0,...,n k=0,...,n k=0,...,n
my---sm 5 .. 77]7,77]7 cee s Mpgsee-5Tpy
N—— N—— N————
n+1 n+1 n+1
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Let us consider the vectors

! !/
* * __
T —|:7'1,...,7'p1,7'1,...,7'p1, ,Tl,...,Tp1:| s ﬂ *{7717""7717237717""771727 ;n17~'~77)p2] 5

n+1 times n+1 times

where, for j = 1,...;p1(n+ 1) and I = 1,...,pa(n + 1), with j = kp1 + h and [ = kps + i, for
k=0,...,n,h=1,....,prand ¢t =1,...,po,

* *

T] = Th, and N = Ni,

and, similarly to the vectors s7 and s3 considered in the previous subsection, the vectors

!
= __ |z ~ = * ~ * ~ * ~ *
S1 = [Slla-~-751p17511+ﬂla'~'a31p1 +6p17 7511+ﬂ1na'~'a31171+ pln}

and ,
é; — |:§217~~~7§2p17§21+ﬂika~~~7§2p1+/6;17 75214—,6;”,...,521;14- ;1ﬂ:|
where, once again, for j = 1,...,p1(n+ 1) and I = 1,...,pa(n + 1), with j, [, k, h and 4 defined as

above,
EL‘ = Sin + Opk and S5 = 82+ Ok

The c.d.f. of W = K*eZ, for K* defined as in (30), may then be derived from (25), taking into
account the shape and rate parameters mentioned above, as

p1(n+1)
lim KKy Y Qi (log(w/K")) (w/K*) ™% w>K*
j=1
F = 34
W(w) p2(n+1) } ( )
lim KKy Y Q3 (log(w/K*)) (w/K*)% 0<w<K*
j=1

where now K7y, Ka, Q777(+) and Q377(+) are defined as in subsection 2.4, with p; replaced by p1(n+1),
po replaced by pa(n + 1), A; replaced by 57;, v replaced by §5;, 71; replaced by 77 and rg replaced

by n7.

3.3 The double non-central case

The following Lemma is a useful result for some of the work ahead ad its proof is straightforwardly
obtained from the Theorem of global probability (Robbins, 1948; Robbins and Pitman, 1949).
LEMMA 1: Let Z; and Z3 be two independent r.v.’s taking values on the non-negative integers,
such that
P(lel):UZ and P(ZQZj):’Uj, Z7j:0,1,

Let further X and Y be two r.v.’s and let X; = X|Z; =i and Y; =Y|Zy = j, for i, = 0,1, ..., and
let yet g(+,-) be a measurable function.

Then - -
Ox(t) = Y uwi®x,(),  By(t) = > v; Py (1)
i=0 =0
and if
Z =g9(X,)Y)
then

Oz(t) = ) Y uiv; Pycx, vy (t)-

i=0 j=0

A particular case of the above Lemma is clearly the case where the r.v.’s X and Y are mixtures.
We will use the above Lemma exactly in this case.
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We will say that the r.v. Y has a non-central Generalized Gamma distribution with shape pa-
rameter r, rate parameter \, power parameter 3 and non-centrality parameter ¢ if its p.d.f. may be
written as a mixture with Poisson weights with rate §/2 of Generalized Gamma p.d.f* with shape
parameters r +14 (i =0, 1,...), rate parameter A and power parameter [, that is, if

ATt 5 X
fy(y) Zpl |ﬁ| )\y[ yﬁ(rJrz)Jrl ,

where

©/2)" s i=0,1,... (35)

b=

clearly with > °° p;, = 1. We will denote the fact that the r.v. Y has a non-central Generalized
Gamma distribution with the above parameters by

Y ~ I(r, A, 53;0), (36)

If the r.v. Y has the non-central Generalized Gamma distribution in (36), then it is straightforward
to show that the r.v.
X =Y’ pBeR\{0},

has a non-central Gamma distribution with shape parameter r, rate parameter A and non-centrality
parameter 9.
Let us suppose that

Y1 ~ T(ri, A1, 5561) and Yy ~ T'(r2, A2, 55 02)

are two independent r.v.’s and let
Z =Y/Y,.

Then, the r.v. Z will have what we call a double non-central Generalized Gamma Ratio or double
non-central Generalized F' distribution. Using Lemma 1 above, the p.d.f. of Z is, for k = A1/,

o T Lo e
== Br1—|—27“2—|—_7)

where k = A1 /A2 and

(91/2)" 5,72

(52/27 _s.s2
7! '

and v; = il

pi =

We will denote the fact that the r.v. Z has this distribution by
Z ~ GGR(r1,72,k, B;61,02) .
In this section we will be interested in obtaining the distribution of
=12 (37)
j=1

where
Z]' ~ GGR(T‘lj,TQj, kj,ﬂj; 51j7 52j) .

Using Lemma 1 and expression (31), in subsection 3.1, for the c.d.f. of W in the central case, we
obtain, for the case where all shape parameters in the numerator are different and all shape parameters
in the denominator are also different, that is the case where,

Bis1j # Beswe  and  B7sg; # Bisar  forall j # k with j, k€ {1,...,m},
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defining s7;, and s3; as in (31), we have for si,,; = Bi(s1x + h +1) and s5;,,; = B (s2r + h + ),

2207 m;c KlingZZpik Vik <H2khij S*hkj

i=0 h=0 k=1 2khj
Chki *\—ST,, . *
Fyr(w) = +Hikhij e (1 — (w/K™) 1’””)) w>K
oo oo d
S5 i KKy 325 porvie Harny 5 (/) 0<w<K*
=0 j=0 h=0 k=1 Qkh]

where

Ku = [[[IB8;sin+i+h)  and Ky = [] [ Bylsan+i+h),

n=1h=0 n=1h=0

dp Cnl
H 1 = ) 1, . ne . )
Hehig Z Z By (s2q+i+1) — B (s1k+i+h) Hakhis Z Z B (s1n+i+l) — By (s2k+j+h)

n=11=0 n=1 1=0

with
owe = T 1T b e = I T
0= oo Ok (swetit+h) — By(siy+itv) =1 w0 Or (soxt+j+h) — By (s2y+j+v)
n#k v#h n#£k v#h
and yet, for ¢,j =0,1,...and k=1,...,m,
511/2)" Sa1,/2)’
Pik = Cu/2) 1’;'/ ) e~ 0u/2 and v, = (O21/2) 2’;{ ) e 02k/2 (38)

In case that all the non-centrality parameters in the numerator of W are the same, say 61 = d1,
Vk € {1,...,m}, and all non-centrality parameters in the denominator are also the same, with say
O = 02, Yk € {1,...,m}, the only difference in the distribution of W would be that the weights p;x
and v;;, would be no more a function of k¥ and the c.d.f. of W could be written as

Zzpz Vj nhnolo Klz KZ] ZZ <H2kh1] aihk

i=0 j=0 h=0 k=1 52khj

Chki *\—sF . *
Py (w) = +Highij — S*fkm (1 — (w/K™) “””)) w>K

Zszl/J lim KllKQJZZ H%h” = ( JK* )S2kh] O<w<K*

i=0 j=0 h=0 k=1 S2khj

Let k|m represent the remainder of the integer ratio of k by m and let kj,,, = 1 + k|lm. Then, an
alternative representation for the c.d.f. of W in this case may be derived from the c.d.f. in (33) in
subsection 3.1, obtained for the central case of W, we have, the c.d.f. of W in (37) is, for

kK ok < Q% kK % . %
Sk = Sk +10k,, and sy = sop 06k,
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with si, and s}, defined by (32),

oo oo m(n+1) d
kj
Z Z lim Klz K2] Z Di K m Vj, kim <H2kzj **J
‘ n—00 S
i=0 j=0 k=1 2kj
FW(’LU) — +H1kz] S** (1 — (’LU/K*) 511”)) w > K*
1ki
SR m(n+1)
dij o* %
Zznhm K11K2j Z Pi, kim Vj, kim H2k:’bj P ( /K ) 2k7 0<w§K
i=0 j=0 k=1 2kj
where
m(n+1) m(n+1) m(n+1) d m(n+1) ‘
hj hi
Ku= ][] s, K= H s Hug= Y ﬁ» Hoij = ﬁ
k=1 h=1 1lhi 2kj h=1 2hi 1kj
with
m(n+1) 1 m(n+1) 1
Cki = H gFF _ gHE and dk’j = H s* — g¥*
he1 S1lhi 1ki he1  2hj 2kj
h#k h#k
and yet ‘ ‘
01,/2)" o /2)’
Pik = 7( Uc'/ ) e~ 01k/2 and Vi = 7( 2k,{ ) e 92k/2
7! 7!
In case where all the non-centrality parameters in the numerator of W are the same, say 01 = 61,
Vk € {1,...,m}, and all non-centrality parameters in the denominator are also the same, with say

dor, = b2, Yk € {1,...,m}, the only difference in the distribution of W would be that the weights p;x
and v, would be no more a function of k£ and the c.d.f. of W could be written as

00 00 m(n+1) d

. kj
i=0 j=0 k=1 2kj

Fyy (w) = +Hpj 8*72 (1 — (w/K*)~ )) w> K"
1ki
m(n+1)

ZZpl vj lim Ky K Z Hopij —2 = ( JK*)%3k 0<w<K*.
=0 j=0

For the double non-central case corresponding to the general case studied in subsection 3.2 above,

where some of the parameters 5;; = ﬁjslj, Jj € {i,...,m}, will be equal and also some of the
parameters 5z; = (37s2;, j € {i,...,m}, will be equal, we have, from (34),
0o o p1(n+1) .
ZZ im KKy Z Qi (log(w/K*)) (w/K*)"fiki  w < K*
1=0 j=0
Fy (w) =
p1(n+1) i
>3 i Kuke > Qi (osw/K") (w/K")Ss w< K
=0 j=0
with
p1(n+1) p2(n+1)
~kk ~x . %k ~kk ~x - ok ~kk \Tp ~ses \ e
S1ki = 81k + 10k, > Sok; =S +J Bk, » Ku= H (5Tha)™ Kz = H (85k:)™
k=1 k=1
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L h—u—1) = (g—1—u)! (log(w/K*
Qi lox(w/ %) = 3 s 3 zdzh]z(JWZ S

=1 = u=0 1ki

T 2(n+1) I
Q57 (log(w/K™)) zk:cingp (z: idlm Z( u ) (g—u—l)jﬁu Q_Z: e L o) (log(w/hK:))tt
ER == Gie+ss,) = " (s)
where, for k=1,...,p; and for [ =1,...,ps,
p2
Ckyriyi = (7 — 1) ,H 8§11 — S1ki) _Tl* ) dl,nl*,j = nF —1) o — 1 H 52k] 55?} "
l;ﬁk k;ﬁl

with, for [ =1,..., 7/ —land k=1,...,p1,

l
1 —l4+h—1)!
Chyrj—1i = jzﬁRl(h k pl’T 51 )C’C}Tgf(lfh),i

and, form=1,...,n  —landl=1,...,p9,

L& (mf—m+h—1)!
dipr—m; = — Ry (R, 1, p2,m™,35") dy s —(m—n
n; J mhz::l (Ul—m—l) ( 57) 1= ):d

where, for h=0,...,7 —land m=0,...,n -1,

* ~kk * [~k ~xx \ —F * kK * [ ~kk ~xx )\ MM
Ri(h,k,p1, 7%, 577) = ZTk (8Th — 810 Ro(m,l,p2,n",85") = an (52zj —52nj) :
Ik nl
4 Conclusions and Final Remarks

We should strengthen that the results obtained may be easily and directly generalized to the case
where we are interested in the distribution of the r.v.

Z= 11wy
j=1
where v; € RY, a; € R\{0} and Y; are independent r.v.’s with GGR distributions, since it is
straightforward to show that if
Yj ~ GGR(rj,725,kj, Bj; 015, 625) (39)
then

,yj)/j I~ GGR (le,TQJ, 5 '}a ’ﬂ]‘ 51]752]) .
V5

If the r.v. X has a standard Beta distribution, the distribution of either (1—X)/X or X/(1—X) is
then usually called a standard Beta prime or Beta second kind distribution. However we should note
that the distribution of either (1—X)/X or X/(1—X) is actually only a particular GGR distribution.
Actually it is easy to show that if

Y; ~ GGR(rv;,72;,kj,054;0,0)
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with k; = 1 and 8; = 1 then ther.v.’s 1/(1+Y;) and Y;/(1+Y;) have standard Beta distributions with
parameters ro; and r1; or r1; and ro;, respectively, while for general k; > 0 and general 3; € IR\{0}
the rv. X; =Y;/(1+Y;) has what we call a generalized Beta distribution with p.d.f.

. kflj —T1j—"T2;
fXj (x) = WJ) (1 + k;j x) (1— Z)*ﬁ_m_ﬁl BT —1

B(r1;, 1925 11—z

which clearly reduces to the standard Beta p.d.f. for k; = 1 and 3; = 1, while the r.v. 1 - X; =
1/(1 4+Y;) has of course a similar p.d.f. with r1; and ry; swapped. For this reason the distribution
of Yj; is also called, for k; = 1 and 3; = 1 a Beta prime distribution and for general k; and 3; a
generalized Beta prime distribution. Thus, for the non-central distribution in (39) we may say that
Y; has also a non-central generalized Beta prime distribution and thus, the distributions obtained in
section 3 are also the distributions of the product of independent central and non-central generalized
Beta prime r.v.’s.

Clearly if in (39) we have r1; = m/2, ro; = n/2, with m,n € IN and k; = 8; = 1 we have the r.v.’s
Y; with either central or non-central F' distributions, according to the case that §; = 0 or 6; # 0, with
m and n degrees of freedom. The results in section 3 may then be readily applied to both the central
and non-central cases.

Also, if in (39) we have r1; = 1/2, roj = n;/2, k; = 1/n; and ; = 2, with n; € IN, we have Yj
with the so-called folded T distribution, that is the distribution of a r.v. Y; = |T}|, where T} is a r.v.
with a Student T' distribution with n; degrees of freedom. If instead we take ro; = 1/2 and k; = 1
we will have Y; with the so-called folded Cauchy distribution, that is the distribution of the absolute
value of a r.v. with a standard Cauchy distribution, or a Student 7" distribution with only 1 degree of
freedom. In both cases, once again, the results in section 3 may be readily applied to both the central
and non-central cases.

Besides, given the way our approach was conducted, even the doubly non-central case, where each
of the GGR r.v.’s is the ratio of two non-central Gamma r.v.’s, was then readily at hand. Also, since,
from the beginning, in subsection 2.1, and opposite to what is commonly done, we considered the
power parameters as real (only non-null), allowing them to be negative, the results obtained may be
directly extended to the distribution of the ratio of two independent GGR random variables or the
distribution of the ratio of two products of independent GGR random variables. In order to obtain
the distribution of the ratio of two independent GGR random variables one simply has to consider
m = 2 in (28), taking then for the random variable in the denominator the symmetric of its power
parameter. The distribution for the ratio of two products of independent GGR random variables may
then be obtained by taking the distribution of the product of the whole set of random variables, taking
the symmetric of the power parameters for the random variables in the denominator.

As a by-product, in subsections 2.3 and 2.4 we also obtain closed form representations, not involving
any infinite series or unsolved integrals, for the distribution of the difference of two independent sums of
a finite number of Exponential random variables with all different rate parameters or Gamma random
variables with all different rate parameters and integer shape parameters, under the form of particular
mixtures of either Exponential or Gamma distributions, according to the case. Also, if we consider
the exponential of a Gamma random variable with integer shape parameter as a generalized Pareto
distribution, then the distribution of the random variable W in subsection 2.3 is the distribution of the
ratio of two independent products of Pareto distributions, while the distribution of the same random
variable in subsection 2.4 is the distribution of the ratio of two independent products of generalized
Pareto distributions, expressed as a particular mixture of Pareto and inverted Pareto distributions.

Given the form of the exact distributions obtained for the product of either central and non-
central GGR r.v.’s asymptotic and near-exact distributions are readily at hand, being not treated in
this paper due to length limitations. They are intended to be published in a separate paper. We may
think of asymptotic distributions by simple truncation of the series obtained what would indeed give
mainly unsatisfactory results, mainly in terms of c.d.f. and quantiles, owing to the fact that then
the weights would not add up to the right values, preventing this way the c.d.f® from reaching the
value 1. Much better results may be obtained if we consider near-exact distributions, based on the
concept of keeping a good part of the exact characteristic function unchanged and approaching the
remaining, and desirably, much smaller part, by an asymptotic result (Coelho, 2003, 2004) what, given
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the form obtained for the exact distributions, would lead us to consider for example the truncation of
the infinite series obtained, coupled with one or two more terms that would both make the weights
add up to the right value and the first two, three or four moments to match the first exact ones.
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