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Abstract

Using a decomposition of the characteristic function of the logarithm of the product of
independent Generalized Gamma Ratio random variables we obtain explicit expressions
for both the probability density and cumulative distribution functions of the product of
independent central or non-central random variables with generalized F or Generalized
Gamma Ratio distributions under the form of particular mixtures of Pareto and inverted
Pareto distributions. The expressions obtained do not involve any unsolved integrals and
are much adequate for computer implementation and the development of asymptotic and
near-exact distributions. By considering not necessarily positive power parameters we were
able to obtain as particular cases not only the product of Beta prime, folded T, folded
Cauchy and F random variables but also the densities and distributions for the ratio of
two independent Generalized Gamma Ratio random variables or two independent products
of such variables. Products of Generalized Gamma Ratio distributions may be applied
in the study of multivariate linear functional models. As a by-product we also obtain
closed form representations for the distribution of the difference of two independent sums
of a finite number of Gamma random variables with different rate parameters and integer
shape parameters, under the form of finite mixtures of Gamma distributions, as well as the
distributions for the product and ratio of generalized Pareto distributions, under the form
of finite mixtures of Pareto and inverted Pareto distributions.

Key words: particular mixtures, Pareto and inverted Pareto distributions, GIG distribution, sum of
Exponentials, difference of Exponentials, folded T, folded Cauchy, Beta prime, Beta second kind

1 Introduction

The problem of obtaining an explicit expression, without involving any unsolved integrals, for both
the probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of the product of
independent Generalized Gamma Ratio random variables (r.v.’s) or Generalized F r.v.’s, as they are
also called, is a challenging one, moreover since the characteristic function is not readily available for
such r.v.’s. In this paper we present the distribution for the product of independent central and doubly
non-central Generalized Gamma Ratio (GGR) random variables under the form of particular mixtures
of Pareto and inverted Pareto distributions. Expressions for the p.d.f. (and c.d.f. ?) of the central case
of such a product were obtained by Shah and Rathie (1974) in terms of Fox’s H function. Yet, only for
the central case, also Pham-Gia and Turkkan (2002) obtained expressions for the p.d.f. of the product
of only two independent generalized F r.v.’s in terms of the Lauricella hypergeometric D-function of
two variables. However, even nowadays when good softwares for symbolic and numeric computation
are available the computation of Fox’s H function and the Lauricella function is not readily available,
being usually computed in terms of the integrals that define them. Although Pham-Gia and Turkkan
(2002) developed an efficient computer code to compute the Lauricella hypergeometric function, their
approach is not extensible to the product of more than two r.v.’s and as these authors strengthen, when
we consider the product of more than two GGR r.v.’s it seems that ”frequently, however, no closed
form solution for these operations can be obtained and one has to resort to approximate approaches,
including simulation”. The same authors, when referring to the results in Shah and Rathie (1974)
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say that ”these results, although very convenient notationwise, are difficult to be programmed on a
computer and hence are difficult to be used in applications”. Yet the same authors say that ”they
are, however, essential when the number of variables in the product, or quotient, is larger than 2”. In
this paper our aim is to obtain explicit simpler expressions for the p.d.f. and c.d.f. of the product of
independent Generalized Gamma Ratio r.v.’s which may be readily implemented computationally and
that, given its structure, may also give us ready access to asymptotic and near-exact distributions.
Given the approach followed, not only the distributions for the non-central case are readily at hand
but also the distribution for the product of any non-null power of GGR r.v.’s.

As particular immediate cases we have the product of central and non-central independent gen-
eralized second kind Beta or Beta prime, folded T and folded Cauchy r.v.’s and yet, of course, F
r.v.’s.

Given the fact that the characteristic functions for the GGR random variables are not readily
available and given the fact that we are dealing with a product of random variables, it is handier
to carry our work through the decomposition of the characteristic function of the logarithm of the
product of the GGR random variables. Thus, this was our choice.

Another novelty is that, although usually only positive power parameters are considered for the
GGR distributions, actually nothing forces those parameters to be positive, given that the correct
approach is taken, being the case that actually a negative power parameter in the GGR distribution
only takes us to consider the reciprocal of that given random variable with the symmetrical positive
power parameter. Given the way he problem is approached, even negative power parameters may be
easily considered in the GGR distributions and also the distribution of the ratio of two GGR random
variables or of the ratio of two products of GGR random variables are particular cases of the results
obtained in the paper.

Products of several independent GGR random variables are related to a test statistic used in the
multivariate linear functional model (Provost, 1986).

2 Some preliminary results

2.1 The Generalized Gamma Ratio (GGR) distribution

In order to establish some of the notation, nomenclature and a result used ahead we will start to
define what we intend by a Generalized Gamma Ratio (GGR) distribution. Let

X1 ∼ Γ(r1, λ1) and X2 ∼ Γ(r2, λ2)

be to independent r.v.’s with Gamma distributions with shape parameters r1 and r2 and rate param-
eters λ1 and λ2, that is, for example, X1 has p.d.f. (probability density function)

fX1
(x) =

λr1
1

Γ(r1)
e−λ1x xr1−1 , r1, λ1 > 0; x1 > 0 .

Let then
Y1 = X

1/β
1 , Y2 = X

1/β
2 , β ∈ IR\{0}

and
Z = Y1/Y2 .

We will say that Y1 and Y2 have Generalized Gamma distributions and that Z has a GGR distribution.
Using standard methods we have the p.d.f.s of Yi (i = 1, 2) and Z given by

fYi
(yi) =

|β|λri
i

Γ(ri)
e−λiy

β
i yβri−1

i , yi > 0 , (i = 1, 2)

and

fZ(z) =
|β| kr1

B(r1, r2)
(
1 + kzβ

)−r1−r2
zβr1−1 , z > 0
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where k = λ1/λ2 and B(·, ·) is the Beta function.
We will denote the fact that Z has the GGR distribution with parameters k, r1, r2 and β by

Z ∼ GGR(k, r1, r2, β) .

The non-central moments of Z are easily derived as

E
(
Zh

)
= k−h Γ(r1 + h)

Γ(r1)
Γ(r2 − h)

Γ(r2)
, (−r1 < h < r2) .

If β = 1, r1 = m/2 and r2 = n/2, with m,n ∈ IN , then Z has an F distribution with m and
n degrees of freedom. This is the reason why the distribution of Z is also called a Generalized F
distribution (Shah and Rathie, 1974).

2.2 The Generalized Integer Gamma (GIG) distribution

In this subsection and in the two following ones we will establish some distributions that will be used
in the next section. Let

Xj ∼ Γ(rj , λj) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parameters rj ∈ IN and rate parameters
λj > 0 (j = 1, . . . , p). We will say that then the r.v.

Y =
p∑

j=1

Xj

has a GIG distribution of depth p, with shape parameters rj and rate parameters λj , (j = 1, . . . , p),
and we will denote this fact by

Y ∼ GIG(rj , λj ; p) j = 1, . . . , p .

The p.d.f. and c.d.f. (cumulative distribution function) of Y are, see Coelho (1998), respectively given
by

fY (y) = K

p∑

j=1

Pj(y) e−λj y (1)

and

FY (y) = 1−K

p∑

j=1

P ∗j (y) e−λj y

where

K =
p∏

j=1

λ
rj

j , Pj(y) =
rj∑

k=1

cjk yk−1 (2)

and

P ∗j (y) =
rj∑

k=1

cjk (k − 1)!
k−1∑

i=0

yi

i! λk−i
i

with

cj,rj (p, r) =
1

(rj − 1)!

p∏

i=1
i6=j

(λi − λj)−ri , j = 1, . . . , p , (3)

and

cj,rj−k =
1
k

k∑

i=1

(rj − k + i− 1)!
(rj − k − 1)!

R(i, j, p, r, λ) cj,rj−(k−i) , (k = 1, . . . , rj − 1)
(j = 1, . . . , p)

(4)

where

r = [r1, r2, . . . , rp]′ , and R(i, j, p, r, λ) =
p∑

k=1
k 6=j

rk (λj − λk)−i (i = 1, . . . , rj − 1) . (5)
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2.3 The distribution of the sum of random variables with Exponential dis-
tribution and the distribution of the difference of two of these random
variables

Let
Xi ∼ Exp(λi) i = 1, . . . , p

be p independent Exponential r.v.’s with rate parameters λi (i = 1, . . . , p), and let

Y =
p∑

i=1

Xi .

The distribution of the r.v. Y is a particular case of the GIG distribution (Coelho, 1998) of depth p,
with all the shape parameters equal to 1, whose p.d.f. may be written as

fY (y) = K

p∑

j=1

cj e−λjy

where

K =
p∏

j=1

λj and cj =
p∏

k=1
k 6=j

1
λj − λk

(j = 1, . . . , p).

We will denote the fact that Y has this distribution by

Y ∼ SE(λj , j ∈ {1, . . . , p}) .

Let then
Y1 ∼ SE(λj , j ∈ {1, . . . , p}) and Y2 ∼ SE(νj , j ∈ {1, . . . , p})

be two independent r.v.’s and let
Z = Y1 − Y2 .

The p.d.f.s of Y1 and Y2 may then be respectively written as

fY1
(y1) = K1

p∑

j=1

cj e−λjy1 and fY2
(y2) = K2

p∑

j=1

dj e−νjy2

where

K1 =
p∏

j=1

λj , K2 =
p∏

j=1

νj (6)

and, for j = 1, . . . , p,

cj =
p∏

k=1
k 6=j

1
λj − λk

, dj =
p∏

k=1
k 6=j

1
νj − νk

(7)

so that the p.d.f. of Z will be given by

fZ(z) =
∫ +∞

max(z,0)

K1K2




p∑

j=1

cj e−λj y1







p∑

j=1

dj e−νj(y1−z)


 dy1

= K1K2

p∑

j=1

p∑

k=1

eνkz cj dk

∫ +∞

max(z,0)

e−(λj+νk)y1 dy1
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or,

fZ(z) =





K1K2

p∑

j=1

H1j cj e−λj z z ≥ 0

K1K2

p∑

j=1

H2j dj eνj z z ≤ 0

(8)

where

H1j =
p∑

h=1

dh

λj + νh
and H2j =

p∑

h=1

ch

λh + νj
.

Then if we take
W = k−1eZ

we will have

fW (w) =





K1K2

p∑

j=1

H1j cj (kw)−λj
1
w

w ≥ k−1

K1K2

p∑

j=1

H2j dj (kw)νj
1
w

0 < w ≤ k−1 .

(9)

The c.d.f.s of Z and W are, respectively,

FZ(z) =





K1K2

p∑

j=1

(
H2j

dj

νj
+ H1j

cj

λj

(
1− e−λj z

))
z ≥ 0

K1K2

p∑

j=1

H2j
dj

νj
eνj z z ≤ 0

(10)

and

FW (w) =





K1K2

p∑

j=1

(
H2j

dj

νj
+ H1j

cj

λj

(
1− (kw)−λj

))
w ≥ k−1

K1K2

p∑

j=1

H2j
dj

νj
(kw)νj 0 < w ≤ k−1 .

(11)

The distribution of Z is also the distribution of the sum of p independent r.v.’s with the distribution
of the difference of two independent r.v.’s with exponential distribution (either with similar or different
parameters).

We should note that although namely in (6) it may seem that it would not be reasonable to take
p →∞, as a matter of fact in both (8) and (9) taking p →∞ will yield proper legitimate distributions
(p.d.f.s).

If we take into account that if the r.v. X has an Exponential distribution with rate parameter λ,
with p.d.f.

fX(x) = λ e−λx , λ > 0; x > 0 ,

the r.v. Y = k ∗ eX has a Pareto distribution with rate parameter λ and lower bound parameter k,
with p.d.f.

fY (y) = λ
(y

k

)−λ 1
y

, λ > 0; y k .

We will also say that the r.v. X1 = −X with p.d.f.

fX1
(x) = λ eλx , λ > 0;x < 0
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has a symmetrical Exponential distribution with rate parameter λ and that the r.v. Y1 = 1/Y with
p.d.f.

fY1
(y) = λ

( y

k−1

)λ 1
y

has an inverted Pareto distribution with rate parameter λ and lower bound parameter k−1.
We may then also note that while the distribution of Z, for z ≥ 0, may be seen as a particular

mixture of Exponential distributions with rate parameters λj (j = 1, . . . , p), with weights

pj = K1K2H1j
cj

λj
, j = 1, . . . , p ,

with
p∑

j=1

pj = P [Z ≥ 0]

and for z ≤ 0 as a particular mixture of symmetrical Exponential distributions with rate parameters
νj , with weights

sj = K1K2H2j
dj

νj
, j = 1, . . . , p ,

with
p∑

j=1

sj = P [Z ≤ 0] ,

the distribution of W may, for w ≥ k−1, be seen as a particular mixture of Pareto distributions with
rate parameters λj (j = 1, . . . , p) and lower bound parameters k−1, with weights pj (j = 1, . . . , p),
with

p∑

j=1

pj = P [W ≥ k−1] ,

for w ≤ k−1, it may be seen as a mixture of inverted Pareto distributions with rate parameters νj

(j = 1, . . . , p) and lower bound parameters k, with weights sj (j = 1, . . . , p), with

p∑

j=1

sj = P [W ≤ k−1] .

2.4 The distribution of the difference of two GIG distributions

Let, for j = 1, . . . , p1 and l = 1, . . . , p2,

Y1 ∼ GIG(r1j , λj , p1) , and Y2 ∼ GIG(r2l, νl, p2) ,

be two independent r.v.’s and let
Z = Y1 − Y2 .

Then, considering (1) and taking K1 and cjk defined in a similar manner to K and cjk in (2) and
(3)-(5) respectively, and K2 and dlh defined in a corresponding manner, using p2 instead of p1, r2l

instead of r1j , and νl instead of λj , for l = 1, . . . , p2 and j = 1, . . . , p1, the p.d.f. of Z is given by

fZ(z) = K1K2

∫ +∞

max(z,0)




p1∑

j=1

(
rij∑

k=1

cjk yk−1
1

)
e−λjy1




(
p2∑

l=1

(
r2l∑

h=1

dlh(y1 − z)h−1

)
e−νl(y1−z)

)
dy1
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= K1K2

∫ +∞

max(z,0)

p1∑

j=1

p2∑

l=1

(
r1j∑

k=1

cjk yk−1
1

)(
r2l∑

h=1

dlh(y1 − z)h−1

)
e−(λj+νl)y1 eνl z dy1

= K1K2

p1∑

j=1

p2∑

l=1

∫ +∞

max(z,0)

r1j∑

k=1

r2l∑

h=1

cjk dlh yk−1
1 (y1 − z)h−1 e−(λj+νl)y1 eνlz dy1

= K1K2

p1∑

j=1

p2∑

l=1

eνlz

r1j∑

k=1

r2l∑

h=1

cjk dlh

h−1∑

i=0

(
h−1

i

)
(−z)h−1−i

∫ +∞

max(z,0)

e−(λj+νl)y1 yk+i−1
1 dy1

(12)
what, taking, for m > 0 and k ∈ IN0,

∫ +∞

max(z,0)

e−my yk dy =





e−mz
k∑

i=0

k!
i!

zi

mk−i+1
z ≥ 0

k!
mk+1

z ≤ 0

(13)

gives

fZ(z) =





K1K2

p1∑

j=1

P ∗∗1j (z) e−λj z z ≥ 0

K1K2

p1∑

j=1

P ∗∗2j (z) eνj z z ≤ 0

(14)

where

P ∗∗1j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

h−1∑

i=0

(
h−1

i

)
(−z)h−1−i

k+i−1∑
t=0

(k + i− 1)!
t!

zt

(λj + νl)k+i−t
(15)

and

P ∗∗2j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

h−1∑

i=0

(
h−1

i

)
(−z)h−1−i (k + i− 1)!

(λj + νj)k+i
. (16)

It is however interesting and useful to observe that, given that the distribution of Y1 − Y2 and
Y2−Y1 are symmetrical, and that we may in (12) integrate in order to y2 instead of y1, we may obtain
the p.d.f. of Z given by a similar expression to the one in (14), with

P ∗∗1j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

k−1∑

i=0

(
k−1

i

)
zk−1−i (h + i− 1)!

(λj + νl)h+i
(17)

and

P ∗∗2j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

k−1∑

i=0

(
k−1

i

)
zk−1−i

h+i−1∑
t=0

(h + i− 1)!
t!

zt

(λj + νl)h+i−t
, (18)

moreover since indeed

h−1∑

i=0

(
h−1

i

)
(−z)h−1−i

k+i−1∑
t=0

(k + i− 1)!
t!

zt

(λj + νl)k+i−t
=

k−1∑

i=0

(
k−1

i

)
zk−1−i (h + i− 1)!

(λj + νl)h+i
.

This way, in order to obtain a simpler expression for the p.d.f. of Z we may consider the p.d.f. in
(14) with P ∗∗1j (z) given by (17) and P ∗∗2j (z) given by (16).
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Then, using (13), the c.d.f. of Z may be written as

FZ(z) =





K1K2

p1∑

j=1

P ∗∗∗1j (z) e−λj z z ≥ 0

K1K2

p1∑

j=1

P ∗∗∗2j (z) eνj z z ≤ 0

(19)

with

P ∗∗∗1j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

k−1∑

i=0

(
k−1

i

)
(h + i− 1)!
(λj + νl)h+i

k−1−i∑
t=0

(k − 1− i)!
t!

zt

λk−i−t
j

(20)

and

P ∗∗∗2j (z) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

h−1∑

i=0

(
h−1

i

)
(k + i− 1)!
(λj + νj)k+i

h−1−i∑
t=0

(h− 1− i)!
t!

(−z)t

νh−i−t
l

. (21)

If we consider, for k > 0, the r.v.
W = k−1eZ

we have

fW (w) =





K1K2

p1∑

j=1

Q∗∗1j (log(kw)) (kw)−λj
1
w

w ≥ k−1

K1K2

p1∑

j=1

Q∗∗2j (log(kw)) (kw)νj
1
w

0 < w ≤ k−1

(22)

where

Q∗∗1j (log(kw)) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

k−1∑

i=0

(
k−1

i

)
(log(kw))k−1−i (h + i− 1)!

(λj + νl)h+i
(23)

and

Q∗∗2j (log(kw)) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

h−1∑

i=0

(
h−1

i

)
(− log(kw))h−1−i (k + i− 1)!

(λj + νj)k+i
. (24)

FW (w) =





K1K2

p1∑

j=1

Q∗∗∗1j (log(kw)) (kw)−λj w ≥ k−1

K1K2

p1∑

j=1

Q∗∗∗2j (log(kw)) (kw)νj 0 < w ≤ k−1

(25)

with

Q∗∗∗
1j (log(kw)) =

r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

k−1∑

i=0

(
k−1

i

)
(h + i− 1)!
(λj + νl)h+i

k−1−i∑
t=0

(k − 1− i)!
t!

(log(kw))t

λk−i−t
j

(26)

and

Q∗∗∗2j (log(kw)) =
r1j∑

k=1

cjk

p2∑

l=1

r2l∑

h=1

dlh

h−1∑

i=0

(
h−1

i

)
(k + i− 1)!
(λj + νj)k+i

h−1−i∑
t=0

(h− 1− i)!
t!

(− log(kw))t

νh−i−t
l

. (27)

As we did with (8) and (9), also in (14) through (18) we may take both p1 →∞ and p2 →∞, still
holding proper distributions.
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3 The distribution of the product of m independent random
variables with GGR distributions

3.1 The case with all distinct shape parameters for the numerator and
denominator

Let
Xj ∼ GGR(kj , r2j , r1j , βj) j = 1, . . . , m

be m independent r.v.’s.
We want an explicit and concise expression for the p.d.f. and c.d.f. of the r.v.

W =
m∏

j=1

Xj . (28)

Based on the results in subsection 1.1 we have

E
(
Xh

j

)
= k

−h/βj

j

Γ(r2j + h/βj) Γ(r1j − h/βj)
Γ(r1j) Γ(r2j)

and if we take
Yj = k

1/βj

j Xj

then we have

E
(
Y h

j

)
=

Γ(r2j + h/βj) Γ(r1j − h/βj)
Γ(r1j) Γ(r2j)

,

so that if we take

W ′ =
m∏

j=1

Yj

we have

W =
m∏

j=1

Xj =




m∏

j=1

k
−1/βj

j




︸ ︷︷ ︸
=K∗

m∏

j=1

Yj = K∗W ′

and then if

Z = log W ′ =
m∑

j=1

log Yj

we have, for i =
√−1,

ΦZ(t) =
m∏

j=1

Φlog Yj (t) =
m∏

j=1

E
(
Y it

j

)

=
m∏

j=1

Γ(r2j + it/βj) Γ(r1j − it/βj)
Γ(r1j) Γ(r2j)

(29)

what, using

Γ(z) =
e−γz

z

∞∏

i=1

(
i

i + z
ez/i

)

where γ is the Euler gamma constant, may, after some simplifications, be written as

ΦZ(t) =
m∏

j=1

∞∏

k=0

βj(r2j + k) (βj(r2j + k) + it)−1
βj(r1j + k) (βj(r1j + k)− it)−1

.
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Since the βj (j = 1, . . . , m) are not necessarily all positive we take

β∗j = |βj | , s1j =

{
r1j if βj > 0

r2j if βj < 0
and s2j =

{
r2j if βj > 0

r1j if βj < 0
,

so that we may write

ΦZ(t) =
m∏

j=1

∞∏

k=0

β∗j (s2j + k)
(
β∗j (s2j + k) + it

)−1
β∗j (s1j + k)

(
β∗j (s1j + k)− it

)−1
,

what shows that, if β∗j s1j 6= β∗ks1k and β∗j s2j 6= β∗ks2k, ∀j 6= k, j, k ∈ {1, . . . , m}, the distribution of
Z is the same as the distribution of a sum of infinitely many independent r.v.’s distributed as the
difference of two independent Exponential distributions, with parameters β∗j (s2j + k) and β∗j (s1j + k)
(j = 1, . . . , m; h = 0, 1, . . .). Alternatively, Z is distributed as the difference of two independent r.v.’s,
each one with the distribution of the sum of infinitely many independent Exponential distributions.

Thus, since

W = K∗ eZ ; K∗ =
m∏

j=1

k
−1/βj

j , (30)

taking s∗1jh = β∗j (s1j + h) and s∗2jh = β∗j (s2j + h) and using (10) and (11) above as a basis, we get

FW (w) =





lim
n→∞

K1K2

m∑

j=1

n∑

h=0

(
H2jh

dhj

s∗2jh

+ H1jh
chj

s∗1jh

(
1− (w/K∗)−s∗1jh

))
, w ≥ K∗

lim
n→∞

K1K2

m∑

j=1

n∑

h=0

H2jh
dhj

s∗2jh

(w/K∗)s∗2jh , 0 < w ≤ K∗

(31)
where K1 and K2 are defined in a similar manner as above, that is,

K1 =
m∏

j=1

n∏

h=0

β∗j (s1j + h) , K2 =
m∏

j=1

n∏

h=0

β∗j (s2j + h) ,

and, for j = 1, . . . , m and n = 0, 1, . . .,

chj =
m∏

η=1

η 6=j

n∏
ν=0
ν 6=h

1
β∗j (s1j + h)− β∗η(s1η + ν)

, dhj =
m∏

η=1

η 6=j

n∏
ν=0
ν 6=h

1
β∗j (s2j + h)− β∗η(s2η + ν)

,

and

H1jh =
m∑

k=1

n∑

l=0

dkl

β∗k(s2k + l)− β∗j (s1j + h)
, H2jh =

m∑

k=1

n∑

l=0

ckl

β∗k(s1k + l)− β∗j (s2j + h)
.

To lighten the writing we may replace the pair of indexes (k, j) by h = km + j, setting

s∗ih = β∗j (sij + k) , for i = 1, 2; j = 1, . . . ,m; k = 0, . . . , n . (32)

We may now define K1, K2, cj , dj , H1j and H2j (j = 1, . . . ,m(n+1)), (with n →∞) in a way similar
to the one used in subsection 1.2, that is,

K1 =
m(n+1)∏

j=1

s∗1j , K2 =
m(n+1)∏

j=1

s∗2j ,
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and, for j = 1, . . .,

cj =
m(n+1)∏

k=1
k 6=j

1
s∗1j − s∗1k

, dj =
m(n+1)∏

k=1
k 6=j

1
s∗2j − s∗2k

and

H1j =
m(n+1)∑

h=1

dh

s∗1j − s∗2h

, H2j =
m(n+1)∑

h=1

ch

s∗1h − s∗2j

so that we may write the p.d.f. of the r.v. W as

FW (w) =





lim
n→∞

K1K2

m(n+1)∑

j=1

(
H2j

dj

s∗2j

+ H1j
cj

s∗1j

(
1− (w/K∗)−s∗1j

))
, w ≥ K∗

lim
n→∞

K1K2

m(n+1)∑

j=1

H2j
dj

s∗2j

(w/K∗)s∗2j , 0 < w ≤ K∗ .

(33)

3.2 The general case

In the general case we will admit that it is possible that some of the parameters s̃1j = β∗j s1j , j ∈
{i, . . . , m}, will be equal and that also some of the parameters s̃2j = β∗j s2j , j ∈ {i, . . . , m}, will be
equal. More precisely, and without any loss of generality, let us suppose that τ1 of the m parameters
s̃1j are equal to s̃11, τ2 are equal to s̃12, and so on, and that τp1 are equal to s̃1p1 , with p1 < m and

p1∑

j=1

τj = m,

and that, similarly, η1 of the m parameters s̃2j are equal to s̃21, η2 are equal to s̃22, and so on, and
that ηp2 are equal to s̃2p2 , with p2 < m and

p2∑

j=1

ηj = m.

Then the characteristic function in (29) may be written as

ΦZ(t) =
p1∏

j=1

∞∏

k=0

(
s̃1j + β∗j k

)τj
(
s̃1j + β∗j k − it

)−τj

p2∏

j=1

∞∏

k=0

(
s̃2j + β∗j k

)ηj
(
s̃2j + β∗j k − it

)−ηj

= lim
n→∞

p1∏

j=1

n∏

k=0

(
s̃1j + β∗j k

)τj
(
s̃1j + β∗j k − it

)−τj

p2∏

j=1

n∏

k=0

(
s̃2j + β∗j k

)ηj
(
s̃2j + β∗j k − it

)−ηj

that is the characteristic function of the difference of two independent r.v.’s with GIG distributions,
the first one, that is, the one with positive sign, with depth p1×(n + 1) (with n → ∞), with rate
parameters and associated shape parameters

s̃11 + β∗1k︸ ︷︷ ︸
k=0,...,n

, . . . , s̃1j + β∗j k︸ ︷︷ ︸
k=0,...,n

, . . . , s̃1p1 + β∗p1
k︸ ︷︷ ︸

k=0,...,n

τ1, . . . , τ1︸ ︷︷ ︸
n+1

, . . . , τj , . . . , τj︸ ︷︷ ︸
n+1

, . . . , τp1 , . . . , τp1︸ ︷︷ ︸
n+1

and the second one, that is, the one with negative sign, with depth p2×(n + 1) (with n → ∞), with
shape parameters and associated rate parameters

s̃21 + β∗1k︸ ︷︷ ︸
k=0,...,n

, . . . , s̃2j + β∗j k︸ ︷︷ ︸
k=0,...,n

, . . . , s̃2p1 + β∗p2
k︸ ︷︷ ︸

k=0,...,n

η1, . . . , η1︸ ︷︷ ︸
n+1

, . . . , ηj , . . . , ηj︸ ︷︷ ︸
n+1

, . . . , ηp2 , . . . , ηp2︸ ︷︷ ︸
n+1

.
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Let us consider the vectors

τ∗ =
[
τ1, . . . , τp1 , τ1, . . . , τp1 , . . . , τ1, . . . , τp1︸ ︷︷ ︸

n+1 times

]′
, η∗ =

[
η1, . . . , ηp2 , η1, . . . , ηp2 , . . . , η1, . . . , ηp2︸ ︷︷ ︸

n+1 times

]′
,

where, for j = 1, . . . , p1(n + 1) and l = 1, . . . , p2(n + 1), with j = kp1 + h and l = kp2 + i, for
k = 0, . . . , n, h = 1, . . . , p1 and i = 1, . . . , p2,

τ∗j = τh , and η∗l = η i ,

and, similarly to the vectors s∗1 and s∗2 considered in the previous subsection, the vectors

s̃∗1 =
[
s̃11, . . . , s̃1p1 , s̃11 + β∗1 , . . . , s̃1p1 + β∗p1

, . . . , s̃11 + β∗1n, . . . , s̃1p1 + β∗p1
n
]′

and
s̃∗2 =

[
s̃21, . . . , s̃2p1 , s̃21 + β∗1 , . . . , s̃2p1 + β∗p1

, . . . , s̃21 + β∗1n, . . . , s̃2p1 + β∗p1
n
]′

where, once again, for j = 1, . . . , p1(n + 1) and l = 1, . . . , p2(n + 1), with j, l, k, h and i defined as
above,

s̃∗1j = s̃1h + β∗hk and s̃∗2l = s̃2i + β∗i k .

The c.d.f. of W = K∗eZ , for K∗ defined as in (30), may then be derived from (25), taking into
account the shape and rate parameters mentioned above, as

FW (w) =





lim
n→∞

K1K2

p1(n+1)∑

j=1

Q∗∗∗1j (log(w/K∗)) (w/K∗)−s̃∗1j w ≥ K∗

lim
n→∞

K1K2

p2(n+1)∑

j=1

Q∗∗∗2j (log(w/K∗)) (w/K∗)s̃∗2j 0 < w ≤ K∗

(34)

where now K1, K2, Q∗∗∗1j (·) and Q∗∗∗2j (·) are defined as in subsection 2.4, with p1 replaced by p1(n+1),
p2 replaced by p2(n + 1), λj replaced by s̃∗1j , νl replaced by s̃∗2j , r1j replaced by τ∗j and r2l replaced
by η∗l .

3.3 The double non-central case

The following Lemma is a useful result for some of the work ahead ad its proof is straightforwardly
obtained from the Theorem of global probability (Robbins, 1948; Robbins and Pitman, 1949).

Lemma 1: Let Z1 and Z2 be two independent r.v.’s taking values on the non-negative integers,
such that

P (Z1 = i) = ui and P (Z2 = j) = vj , i, j = 0, 1, . . . .

Let further X and Y be two r.v.’s and let Xi = X|Z1 = i and Yj = Y |Z2 = j, for i, j = 0, 1, . . ., and
let yet g(·, ·) be a measurable function.

Then

ΦX(t) =
∞∑

i=0

ui ΦXi(t) , ΦY (t) =
∞∑

j=0

vj ΦYj (t)

and if
Z = g(X, Y )

then

ΦZ(t) =
∞∑

i=0

∞∑

j=0

ui vj Φg(Xi,Yj)(t) .

A particular case of the above Lemma is clearly the case where the r.v.’s X and Y are mixtures.
We will use the above Lemma exactly in this case.
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We will say that the r.v. Y has a non-central Generalized Gamma distribution with shape pa-
rameter r, rate parameter λ, power parameter β and non-centrality parameter δ if its p.d.f. may be
written as a mixture with Poisson weights with rate δ/2 of Generalized Gamma p.d.f.s with shape
parameters r + i (i = 0, 1, . . .), rate parameter λ and power parameter β, that is, if

fY (y) =
∞∑

i=0

pi
|β|λr+i

Γ(r + i)
e−λyβ

yβ(r+i)+1 ,

where

pi =
(δ/2)i

i!
e−δ/2 i = 0, 1, . . . (35)

clearly with
∑∞

i=0 pi = 1. We will denote the fact that the r.v. Y has a non-central Generalized
Gamma distribution with the above parameters by

Y ∼ Γ(r, λ, β; δ) , (36)

If the r.v. Y has the non-central Generalized Gamma distribution in (36), then it is straightforward
to show that the r.v.

X = Y β , β ∈ IR\{0} ,

has a non-central Gamma distribution with shape parameter r, rate parameter λ and non-centrality
parameter δ.

Let us suppose that

Y1 ∼ Γ(r1, λ1, β; δ1) and Y2 ∼ Γ(r2, λ2, β; δ2)

are two independent r.v.’s and let
Z = Y1/Y2 .

Then, the r.v. Z will have what we call a double non-central Generalized Gamma Ratio or double
non-central Generalized F distribution. Using Lemma 1 above, the p.d.f. of Z is, for k = λ1/λ2,

fZ(z) =
∞∑

i=0

∞∑

j=0

pi νj
|β| kr1+i

B(r1 + i, r2 + j)
(
1 + k zβ

)−r1−r2−i−j
zβ(r1+i)−1

where k = λ1/λ2 and

pi =
(δ1/2)i

i!
e−δ1/2 and νj =

(δ2/2)j

j!
e−δ2/2 .

We will denote the fact that the r.v. Z has this distribution by

Z ∼ GGR(r1, r2, k, β; δ1, δ2) .

In this section we will be interested in obtaining the distribution of

W =
n∏

j=1

Zj (37)

where
Zj ∼ GGR(r1j , r2j , kj , βj ; δ1j , δ2j) .

Using Lemma 1 and expression (31), in subsection 3.1, for the c.d.f. of W in the central case, we
obtain, for the case where all shape parameters in the numerator are different and all shape parameters
in the denominator are also different, that is the case where,

β∗j s1j 6= β∗ks1k and β∗j s2j 6= β∗ks2k for all j 6= k with j, k ∈ {1, . . . ,m} ,
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defining s∗1k and s∗2k as in (31), we have for s∗1khi = β∗k(s1k + h + i) and s∗2khj = β∗k(s2k + h + j),

FW (w) =





∞∑

i=0

∞∑

j=0

lim
n→∞

K1i K2j

n∑

h=0

m∑

k=1

pik νjk

(
H2khij

dhkj

s∗2khj

+H1khij
chki

s∗1khi

(
1− (w/K∗)−s∗1khi

))
w ≥ K∗

∞∑

i=0

∞∑

j=0

lim
n→∞

K1i K2j

n∑

h=0

m∑

k=1

pik νjk H2khij
dhkj

s∗2khj

(w/K∗)s∗2khj 0 < w ≤ K∗

where

K1i =
m∏

η=1

n∏

h=0

β∗η(s1η + i + h) and K2j =
m∏

η=1

n∏

h=0

β∗η(s2η + j + h) ,

H1khij =
m∑

η=1

n∑

l=0

dηlj

β∗η(s2η+j+l)− β∗k(s1k+i+h)
, H2khij =

m∑
η=1

n∑

l=0

cηli

β∗η(s1η+i+l)− β∗k(s2k+j+h)
,

with

chki =
m∏

η=1

η 6=k

n∏
ν=0
ν 6=h

1
β∗k(s1k+i+h)− β∗η(s1η+i+ν)

, dhkj =
m∏

η=1

η 6=k

n∏
ν=0
ν 6=h

1
β∗k(s2k+j+h)− β∗η(s2η+j+ν)

and yet, for i, j = 0, 1, . . . and k = 1, . . . , m,

pik =
(δ1k/2)i

i!
e−δ1k/2 and νjk =

(δ2k/2)j

j!
e−δ2k/2 . (38)

In case that all the non-centrality parameters in the numerator of W are the same, say δ1k = δ1,
∀k ∈ {1, . . . ,m}, and all non-centrality parameters in the denominator are also the same, with say
δ2k = δ2, ∀k ∈ {1, . . . , m}, the only difference in the distribution of W would be that the weights pik

and νjk would be no more a function of k and the c.d.f. of W could be written as

FW (w) =





∞∑

i=0

∞∑

j=0

pi νj lim
n→∞

K1i K2j

n∑

h=0

m∑

k=1

(
H2khij

dhkj

s∗2khj

+H1khij
chki

s∗1khi

(
1− (w/K∗)−s∗1khi

))
w ≥ K∗

∞∑

i=0

∞∑

j=0

pi νj lim
n→∞

K1i K2j

n∑

h=0

m∑

k=1

H2khij
dhkj

s∗2khj

(w/K∗)s∗2khj 0 < w ≤ K∗

Let k|m represent the remainder of the integer ratio of k by m and let k|m = 1 + k|m. Then, an
alternative representation for the c.d.f. of W in this case may be derived from the c.d.f. in (33) in
subsection 3.1, obtained for the central case of W , we have, the c.d.f. of W in (37) is, for

s∗∗1ki = s∗1k + i β∗k|p1
and s∗∗2kj = s∗2k + j β∗k|p2

,

14



with s∗1k and s∗2k defined by (32),

FW (w) =





∞∑

i=0

∞∑

j=0

lim
n→∞

K1i K2j

m(n+1)∑

k=1

pi,k|m νj,k|m

(
H2kij

dkj

s∗∗2kj

+H1kij
cki

s∗∗1ki

(
1− (w/K∗)−s∗∗1ki

))
w ≥ K∗

∞∑

i=0

∞∑

j=0

lim
n→∞

K1i K2j

m(n+1)∑

k=1

pi,k|m νj,k|m H2kij
dkj

s∗∗2kj

(w/K∗)s∗∗2kj 0 < w ≤ K∗

where

K1i =
m(n+1)∏

k=1

s∗∗1ki , K2j =
m(n+1)∏

k=1

s∗∗2kj , H1kij =
m(n+1)∑

h=1

dhj

s∗∗1hi − s∗∗2kj

, H2kij =
m(n+1)∑

h=1

chi

s∗∗2hi − s∗∗1kj

with

cki =
m(n+1)∏

h=1
h6=k

1
s∗∗1hi − s∗∗1ki

and dkj =
m(n+1)∏

h=1
h6=k

1
s∗∗2hj − s∗∗2kj

and yet

pik =
(δ1k/2)i

i!
e−δ1k/2 and νjk =

(δ2k/2)j

j!
e−δ2k/2 .

In case where all the non-centrality parameters in the numerator of W are the same, say δ1k = δ1,
∀k ∈ {1, . . . ,m}, and all non-centrality parameters in the denominator are also the same, with say
δ2k = δ2, ∀k ∈ {1, . . . , m}, the only difference in the distribution of W would be that the weights pik

and νjk would be no more a function of k and the c.d.f. of W could be written as

FW (w) =





∞∑

i=0

∞∑

j=0

pi νj lim
n→∞

K1i K2j

m(n+1)∑

k=1

(
H2kij

dkj

s∗∗2kj

+H1kij
cki

s∗∗1ki

(
1− (w/K∗)−s∗∗1ki

))
w ≥ K∗

∞∑

i=0

∞∑

j=0

pi νj lim
n→∞

K1i K2j

m(n+1)∑

k=1

H2kij
dkj

s∗∗2kj

(w/K∗)s∗∗2kj 0 < w ≤ K∗ .

For the double non-central case corresponding to the general case studied in subsection 3.2 above,
where some of the parameters s̃1j = β∗j s1j , j ∈ {i, . . . , m}, will be equal and also some of the
parameters s̃2j = β∗j s2j , j ∈ {i, . . . , m}, will be equal, we have, from (34),

FW (w) =





∞∑

i=0

∞∑

j=0

lim
n→∞

K1iK2j

p1(n+1)∑

k=1

Q∗∗∗
1kij (log(w/K∗)) (w/K∗)−s̃∗∗1ki w ≤ K∗

∞∑

i=0

∞∑

j=0

lim
n→∞

K1iK2j

p1(n+1)∑

k=1

Q∗∗∗
2kij (log(w/K∗)) (w/K∗)s̃∗∗2kj w ≤ K∗

with

s̃∗∗1ki = s̃∗1k + i β∗k|p1
, s̃∗∗2kj = s̃∗2k + j β∗k|p2

, K1i =
p1(n+1)∏

k=1

(s̃∗∗1ki)
τ∗k , K2j =

p2(n+1)∏

k=1

(
s̃∗∗2kj

)η∗k ,
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Q∗∗∗1kij (log(w/K∗)) =
τ∗k∑

g=1

ckgi

p2(n+1)∑

l=1

η∗l∑

h=1

dlhj

g−1∑
u=0

(
g−1

u

)
(h−u−1)!(

s̃∗∗1ki+s̃∗∗2lj

)h+u

g−1−u∑
t=0

(g−1−u)!
t!

(log(w/K∗))t

(s̃∗∗1ki)
g−u−t

Q∗∗∗2kij (log(w/K∗)) =
τ∗k∑

g=1

ckgi

p2(n+1)∑

l=1

η∗l∑

h=1

dlhj

h−1∑
u=0

(
h−1

u

)
(g−u−1)!(

s̃∗∗1ki+s̃∗∗2lj

)g+u

g−1−u∑
t=0

(h−1−u)!
t!

(log(w/K∗))t

(
s̃∗∗2lj

)h−u−t

where, for k = 1, . . . , p1 and for l = 1, . . . , p2,

ck,τ∗
k

,i =
1

(τ∗k − 1)!

p1∏

l=1
l 6=k

(s̃∗∗1li − s̃∗∗1ki)
−τ∗l , dl,η∗

l
,j =

1
(η∗l − 1)!

p2∏

k=1
k 6=l

(
s̃∗∗2kj − s̃∗∗2lj

)−η∗k

with, for l = 1, . . . , τ∗k − 1 and k = 1, . . . , p1,

ck,τ∗
k
−l,i =

1
l

l∑

h=1

(τ∗k − l + h− 1)!
(τ∗k − l − 1)!

R1(h, k, p1, τ
∗, s̃∗∗1 ) ck,τ∗

k
−(l−h),i

and, for m = 1, . . . , η∗l − 1 and l = 1, . . . , p2,

dl,η∗
l
−m,j =

1
m

m∑

h=1

(η∗l −m + h− 1)!
(η∗l −m− 1)!

R2(h, l, p2, η
∗, s̃∗∗2 ) dl,η∗

l
−(m−h),j

where, for h = 0, . . . , τ∗k − 1 and m = 0, . . . , η∗l − 1,

R1(h, k, p1, τ
∗, s̃∗∗1 ) =

p1∑

l=1
l 6=k

τ∗k (s̃∗∗1ki − s̃∗∗1li)
−h

, R2(m, l, p2, η
∗, s̃∗∗2 ) =

p2∑
n=1
n 6=l

η∗l
(
s̃∗∗2lj − s̃∗∗2nj

)−m
.

4 Conclusions and Final Remarks

We should strengthen that the results obtained may be easily and directly generalized to the case
where we are interested in the distribution of the r.v.

Z =
n∏

j=1

γj Y
αj

j

where γj ∈ IR+, αj ∈ IR\{0} and Yj are independent r.v.’s with GGR distributions, since it is
straightforward to show that if

Yj ∼ GGR(r1j , r2j , kj , βj ; δ1j , δ2j) (39)

then

γj Y
αj

j ∼ GGR

(
r1j , r2j ,

kj

γ
βj/αj

j

,
βj

αj
; δ1j , δ2j

)
.

If the r.v. X has a standard Beta distribution, the distribution of either (1−X)/X or X/(1−X) is
then usually called a standard Beta prime or Beta second kind distribution. However we should note
that the distribution of either (1−X)/X or X/(1−X) is actually only a particular GGR distribution.
Actually it is easy to show that if

Yj ∼ GGR(r1j , r2j , kj , βj ; 0, 0)
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with kj = 1 and βj = 1 then the r.v.’s 1/(1+Yj) and Yj/(1+Yj) have standard Beta distributions with
parameters r2j and r1j or r1j and r2j , respectively, while for general kj > 0 and general βj ∈ IR\{0}
the r.v. Xj = Yj/(1 + Yj) has what we call a generalized Beta distribution with p.d.f.

fXj
(x) =

|βj | kr1j

j

B(r1j , r2j)

(
1 + kj

x

1− x

)−r1j−r2j

(1− z)−βjr1j−1 zβjr1j−1

which clearly reduces to the standard Beta p.d.f. for kj = 1 and βj = 1, while the r.v. 1 − Xj =
1/(1 + Yj) has of course a similar p.d.f. with r1j and r2j swapped. For this reason the distribution
of Yj is also called, for kj = 1 and βj = 1 a Beta prime distribution and for general kj and βj a
generalized Beta prime distribution. Thus, for the non-central distribution in (39) we may say that
Yj has also a non-central generalized Beta prime distribution and thus, the distributions obtained in
section 3 are also the distributions of the product of independent central and non-central generalized
Beta prime r.v.’s.

Clearly if in (39) we have r1j = m/2, r2j = n/2, with m,n ∈ IN and kj = βj = 1 we have the r.v.’s
Yj with either central or non-central F distributions, according to the case that δj = 0 or δj 6= 0, with
m and n degrees of freedom. The results in section 3 may then be readily applied to both the central
and non-central cases.

Also, if in (39) we have r1j = 1/2, r2j = nj/2, kj = 1/nj and βj = 2, with nj ∈ IN , we have Yj

with the so-called folded T distribution, that is the distribution of a r.v. Yj = |Tj |, where Tj is a r.v.
with a Student T distribution with nj degrees of freedom. If instead we take r2j = 1/2 and kj = 1
we will have Yj with the so-called folded Cauchy distribution, that is the distribution of the absolute
value of a r.v. with a standard Cauchy distribution, or a Student T distribution with only 1 degree of
freedom. In both cases, once again, the results in section 3 may be readily applied to both the central
and non-central cases.

Besides, given the way our approach was conducted, even the doubly non-central case, where each
of the GGR r.v.’s is the ratio of two non-central Gamma r.v.’s, was then readily at hand. Also, since,
from the beginning, in subsection 2.1, and opposite to what is commonly done, we considered the
power parameters as real (only non-null), allowing them to be negative, the results obtained may be
directly extended to the distribution of the ratio of two independent GGR random variables or the
distribution of the ratio of two products of independent GGR random variables. In order to obtain
the distribution of the ratio of two independent GGR random variables one simply has to consider
m = 2 in (28), taking then for the random variable in the denominator the symmetric of its power
parameter. The distribution for the ratio of two products of independent GGR random variables may
then be obtained by taking the distribution of the product of the whole set of random variables, taking
the symmetric of the power parameters for the random variables in the denominator.

As a by-product, in subsections 2.3 and 2.4 we also obtain closed form representations, not involving
any infinite series or unsolved integrals, for the distribution of the difference of two independent sums of
a finite number of Exponential random variables with all different rate parameters or Gamma random
variables with all different rate parameters and integer shape parameters, under the form of particular
mixtures of either Exponential or Gamma distributions, according to the case. Also, if we consider
the exponential of a Gamma random variable with integer shape parameter as a generalized Pareto
distribution, then the distribution of the random variable W in subsection 2.3 is the distribution of the
ratio of two independent products of Pareto distributions, while the distribution of the same random
variable in subsection 2.4 is the distribution of the ratio of two independent products of generalized
Pareto distributions, expressed as a particular mixture of Pareto and inverted Pareto distributions.

Given the form of the exact distributions obtained for the product of either central and non-
central GGR r.v.’s asymptotic and near-exact distributions are readily at hand, being not treated in
this paper due to length limitations. They are intended to be published in a separate paper. We may
think of asymptotic distributions by simple truncation of the series obtained what would indeed give
mainly unsatisfactory results, mainly in terms of c.d.f. and quantiles, owing to the fact that then
the weights would not add up to the right values, preventing this way the c.d.f.s from reaching the
value 1. Much better results may be obtained if we consider near-exact distributions, based on the
concept of keeping a good part of the exact characteristic function unchanged and approaching the
remaining, and desirably, much smaller part, by an asymptotic result (Coelho, 2003, 2004) what, given
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the form obtained for the exact distributions, would lead us to consider for example the truncation of
the infinite series obtained, coupled with one or two more terms that would both make the weights
add up to the right value and the first two, three or four moments to match the first exact ones.
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