The attractor of an equation of Tricomi's type.

Rogério Martins¹

Dep. Matemática, FCT, Universidade Nova de Lisboa and CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal. E-mail: roma@fct.unl.pt

Abstract: Consider the attractor \mathcal{A} of an equation of pendulum type with friction driven by a constant torque. The results of M. Levi and also obtained independently by Q. Min, S. Xian, and Z. Jinyan show that if the friction coefficient is larger than a certain bound then \mathcal{A} is homeomorphic to the circle. We shall study the bifurcation diagram of a particular class of equations of pendulum type and show that the bounds on the friction coefficient obtained before are optimal.

1 Introduction

Motivated by the applications to the synchronous electrical motors, Tricomi [7], [8], studied in detail the equation

$$x'' + cx' + \sin x = \beta, \quad c, \beta > 0, \tag{1}$$

that is also the well known model for a pendulum with friction driven by a constant torque. When $\beta > 1$ there exist no equilibria and Tricomi proved the existence of a running periodic solution, i.e. a solution x so that $x(t+\tau) = x(t) + 2\pi$ for some $\tau > 0$, that attracts all the other solutions. On the other hand, when $\beta < 1$ there exists equilibria and he proves the existence of a constant $c_0(\beta)$ so that if $0 < c < c_0(\beta)$ there exist one running periodic solution but when the parameter c is moved to values above $c_0(\beta)$ the running periodic solution is destroyed in a homoclinic bifurcation and the equilibria become globally attracting. Both situations are sketched in Figure 1. We drew the situation where the stable equilibrium is a stable spiral, actually it is a stable node for some values of c. We have thus the bifurcation diagram given in Figure 2. For an exhaustive discussion and rigorous proofs of the

 $^{^1 \}rm Supported$ by Acção integrada Luso-Espanhola E-15/01 and Fundação para a Ciência e Tecnologia SFRH/BD/10628/2002.

Keywords and Phases: attractor, dissipative systems, Tricomi's equation, pendulum. 2000 Mathematics Subject Classification. 34D45, 34D23, 37C10.

Figure 2:

remaining cases see [1]. More generally we can study the flux associated to the pendulum like equation

$$x'' + cx' + g(t, x) = 0, \quad c > 0,$$

where $g \in C(\mathbb{R}/T\mathbb{Z} \times \mathbb{R}/2\pi\mathbb{Z})$ for some T > 0. Like in the pendulum case, the phase space of the associated equation

$$\begin{cases} x' = v \\ v' = -cv - g(t, x) \end{cases}$$
(2)

is invariant for translations along the vector $\begin{pmatrix} 2\pi \\ 0 \end{pmatrix}$. This means that we can regard the phase space of (2) as a cylinder \mathcal{C} formed by the identification of the points of the form $y + k \begin{pmatrix} 2\pi \\ 0 \end{pmatrix}$, $k \in \mathbb{Z}$. We shall denote by the same

letter y the element of \mathbb{R}^2 or the class of $y \in \mathbb{R}^2$ in \mathcal{C} . The Poincaré map P is the function defined in \mathcal{C} that to each initial condition y_0 corresponds $y(T; y_0)$, where $y(t; y_0)$ is the solution of (2) satisfying $y(0) = y_0$. Given the dissipative nature of (2), it is well known that we can define a maximal invariant set \mathcal{A} for P(see [4]), that is also a global attractor for the iterates of the Poincaré map. If the motion is overdamped then \mathcal{A} is homeomorphic to $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$, in such case the restriction of P to \mathcal{A} becomes an homeomorphism from the circle to itself. It is thus interesting to give criteria to decide if \mathcal{A} is homeomorphic to \mathbb{T}^1 or not. The following theorem was proven in [4], motivated by previous results in [2] and [5].

Theorem 1.1 If there exists a constant c_1 such that

$$c_1 < \frac{g(t, x_1) - g(t, x_2)}{x_1 - x_2} < \frac{c^2}{4}$$

for each $(t, x_1, x_2) \in \mathbb{R}^3$, with $x_1 \neq x_2$, then \mathcal{A} is homeomorphic to \mathbb{T}^1 .

An equivalent characterization of \mathcal{A} is (see [4])

$$\mathcal{A} = \{ y(0) : y \text{ is a solution of } (2) \text{ bounded in } \mathcal{C} \}.$$
(3)

So in the particular case of Tricomi and when $0 < c < c_0(\beta)$ the attractor \mathcal{A} is formed by the equilibria, the running periodic solution and the heteroclinics joining them; clearly \mathcal{A} is not homeomorphic to \mathbb{T}^1 . Therefore, from the last theorem we conclude that $c_0(\beta) < 2$ for every $\beta \in]0, 1[$. Actually Tricomi also gave estimations to the curve $c_0(\beta)$ (see [6] for a survey of this kind of estimations) that show that $c_0(\beta) < \sqrt{2}$. The purpose of this paper is to show that the constant $c^2/4$ is optimal in the above theorem. To this end we shall consider a variation of Tricomi's equation

$$\begin{cases} x' = v \\ v' = -cv - g(x) + \beta \end{cases}$$
(4)

where the sine function has been replaced by the 2π -periodic function defined by

$$g(x) = \begin{cases} x \text{ if } x \in [-\pi/2, \pi/2] \\ -x + \pi \text{ if } x \in [\pi/2, 3\pi/2] \end{cases}$$

For this nonlinearity equilibria exist if $\beta \in [0, \pi/2]$ and we prove that:

Theorem 1.2 If c < 2, there exists $\beta_1 \in]0, \pi/2[$ so that if $\beta_1 < \beta < \pi/2$ then equation (4) has a running periodic solution.

Once this result is proved it is easy to deduce:

Corollary 1.3 If c < 2, there exists $\beta_1 \in]0, \pi/2[$ so that if $\beta_1 < \beta < \pi/2$ then the attractor \mathcal{A} associated to equation (4) is not homeomorphic to \mathbb{T}^1 .

Therefore, in this modified case, the curve $c_0(\beta)$ attains values arbitrarily close to 2. Since the Lipschitz constant of f is 1 we conclude that the estimation obtained in the last theorem is optimal. We observe that in [3] there were already discussions about the optimality of $c^2/4$, using a nonautonomous equation and a different approach. However in the example in [3] the period T was an additional parameter. A problem that remains open is the following: given c < 2 there exists a periodic forcing p such that the attractor associated to the pendulum equation

$$x'' + cx' + \sin x = p(t)$$

is not homeomorphic to the circle?

The reader can find related results in the author's web page http://ptmat.lmc.fc.ul.pt/~rmartins

2 Proofs

Consider the equation (4) where $\beta \in]0, \pi/2[$. We shall show that for each c < 2 there exists $\beta_1 \in]0, \pi/2[$ so that if $\beta_1 \leq \beta < \pi/2$ then (4) has a running periodic solution and simultaneously equilibria, so \mathcal{A} is not homeomorphic to \mathbb{T}^1 .

The points of the form $\begin{pmatrix} \beta + 2k\pi \\ 0 \end{pmatrix}$, $k \in \mathbb{Z}$, are stable spirals and $\begin{pmatrix} \pi - \beta + 2k\pi \\ 0 \end{pmatrix}$, $k \in \mathbb{Z}$, are saddles in the phase space of (4). Notice that

$$\overline{x}_{\beta}(t) = (\pi/2 + \beta)e^{\frac{-c + \sqrt{c^2 + 4}}{2}t} - \pi - \beta$$

is the solution of $x'' + cx' - x - \pi = \beta$ so that

$$\lim_{t \to -\infty} \left(\frac{\overline{x}_{\beta}(t)}{\overline{x}_{\beta}'(t)} \right) = \begin{pmatrix} -\pi - \beta \\ 0 \end{pmatrix},$$

 \overline{x}_{β} is increasing, and $\overline{x}_{\beta}(0) = -\pi/2$. We conclude that $(\overline{x}_{\beta}, \overline{x}'_{\beta})$ is a solution of (4) in $] - \infty, 0[$ and is inside of the unstable manifold of $\begin{pmatrix} -\pi - \beta \\ 0 \end{pmatrix}$. Let us denote by $y_{\beta} = (x_{\beta}, v_{\beta})$ the solution of (4) that coincides with $(\overline{x}_{\beta}, \overline{x}'_{\beta})$ in

Figure 3:

the interval $]-\infty, 0[$ (see Figure 3). The function v_{β} is positive in the interval $]-\infty, 0[$; let $t_{\beta} \ge 0$ be the first value where $v_{\beta}(t_{\beta}) = 0$, if $v_{\beta}(t) > 0$ for all t > 0 we define $t_{\beta} = +\infty$.

We shall start to show that there exists $\beta_1 \in]0, \pi/2[$ so that if $\beta_1 \leq \beta < \pi/2$ then $t_{\beta} = +\infty$. This will be done in two lemmas.

Lemma 2.1 If c < 2 there exists $\beta_0 \in]0, \pi/2[$ in such a way that for each $\beta_0 \leq \beta < \pi/2$ there exists $0 < t^1_{\beta} < t_{\beta}$ so that $x_{\beta}(t^1_{\beta}) > \pi/2$ and $v_{\beta}(t) > 0$ for every $t \in]-\infty, t^1_{\beta}[$.

Proof: Notice that

$$\widetilde{x}_{\beta}(t) = (\pi/2 + \beta)e^{-\frac{c}{2}t} \left[\frac{-2c + \sqrt{c^2 + 4}}{\sqrt{4 - c^2}} \sin\left(\frac{\sqrt{4 - c^2}}{2}t\right) - \cos\left(\frac{\sqrt{4 - c^2}}{2}t\right) \right] + \beta$$

is the solution of the equation $x'' + cx' + x = \beta$ so that

$$\widetilde{x}_{\beta}(0) = -\pi/2 = \overline{x}_{\beta}(0);$$
$$\widetilde{x}_{\beta}'(0) = (\pi/2 + \beta) \left(\frac{-c + \sqrt{c^2 + 4}}{2}\right) = \overline{x}_{\beta}'(0).$$

Defining

$$f(t) = e^{-\frac{c}{2}t} \left[\frac{-2c + \sqrt{c^2 + 4}}{\sqrt{4 - c^2}} \sin\left(\frac{\sqrt{4 - c^2}}{2}t\right) - \cos\left(\frac{\sqrt{4 - c^2}}{2}t\right) \right],$$

we observe that the smallest value $t_2 > 0$ where $f'(t_2) = 0$ is so that $f(t_2) > 0$. We conclude that the function $\tilde{x}_{\beta}(t) = (\pi/2 + \beta)f(t) + \beta$ is increasing in $]0, t_2[$ and $\tilde{x}_{\beta}(t_2) = (\pi/2 + \beta)f(t_2) + \beta > \pi/2$ if

$$\beta > \beta_0 = \max\left\{0, \frac{\pi}{2} \frac{1 - f(t_2)}{1 + f(t_2)}\right\}.$$

If $t_3 > 0$ is the first value where $\widetilde{x}_{\beta}(t) \notin [-\pi/2, \pi/2[$ then $x_{\beta}(t) = \widetilde{x}_{\beta}(t)$ in $[0, t_3[$, we conclude that for each $\beta > \beta_0$ there exists t_{β}^1 so that $x_{\beta}(t_{\beta}^1) > \pi/2$ and $v_{\beta}(t) > 0$ for every $t \in [-\infty, t_{\beta}^1[$.

Lemma 2.2 If c < 2 then there exists $\beta_1 \in]0, \pi/2[$ so that if $\beta_1 < \beta < \pi/2$ then $t_\beta = +\infty$.

Proof: Let β_0 be given by the last lemma. Take $\beta_1 \in]0, \pi/2[$ so that $\beta_0 \leq \beta_1$ and $x_{\beta_0}(t^1_{\beta_0}) > \pi - \beta_1$. Consider $\beta_1 < \beta < \pi/2$. By the last lemma v_β is well defined as a function of x and is positive in the interval $]-\pi - \beta, x_\beta(t^1_\beta)[$ (with $x_\beta(t^1_\beta) > \pi/2)$. On the other hand, $v_\beta(x)$ is solution of

$$\frac{dv}{dx} = -c + \frac{\beta - g(x)}{v} \tag{5}$$

in the same interval. Since

$$\frac{dv_{\beta_0}}{dx} = -c + \frac{\beta_0 - g(x)}{v} < -c + \frac{\beta - g(x)}{v},$$

 v_{β_0} is a lower solution of (5) in the interval $] - \pi - \beta_0, \pi - \beta_1[$. Considering a sufficiently large constant L we obtain an upper solution of (5). This pair of lower and upper solutions form a funnel for equation (5) in the interval $] - \pi - \beta_0, \pi - \beta_1[$ (see Figure 4). Since $v_\beta(-\pi - \beta_0) \in]0, L[$ we conclude that $v_\beta(x)$ is well defined and positive in the interval $] - \pi - \beta, \pi - \beta[$. Similarly we can conclude that v_β is well defined and positive in the interval $]\pi - \beta, 3\pi - \beta[$, using $v_\beta(x-2\pi)$ as a lower solution and L as an upper solution. By induction we conclude that $v_\beta(x)$ is well defined and positive in $] - \pi - \beta, +\infty[$. Hence $t_\beta = +\infty$.

Figure 4:

In the proof of the last lemma we used the concept of lower and upper solutions to construct a funnel. In the next proof we shall use the same concept to prove the existence of a solution for a periodic boundary value problem. We recall the following classical theorem.

Theorem 2.3 Let $f \in C(\mathbb{R}/T\mathbb{Z} \times \mathbb{R})$ and $\alpha, \beta \in C^1[0,T]$ be functions satisfying

 $\alpha'(t) \le f(t, \alpha(t)), \quad \beta'(t) \ge f(t, \beta(t)), \quad \forall t \in [0, T],$

and $\alpha(0) \leq \alpha(T) < \beta(T) \leq \beta(0)$. Then α , β are so-called an ordered pair of lower and upper solutions and there exists a T-periodic solution x of x' = f(t, x) so that $\alpha(t) \leq x(t) \leq \beta(t)$, for all $t \in [0, T]$.

Proof of Theorem 1.2: Consider β_1 given by the last lemma and $\beta_1 < \beta < \pi/2$. Using the function $v_{\beta}(x)$ as a lower solution and L as an upper solution in the interval $[-\pi - \beta, \pi - \beta]$, we obtain an ordered pair of lower and upper solutions. We conclude that (5) has a positive periodic solution $v_0(x)$. To this solution corresponds a running periodic solution (x_0, v_0) of system (4).

Proof of Corollary 1.3: Consider the running periodic solution (x_0, v_0) given by the last theorem. Using (3) we conclude that

$$\{(x_0(t), v_0(t)) : t \in \mathbb{R}\} \cup \{(-\pi - \beta, 0)\} \cup \{(\beta, 0)\} \subset \mathcal{A}.$$

Notice that by uniqueness the points $(-\pi - \beta, 0)$, $(\beta, 0)$ do not belong to the orbit (x_0, v_0) . Since $\{(x_0(t), v_0(t)) : t \in \mathbb{R}\}$ is itself homeomorphic to \mathbb{T}^1 and is a proper subset of \mathcal{A} , we conclude that \mathcal{A} is not homeomorphic to \mathbb{T}^1 .

We remark that the proof of Lemma 2.1 depends on the fact that the equilibrium $\begin{pmatrix} \beta \\ 0 \end{pmatrix}$ is a stable spiral for every $\beta \in]0, \pi/2[$, therefore on the

fact that g is not differentiable at $x = \pi/2$. However, using the continuous dependence of solutions on the equation, it is not difficult to show that given β such that Corollary 1.3 holds it is possible to find $g_1 \in C^{\infty}(\mathbb{R}/2\pi\mathbb{Z})$ sufficiently close to g in the norm of the uniform convergence such that the atractor associated to

$$\begin{cases} x' = v \\ v' = -cv - g_1(x) + \beta \end{cases}$$

is similar to the attractor associated to (4).

Acknowledgement: The author would like to thank Professor Rafael Ortega for valuable discussions and encouragement during the elaboration of this manuscript.

References

- F. C. HOPPENSTEADT, M. LEVI, W. L. MIRANKER, Dynamics of the Josephson junction, Quart. Appl. Math. 36 (1978), 167-198.
- [2] M. LEVI, Nonchaotic behavior in the Josephson junction, Physical Review A 37 (1988), 927-931.
- [3] R. MARTINS, The effect of inversely unstable solutions on the attractor of the forced pendulum equation with friction, to appear in J. Differential Equations.
- [4] R. MARTINS, One-dimensional attractor for a dissipative system with a cylindrical phase space, preprint.
- [5] Q. MIN, S. XIAN, Z. JINYAN, Global behavior in the dynamical equation of J-J type, J. Differential Equations 71 (1988), 315-333.
- [6] G. SANSONE, R. CONTI, Nonlinear differential equations, Pergamon Press, Oxford, 1964.
- [7] F. TRICOMI, Integrazione di un'equazione differenziale presentatasi in elettrotecnica, Ann. R. Scuola Norm. Sup. Pisa 2 (1933), 1-20.
- [8] F. TRICOMI, Sur une équacion différentielle de l'électrotechnique, C. R. Acad. Sci. Paris 193 (1931), 635-636.