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Abstract: Consider the attractor A of an equation of pendulum type
with friction driven by a constant torque. The results of M. Levi and also
obtained independently by Q. Min, S. Xian, and Z. Jinyan show that if the
friction coefficient is larger than a certain bound then A is homeomorphic
to the circle. We shall study the bifurcation diagram of a particular class
of equations of pendulum type and show that the bounds on the friction
coefficient obtained before are optimal.

1 Introduction

Motivated by the applications to the synchronous electrical motors, Tricomi
[7], [8], studied in detail the equation

x′′ + cx′ + sin x = β, c, β > 0, (1)

that is also the well known model for a pendulum with friction driven by a
constant torque. When β > 1 there exist no equilibria and Tricomi proved
the existence of a running periodic solution, i.e. a solution x so that x(t+τ) =
x(t) + 2π for some τ > 0, that attracts all the other solutions. On the other
hand, when β < 1 there exists equilibria and he proves the existence of
a constant c0(β) so that if 0 < c < c0(β) there exist one running periodic
solution but when the parameter c is moved to values above c0(β) the running
periodic solution is destroyed in a homoclinic bifurcation and the equilibria
become globally attracting. Both situations are sketched in Figure 1. We
drew the situation where the stable equilibrium is a stable spiral, actually it
is a stable node for some values of c. We have thus the bifurcation diagram
given in Figure 2. For an exhaustive discussion and rigorous proofs of the
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remaining cases see [1]. More generally we can study the flux associated to
the pendulum like equation

x′′ + cx′ + g(t, x) = 0, c > 0,

where g ∈ C(R/TZ × R/2πZ) for some T > 0. Like in the pendulum case,
the phase space of the associated equation{

x′ = v
v′ = −cv − g(t, x)

(2)

is invariant for translations along the vector

(
2π
0

)
. This means that we can

regard the phase space of (2) as a cylinder C formed by the identification of

the points of the form y + k

(
2π
0

)
, k ∈ Z. We shall denote by the same
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letter y the element of R
2 or the class of y ∈ R

2 in C. The Poincaré map
P is the function defined in C that to each initial condition y0 corresponds
y(T ; y0), where y(t; y0) is the solution of (2) satisfying y(0) = y0. Given
the dissipative nature of (2), it is well known that we can define a maximal
invariant set A for P (see [4]), that is also a global attractor for the iterates of
the Poincaré map. If the motion is overdamped then A is homeomorphic to
T

1 = R/Z, in such case the restriction of P to A becomes an homeomorphism
from the circle to itself. It is thus interesting to give criteria to decide if A
is homeomorphic to T

1 or not. The following theorem was proven in [4],
motivated by previous results in [2] and [5].

Theorem 1.1 If there exists a constant c1 such that

c1 <
g(t, x1) − g(t, x2)

x1 − x2

<
c2

4

for each (t, x1, x2) ∈ R
3, with x1 �= x2, then A is homeomorphic to T

1.

An equivalent characterization of A is (see [4])

A = {y(0) : y is a solution of (2) bounded in C}. (3)

So in the particular case of Tricomi and when 0 < c < c0(β) the attractor A is
formed by the equilibria, the running periodic solution and the heteroclinics
joining them; clearly A is not homeomorphic to T

1. Therefore, from the last
theorem we conclude that c0(β) < 2 for every β ∈]0, 1[. Actually Tricomi
also gave estimations to the curve c0(β) (see [6] for a survey of this kind of
estimations) that show that c0(β) <

√
2. The purpose of this paper is to

show that the constant c2/4 is optimal in the above theorem. To this end we
shall consider a variation of Tricomi’s equation{

x′ = v
v′ = −cv − g(x) + β

(4)

where the sine function has been replaced by the 2π-periodic function defined
by

g(x) =

{
x if x ∈ [−π/2, π/2]
−x + π if x ∈ [π/2, 3π/2]

.

For this nonlinearity equilibria exist if β ∈]0, π/2[ and we prove that:

Theorem 1.2 If c < 2, there exists β1 ∈]0, π/2[ so that if β1 < β < π/2
then equation (4) has a running periodic solution.
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Once this result is proved it is easy to deduce:

Corollary 1.3 If c < 2, there exists β1 ∈]0, π/2[ so that if β1 < β < π/2
then the attractor A associated to equation (4) is not homeomorphic to T

1.

Therefore, in this modified case, the curve c0(β) attains values arbitrarily
close to 2. Since the Lipschitz constant of f is 1 we conclude that the
estimation obtained in the last theorem is optimal. We observe that in [3]
there were already discussions about the optimality of c2/4, using a non-
autonomous equation and a different approach. However in the example in
[3] the period T was an additional parameter. A problem that remains open
is the following: given c < 2 there exists a periodic forcing p such that the
attractor associated to the pendulum equation

x′′ + cx′ + sin x = p(t)

is not homeomorphic to the circle?
The reader can find related results in the author’s web page

http://ptmat.lmc.fc.ul.pt/˜rmartins

2 Proofs

Consider the equation (4) where β ∈]0, π/2[. We shall show that for each
c < 2 there exists β1 ∈]0, π/2[ so that if β1 ≤ β < π/2 then (4) has a running
periodic solution and simultaneously equilibria, so A is not homeomorphic
to T

1.

The points of the form

(
β + 2kπ

0

)
, k ∈ Z, are stable spirals and(

π − β + 2kπ
0

)
, k ∈ Z, are saddles in the phase space of (4). Notice that

xβ(t) = (π/2 + β)e
−c+

√
c2+4

2
t − π − β

is the solution of x′′ + cx′ − x − π = β so that

lim
t→−∞

(
xβ(t)
x′

β(t)

)
=

(−π − β
0

)
,

xβ is increasing, and xβ(0) = −π/2. We conclude that (xβ, x′
β) is a solution

of (4) in ] −∞, 0[ and is inside of the unstable manifold of

(−π − β
0

)
. Let

us denote by yβ = (xβ, vβ) the solution of (4) that coincides with (xβ, x′
β) in
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Figure 3:

the interval ]−∞, 0[(see Figure 3). The function vβ is positive in the interval
] −∞, 0[; let tβ ≥ 0 be the first value where vβ(tβ) = 0, if vβ(t) > 0 for all
t > 0 we define tβ = +∞.

We shall start to show that there exists β1 ∈]0, π/2[ so that if β1 ≤ β <
π/2 then tβ = +∞. This will be done in two lemmas.

Lemma 2.1 If c < 2 there exists β0 ∈]0, π/2[ in such a way that for each
β0 ≤ β < π/2 there exists 0 < t1β < tβ so that xβ(t1β) > π/2 and vβ(t) > 0
for every t ∈] −∞, t1β[.

Proof: Notice that

x̃β(t) = (π/2+β)e−
c
2
t

[
−2c +

√
c2 + 4√

4 − c2
sin

(√
4 − c2

2
t

)
− cos

(√
4 − c2

2
t

)]
+β

is the solution of the equation x′′ + cx′ + x = β so that

x̃β(0) = −π/2 = xβ(0);

x̃′
β(0) = (π/2 + β)

(
−c +

√
c2 + 4

2

)
= x′

β(0).
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Defining

f(t) = e−
c
2
t

[
−2c +

√
c2 + 4√

4 − c2
sin

(√
4 − c2

2
t

)
− cos

(√
4 − c2

2
t

)]
,

we observe that the smallest value t2 > 0 where f ′(t2) = 0 is so that f(t2) > 0.
We conclude that the function x̃β(t) = (π/2+β)f(t)+β is increasing in ]0, t2[
and x̃β(t2) = (π/2 + β)f(t2) + β > π/2 if

β > β0 = max

{
0,

π

2

1 − f(t2)

1 + f(t2)

}
.

If t3 > 0 is the first value where x̃β(t) �∈] − π/2, π/2[ then xβ(t) = x̃β(t) in
]0, t3[, we conclude that for each β > β0 there exists t1β so that xβ(t1β) > π/2
and vβ(t) > 0 for every t ∈] −∞, t1β[.

Lemma 2.2 If c < 2 then there exists β1 ∈]0, π/2[ so that if β1 < β < π/2
then tβ = +∞.

Proof: Let β0 be given by the last lemma. Take β1 ∈]0, π/2[ so that β0 ≤ β1

and xβ0(t
1
β0

) > π − β1. Consider β1 < β < π/2. By the last lemma vβ is well
defined as a function of x and is positive in the interval ]−π−β, xβ(t1β)[(with
xβ(t1β) > π/2). On the other hand, vβ(x) is solution of

dv

dx
= −c +

β − g(x)

v
(5)

in the same interval. Since

dvβ0

dx
= −c +

β0 − g(x)

v
< −c +

β − g(x)

v
,

vβ0 is a lower solution of (5) in the interval ] − π − β0, π − β1[. Considering
a sufficiently large constant L we obtain an upper solution of (5). This pair
of lower and upper solutions form a funnel for equation (5) in the interval
]− π − β0, π − β1[(see Figure 4). Since vβ(−π − β0) ∈]0, L[ we conclude that
vβ(x) is well defined and positive in the interval ]−π−β, π−β[. Similarly we
can conclude that vβ is well defined and positive in the interval ]π−β, 3π−β[,
using vβ(x−2π) as a lower solution and L as an upper solution. By induction
we conclude that vβ(x) is well defined and positive in ]− π − β, +∞[. Hence
tβ = +∞.
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Figure 4:

In the proof of the last lemma we used the concept of lower and upper
solutions to construct a funnel. In the next proof we shall use the same
concept to prove the existence of a solution for a periodic boundary value
problem. We recall the following classical theorem.

Theorem 2.3 Let f ∈ C(R/TZ × R) and α, β ∈ C1[0, T ] be functions sat-
isfying

α′(t) ≤ f(t, α(t)), β ′(t) ≥ f(t, β(t)), ∀t ∈ [0, T ],

and α(0) ≤ α(T ) < β(T ) ≤ β(0). Then α, β are so-called an ordered
pair of lower and upper solutions and there exists a T -periodic solution x of
x′ = f(t, x) so that α(t) ≤ x(t) ≤ β(t), for all t ∈ [0, T ].

Proof of Theorem 1.2: Consider β1 given by the last lemma and β1 < β <
π/2. Using the function vβ(x) as a lower solution and L as an upper solution
in the interval [−π− β, π−β], we obtain an ordered pair of lower and upper
solutions. We conclude that (5) has a positive periodic solution v0(x). To
this solution corresponds a running periodic solution (x0, v0) of system (4).

Proof of Corollary 1.3: Consider the running periodic solution (x0, v0)
given by the last theorem. Using (3) we conclude that

{(x0(t), v0(t)) : t ∈ R} ∪ {(−π − β, 0)} ∪ {(β, 0)} ⊂ A.

Notice that by uniqueness the points (−π−β, 0), (β, 0) do not belong to the
orbit (x0, v0). Since {(x0(t), v0(t)) : t ∈ R} is itself homeomorphic to T

1 and
is a proper subset of A, we conclude that A is not homeomorphic to T

1.

We remark that the proof of Lemma 2.1 depends on the fact that the

equilibrium

(
β
0

)
is a stable spiral for every β ∈]0, π/2[, therefore on the
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fact that g is not differentiable at x = π/2. However, using the continu-
ous dependence of solutions on the equation, it is not difficult to show that
given β such that Corollary 1.3 holds it is possible to find g1 ∈ C∞(R/2πZ)
sufficiently close to g in the norm of the uniform convergence such that the
atractor associated to {

x′ = v
v′ = −cv − g1(x) + β

is similar to the atractor associated to (4).
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