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Abstract: Consider the attractor A of an equation of pendulum type
with friction driven by a constant torque. The results of M. Levi and also
obtained independently by Q. Min, S. Xian, and Z. Jinyan show that if the
friction coefficient is larger than a certain bound then A is homeomorphic
to the circle. We shall study the bifurcation diagram of a particular class
of equations of pendulum type and show that the bounds on the friction
coefficient obtained before are optimal.

1 Introduction

Motivated by the applications to the synchronous electrical motors, Tricomi
[7], [8], studied in detail the equation

2 +cr' +sine =03, ¢ >0, (1)

that is also the well known model for a pendulum with friction driven by a
constant torque. When > 1 there exist no equilibria and Tricomi proved
the existence of a running periodic solution, i.e. a solution x so that z(t+7) =
x(t) + 27 for some 7 > 0, that attracts all the other solutions. On the other
hand, when § < 1 there exists equilibria and he proves the existence of
a constant cy() so that if 0 < ¢ < ¢o(3) there exist one running periodic
solution but when the parameter c is moved to values above ¢o(3) the running
periodic solution is destroyed in a homoclinic bifurcation and the equilibria
become globally attracting. Both situations are sketched in Figure 1. We
drew the situation where the stable equilibrium is a stable spiral, actually it
is a stable node for some values of ¢. We have thus the bifurcation diagram
given in Figure 2. For an exhaustive discussion and rigorous proofs of the
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remaining cases see [1]. More generally we can study the flux associated to
the pendulum like equation

" +ex' +g(t,z) =0, ¢>0,

where g € C(R/TZ x R/27Z) for some T > 0. Like in the pendulum case,
the phase space of the associated equation

{ R o(t, ) (2)

. . : 2 .
is invariant for translations along the vector < 7T). This means that we can

0
regard the phase space of (2) as a cylinder C formed by the identification of

27) , k € Z. We shall denote by the same

the points of the form y + k ( 0
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letter y the element of R? or the class of y € R? in C. The Poincaré map
P is the function defined in C that to each initial condition gy corresponds
y(T;yo), where y(t;yo) is the solution of (2) satisfying y(0) = yo. Given
the dissipative nature of (2), it is well known that we can define a maximal
invariant set A for P(see [4]), that is also a global attractor for the iterates of
the Poincaré map. If the motion is overdamped then A is homeomorphic to
T! = R/Z, in such case the restriction of P to A becomes an homeomorphism
from the circle to itself. It is thus interesting to give criteria to decide if A
is homeomorphic to T' or not. The following theorem was proven in [4],
motivated by previous results in [2] and [5].

Theorem 1.1 If there exists a constant ¢; such that

t —g(t 2
Cl<g(,:1:1) glt.zs) &
r1 — T2 4

for each (t,x1,z2) € R3, with 11 # x4, then A is homeomorphic to T*.

An equivalent characterization of A is (see [4])
A ={y(0) : y is a solution of (2) bounded in C}. (3)

So in the particular case of Tricomi and when 0 < ¢ < ¢o() the attractor A is
formed by the equilibria, the running periodic solution and the heteroclinics
joining them; clearly A is not homeomorphic to T!. Therefore, from the last
theorem we conclude that c¢o(3) < 2 for every (8 €]0,1[. Actually Tricomi
also gave estimations to the curve co(3) (see [6] for a survey of this kind of
estimations) that show that co(3) < v/2. The purpose of this paper is to
show that the constant ¢?/4 is optimal in the above theorem. To this end we
shall consider a variation of Tricomi’s equation

¥=w
{ vV =—cv—g(z)+ (4)
where the sine function has been replaced by the 2m-periodic function defined

by
o) = { zifx e [-n/2,7/2]

—x+mif z € [n/2,31/2]
For this nonlinearity equilibria exist if 5 €]0, 7/2[ and we prove that:

Theorem 1.2 [f ¢ < 2, there exists £y €]0,7/2[ so that if f; < B < 7/2
then equation (4) has a running periodic solution.



Once this result is proved it is easy to deduce:

Corollary 1.3 If ¢ < 2, there exists 1 €]0,7/2[ so that if §1 < B < /2
then the attractor A associated to equation (4) is not homeomorphic to T*.

Therefore, in this modified case, the curve c¢o(/3) attains values arbitrarily
close to 2. Since the Lipschitz constant of f is 1 we conclude that the
estimation obtained in the last theorem is optimal. We observe that in [3]
there were already discussions about the optimality of ¢?/4, using a non-
autonomous equation and a different approach. However in the example in
[3] the period T" was an additional parameter. A problem that remains open
is the following: given ¢ < 2 there exists a periodic forcing p such that the
attractor associated to the pendulum equation

"+ cx’ + sinz = p(t)

is not homeomorphic to the circle?
The reader can find related results in the author’s web page
http://ptmat.lmc.fe.ul.pt/~ rmartins

2  Proofs

Consider the equation (4) where § €]0,7/2[. We shall show that for each
¢ < 2 there exists 3 €]0,7/2[ so that if 51 < < 7/2 then (4) has a running
periodic solution and simultaneously equilibria, so A is not homeomorphic
to T!.

The points of the form (

T — B+ 2km
0

G+ 2k

0 ) , k € Z, are stable spirals and

) , k € Z, are saddles in the phase space of (4). Notice that
Ts(t) = (/2 + B)e 2t

is the solution of z” + cx’ — x — w = 3 so that

Jm (20) = (70 7).

Tg is increasing, and Zg(0) = —7/2. We conclude that (75, 7)) is a solution

—r—8

of (4) in | — 00, 0] and is inside of the unstable manifold of (_WO_ B). Let

us denote by y3 = (73, vs) the solution of (4) that coincides with (T, 7)) in
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the interval | — oo, 0[(see Figure 3). The function vs is positive in the interval
| —00,0[; let t3 > 0 be the first value where vg(tz) = 0, if vz(t) > 0 for all
t > 0 we define tg = +00.

We shall start to show that there exists 1 €]0,7/2[ so that if 5; < 5 <
7/2 then t3 = +00. This will be done in two lemmas.

Lemma 2.1 If ¢ < 2 there exists By €]0,7/2] in such a way that for each
Bo < B < /2 there exists 0 < tj < tg so that x5(tp) > 7/2 and vs(t) > 0
for every t €] — oo, t5].

Proof: Notice that

B5(t) = (/2435

—2c++Vc2+4 . (\/4—02t) B (\/4—02t) 1\
Ny sin 5 cos

is the solution of the equation =" + ca’ + x = 3 so that
25(0) = —m/2 = T(0);

—c—l—\/02—|—4> _,
2

7,(0) = (x/2 + 8) ( — 7,(0).
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Defining

F(t)=e#"

—2c+vVct+4 . (Vi-c2 4 —c?
sin t] — cos t ,
Ji-& 2 2

we observe that the smallest value to > 0 where f’(t2) = 01is so that f(t5) > 0.
We conclude that the function z74(t) = (7/2+43) f(t)+ 3 is increasing in ]0, t5]
and 75(tg) = (1/2+ 3) f(t2) + 8 > 7/2 if

Tl — f(tg)
— 0, L2 T
B>B0 max{,21+f(t2>}
If t5 > 0 is the first value where 74(t) ¢| — 7/2, /2] then z3(t) = 73(t) in
10, 5[, we conclude that for each § > f there exists tj so that zs(ty) > 7/2
and vg(t) > 0 for every t €] — oo, t5].

Lemma 2.2 [f ¢ < 2 then there exists 3y €]0,7/2] so that if f; < f < 7/2
then tg = +o0.

Proof: Let () be given by the last lemma. Take 3, €]0, 7 /2] so that 5y < 3,
and x4, (ty, ) > m — (1. Consider 8 < § < /2. By the last lemma v is well
defined as a function of 2 and is positive in the interval | — 7 — 3, 25(t3)[(with
z5(ty) > 7/2). On the other hand, vg(x) is solution of

dv 5 —g(x)
o LA 5
dx et v (5)
in the same interval. Since
d _ _
dogy _ o=@ B=9(@)
dx ) v

vg, is a lower solution of (5) in the interval | — 7 — By, m — f1]. Considering
a sufficiently large constant L we obtain an upper solution of (5). This pair
of lower and upper solutions form a funnel for equation (5) in the interval
| =7 — Bo, ™ — B1](see Figure 4). Since vs(—m — (o) €]0, L[ we conclude that
vg(x) is well defined and positive in the interval | —7m — 3, 7 — 3[. Similarly we
can conclude that vg is well defined and positive in the interval |7 — 3, 37— [,
using vg(z—27) as a lower solution and L as an upper solution. By induction
we conclude that vg(z) is well defined and positive in | — 7 — 3, +00[. Hence
tg = +OO



Figure 4:

In the proof of the last lemma we used the concept of lower and upper
solutions to construct a funnel. In the next proof we shall use the same
concept to prove the existence of a solution for a periodic boundary value
problem. We recall the following classical theorem.

Theorem 2.3 Let f € C(R/TZ x R) and o, 3 € C*0,T] be functions sat-
1sfying

o(t) < ftalt), B'(t) = f(t,B(1), Vtelo,T],
and a(0) < o(T) < B(T) < B(0). Then «, [ are so-called an ordered

pair of lower and upper solutions and there exists a T-periodic solution x of
¥ = f(t,x) so that a(t) < z(t) < B(t), for all t € [0,T].

Proof of Theorem 1.2: Consider (3; given by the last lemma and 3; < <
7/2. Using the function vg(z) as a lower solution and L as an upper solution
in the interval [—7 — (3, m — /3], we obtain an ordered pair of lower and upper
solutions. We conclude that (5) has a positive periodic solution vo(x). To
this solution corresponds a running periodic solution (xg,vp) of system (4).

Proof of Corollary 1.3: Consider the running periodic solution (zg,vy)
given by the last theorem. Using (3) we conclude that

{(zo(t), vo(t)) : t € R}U{ (=7 —3,0)} U{(B,0)} C A
Notice that by uniqueness the points (—m — 3,0), (3,0) do not belong to the
orbit (xg,vg). Since {(zo(t),vo(t)) : t € R} is itself homeomorphic to T! and
is a proper subset of A, we conclude that A is not homeomorphic to T!.

We remark that the proof of Lemma 2.1 depends on the fact that the

equilibrium (g) is a stable spiral for every  €]0,7/2[, therefore on the
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fact that g is not differentiable at = 7/2. However, using the continu-
ous dependence of solutions on the equation, it is not difficult to show that
given 3 such that Corollary 1.3 holds it is possible to find g, € C*(R/27Z)
sufficiently close to ¢ in the norm of the uniform convergence such that the
atractor associated to

=
V' = —cv—gi(x) + 0

is similar to the atractor associated to (4).
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