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Abstract

Jordan algebras are used to present normal orthogonal models in a
canonical form. It is shown that the usual factor based formulation of
such models may, many times, be obtained imposing restrictions on the
parameters of the canonical formulation, and examples are presented.

The canonical model formulation is interesting since it leads to com-
plete sufficient statistics. These statistics may be used to obtain pivot
variables that induce probability measures in the parameter space. Monte
Carlo generated samples, of arbitrary size, may be obtained having the
induced probability measures. These samples may be screened so that the
restrictions corresponding to the direct model formulations hold. Infer-
ence is presented using such samples.

1 Introduction

Jordan algebras were introduced (see [6]) to provide an algebraic foundation
for Quantum Mechanics. Later these structures were applied (see [21], [?] and
[22]) to study estimation problems, namely to obtain minimum variance un-
biased estimators. They were now called quadratic vector spaces since they
are vector spaces, constituted by symmetric matrices that contain the squares
of every matrix in the space. For priority’s sake we will use the first name.
We are interested in commutative Jordan algebras, where matrices commute.
These algebras have (see [22]) unique principal basis constituted by orthogonal
projection matrices, all of them mutually orthogonal.

These structures enable an unified presentation of wide classes of normal
models. A normal orthogonal model belongs to the class associated to an algebra
if:
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1. the mean vector µn of the observation vector yn belongs to the range
space R(M) of a matrix M belonging to the algebra;

2. the covariance matrix V of yn also belongs to that commutative Jordan
algebra.

We will give a canonical formulation for such classes of models. The parame-
ters in such canonical formulations will be the canonical parameters. Besides
the canonical, a direct formulation is given, This formulation takes in account
relevant factors either with fixed or with random effects. Usually the direct
formulation requires that certain restrictions are satisfied by the canonical pa-
rameters.

The canonical formulation of the models will be used to obtain complete
sufficient statistics. These statistics may be used to derive pivot variables in-
volving the canonical parameters. The use of pivot variables in statistical in-
ference was greatly enhanced by the introduction of generating pivot variables
(see [27] and [28]). This and related concepts have had recently many inter-
esting applications, for instance see [31] and [9][31] and [9]. Moreover, in [1]
the Carathéodory theorem is used to show how pivot variables induce proba-
bility measures in parameter spaces, allowing the use of Monte Carlo methods
to generate distributions. In these distributions, the observations vector acts as
a parameter. Thus, these distributions may be considered as a-posteriori de-
spite no a-priori distribution having been assumed. The assumption of a-priori
distributions was rendered discardeable by the existence of generating pivot vari-
ables involving the canonical parameters. These variables may be considered as
structural invariants.

In [25], ancillary statistics are used in inference about parameters, namely in
the plug-in of estimates of nuisance parameters. In this case, ancillary informa-
tion could also be used, since the estimators are functions of minimal sufficient
statistics.

Monte Carlo methods may be used to obtain arbitrarily large samples with
the a-posteriori distributions. Inference using such samples can be based on the
Glivenko-Cantelli theorem (see [11], page 20). A special version of this theorem
may be used when we filter the samples.

In the next section Jordan algebras and pivot variables are presented, and the
Glivenko-Cantelli theorem is considered as well as its special version and related
results. After this we consider canonical forms for normal orthogonal models
deriving the relevant pivot variables thus obtaining a framework that we apply,
following [3], to cross-nested balanced models and to the model considered in
[31]. The fourth and last sections show how to apply the posteriori distributions
to carry out inference, first on variance components, and then on the fixed-effects
part of mixed models.

2 Preliminary Results

Superscripts will be used to indicate the number of components of vectors. Is

will be the s× s identity matrix, Js = 1s1s′ and J̄s = Is − 1
sJs, while Ks will

be obtained deleting the first line equal to 1√
s
1s of an orthogonal s× s matrix.

Let g1, ..., gw be the ranks of the n × n matrices Q1, ...,Qw in the prin-
cipal basis of a commutative Jordan algebra. If

∑w
j=1 gj < n, we can take
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Qw+1 = In −
∑w

j=1 Qw and gw+1 = n −
∑w

j=1 gw to obtain the principal ba-
sis {Q1, ...,Qw+1} of a Jordan algebra that contains In. In what follows we
consider only commutative Jordan algebras that contain In.

To see how pivot variables may be used we start with a simple example. The
sum of squares S of residuals from the mean of a size n normal sample with
variance σ2, is the product by σ2 of a central chi-square with n − 1 degrees of
freedom, we put S ∼ σ2χ2

n−1. Then, S
σ2 ∼ χ2

n−1 and, with xn−1,p the quantile
of χ2

n−1 for probability p, when S = s we have, with p1 < p2,

P
[

s

xn−1,p1

≤ σ2 ≤ s

xn−1,p2

]
= p2 − p1. (1)

We thus obtained probabilities for every closed interval containing σ2. Now,
closed intervals generate the σ-algebra of borelians so that (see [29], pgs. 17 to
20) Carathéodory theorem may be used to show that there is a single probability
measure that for closed intervals gives the same results as (1).

When vector parameters θk are considered, some care has to be taken in
the restrictions that enter into the definition of the parameter space Ω. In the
cases we will consider, the restrictions will be of the type Bθk ≥ rl with B a
l × k matrix. Following [1], given the pivot variable Zk = gk(td,θh), where
td is a statistic, we assume that the function gk(θh|td) = gk(td,θh) has a
measurable inverse mh(gk|td). This inverse function can be used to induce
probability measures P

[
·
∣∣ td

]
in the σ-algebra of the k dimensional borelians.

If Ω ⊂ Rk, we then consider the restrictions P∗
[
·|td

]
of the P

[
·
∣∣ td

]
to Ω.

Since we may assume that Ω is a borelian and that, whatever td, P
[
Ω

∣∣ td
]

> 0
the definition of the restrictions is trivial. Besides this, if Ω = Rk, P

[
·
∣∣ td

]
=

P∗
[
·|td

]
whatever td. Let βΩ be the set of k-dimensional real borelians contained

in Ω, and put G(C, td) = P∗
[
C|td

]
for every C ∈ βΩ. Since, whatever td,

P∗
[
C|td

]
= G(C, td) is a probability measure defined in βΩ and, for every

C ∈ βΩ, h(td|C) = G(C, td) is measurable (see [7], pg. 19), we will have a
probability kernel. If the probability measures P∗

[
C|td

]
take all values from 0

to 1 we say that we have a regular probability kernel. For the kernel to be regular
it is enough that the distributions associated to the P

[
C

∣∣ td
]

are continuous.
Let us assume that we have a regular kernel, then, for every q ∈]0, 1[, we can
obtain Cq(td) ∈ βΩ such that, whatever td,

P
[
Cq(td)

∣∣ td
]

= q, (2)

i.e. Cq(td) is a set whose probability of containing the true parameter value is,
whatever the value of the statistic td, q. This probability may be considered
as a conditional probability since it depends on the value of td and thus on
the observations vector. Nevertheless, since the mean value of a constant is the
constant itself, when we decondition either in order to the statistic or to the
observations vector we obtain, through the procedure used in deriving the sets
Cq(td), confidence sets of load q.

As stated in the introduction we will use an extension of the

Theorem 1 (Glivenko-Cantelli Theorem). With F̃n(·) the empirical distribu-
tion of a size n sample of scalar observations with distribution F (·) the supreme
Sn of |F̃n − F | converges almost surely to zero. We denote this by writing
Sn

a.s.−−−−→
n→∞

0.
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When a filter screen is applied to an initial sample Vs
1, ...,V

s
n we only retain

the elements that fulfill a condition. If the probability of the condition being
fulfilled is q we get a screened sample V̇s

1, ..., V̇
s
N where N has the binomial

distribution with parameters n and q from which we may obtain a random
screened sample Ẋ1, ..., ẊN with Ẋi = u(V̇s

i ), j = 1, ..., N . As before, let
us represent by F̃m(·) the empirical distribution of a sample of size m. The
empirical sample distribution of the final screened sample will be

F̃ ∗n(x) =
n∑

m=0

(
n

m

)
qm(1− q)n−mF̃m(x), (3)

so that, since 0 ≤ Sn ≤ 1, n ≥ 1, we get

S∗n = sup{|F̃ ∗n(x)− F (x)|} ≤
n∑

m=0

(
n

m

)
qm(1− q)n−mSm

≤
m̄−1∑
m=0

(
n

m

)
qm(1− q)n−m +

n∑
m=m̄

(
n

m

)
qm(1− q)n−mSm. (4)

Now, whatever m̄,
m̄−1∑
m=0

(
n

m

)
qm(1− q)n−m −−−−→

n→∞
0 (5)

thus it is now easy to use the Glivenko-Cantelli theorem to establish the

Theorem 2 (Glivenko-Cantelli Theorem for Screened Samples). S∗n will almost
surely converge to zero when n →∞.

It would be interesting to consider multi-dimensional versions of the Glivenko-
Cantelli theorem but, in what follows, the one-dimensional versions suffice.
About these we point out that, when q = 1, the screened version of the Glivenko-
Cantelli theorem reduces to the classical one, so that the former is a generaliza-
tion of the latter.

The reverse of the Glivenko-Cantelli theorem will be useful in deriving sets
Cn,p(td) with limit confidence levels. We then assume that F (·) has density f(·)
and represent by xp and x̃∗n,p the quantiles, for probability p, of F (·) and F̃ ∗n(·),
in order to establish

Theorem 3 (Reverse Glivenko-Cantelli Theorem). Let F̃ ∗n and F be distribu-
tions with quantiles x̃∗n,p and xp. If sup{F̃ ∗n(x) − F (x)} a.s.−−−−→

n→∞
0 and F has

continuous density f > 0 whenever 0 < F (x) < 1, whatever 0 < α < 1

Dn(α) = sup
{
|x̃n,p − xp|,

α

2
< p < 1− α

2

}
a.s.−−−−→

n→∞
0

Proof. According to the Weierstrass theorem, f will have a minimum a > 0 in[
xα

2
, x1−α

2

]
. If α

2 < p − ε
a < p + ε

a < 1 − α
2 we will have F (xp − ε

a ) < p − ε <

p + ε < F (xp + ε
a ) and, due to Sn < a, F̃ ∗n(xp − ε

a ) < p < F̃ ∗n(xp + ε
a ) so that

xp − ε
a < x̃n,p < xp + ε

a . Since ε is an arbitrary positive number the thesis is
established.
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3 Models

3.1 Canonical Forms

We now present orthogonal normal models in a canonical form convenient for
applying commutative Jordan Algebras in deriving sufficient complete statistics.
From these statistics generating pivot variables will be obtained. In the second
section we consider direct formulations for the model. In the third section we
study two special cases for which we will derive the canonical form and obtain
the relevant statistics.

Model orthogonality is based on orthogonal partitions of the sample space
such that the orthogonal projections of the observation vector on the spaces in
those partitions are uncorrelated. Let us write � for orthogonal direct sum of
subspaces. Then, we have the orthogonal partitions

Rn =
w+1

�
i=1

∇i. (6)

Let the orthogonal projection matrices on ∇i, ...,∇w+1 be Q1, ...,Qw+1. Then
gi = rank(Qi) = dim(∇i), i = 1, ..., w + 1, as well as

∑w+1
i=1 gi = n and as∑w+1

i=1 Qi = In. If the column vectors of Ai constitute an orthonormal basis for
∇i we will have Qi = AiA′

i as well as A′
iA = Igi , i = 1, ..., w + 1. Moreover,

with 0r,s the null r × s matrix we will have A′
iAj = 0gi,gj

and A′
iQj = 0gi,n,

whenever i 6= j.
Let us establish

Proposition 1. A normal orthogonal model associated with the orthogonal par-
tition in (6) (as with the corresponding Jordan commutative algebra) has the
canonical form

Yn =
w+1∑
i=1

Aiη
gi

i ,

where vectors ηgi

i , i = 1, ..., w + 1, are normal, independent, with mean vectors
λgi

i , i = 1, ..., w + 1, and covariance matrices γiIgi
, i = 1, ..., w + 1.

We write ηgi

i ∼ N (λgi

i , γiIgi), i = 1, ..., w + 1.

Proof. Let Q∗ be the orthogonal projection matrix on the sub-space that con-
tains the observations mean vector µn. Since Q∗ belongs to the algebra we will
have Q∗ =

∑w+1
i=1 ciQi, with ci = 0 or ci = 1, i = 1, ..., w + 1. We can assume

without loss of generality that Q∗ =
∑m

i=1 Qi, thus

µn = Q∗µn =
m∑

i=1

Qiµ
n =

m∑
i=1

AiA′
iµ

n =
m∑

i=1

Aiλ
gi

i ,

where λgi

i is the mean vector of ηgi

i = A′
iY

n, i = 1, ...,m. Moreover, λgi

i = 0gi ,
i = m + 1, ..., w + 1, will be the mean vector of ηgi

i = A′
iY

n, i = 1, ...,m. Then

Yn = InYn =
w+1∑
i=1

QiYn =
w+1∑
i=1

AiA′
iY

n =
w+1∑
i=1

Aiη
gi

i . (7)
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To complete the proof we have only to point out that ηgi

i , i = 1, ..., w + 1,
will be normal and independent since, as it is easily seen, their cross-covariance
matrices are null and their covariance matrices are γiIgi

, i = 1, ..., w + 1, while
their joint distribution is normal.

In the previous proof we showed that

µn =
m∑

i=1

Aiλ
gi

i . (8)

Moreover, since the ηgi

i are independent, the covariance matrix of Yn will be

V =
w+1∑
i=1

γiQi (9)

thus (see [1]) 
det(V) =

w+1∏
i=1

γgi

i

V−1 =
w+1∑
i=1

γ−1
i Qi

. (10)

The following result will be useful since it shows that, for every µn and V,
the λgi

i , i = 1, ...,m, and the γi, i = 1, ..., w + 1, are unique.

Proposition 2. We have
∑m

i=1 Aia
gi

i =
∑m

i=1 Aib
gi

i if and only if agi

i = bgi

i ,
i = 1, ...,m, and

∑w+1
i=m+1 uiQi =

∑w+1
i=m+1 viQi when and only when ui = vi,

i = m + 1, ..., w + 1.

Proof. For either part of the thesis it suffices to establish the necessary con-
ditions since the corresponding sufficient one is self-evident. Starting with the
first part, since ∇i

⋂�j 6=i∇j = {0n}, if
∑w+1

j=1 Aia
gi

i =
∑w+1

j=1 Aib
gi

i , i.e., if
Ai(b

gi

i − agi

i ) = −
∑

j 6=i Aj(b
gj

j − agj

j ) ∈ ∇i

⋂�j 6=i∇j , we have Ai(b
gi

i −
agi

i ) = 0n as well as bgi

i − agi

i = A′
iAi(b

gi

i − agi

i ) = 0n, i = 1, ...,m, so
the first part is established. Moreover, if

∑w+1
i=m+1 uiQi =

∑w+1
i=m+1 viQi we

have uiQi = Qi

(∑w+1
j=m+1 ujQj

)
= Qi

(∑w+1
j=m+1 vjQj

)
= viQi, thus ui = vi,

i = m + 1, ..., w + 1, and the proof is complete.

As we saw,A′
iY

n = ηgi

i , i = 1, ..., w + 1, A′
iµ

n = λgi

i , i = 1, ...,m, and
A′

iµ
n = 0gi , i = m + 1, ..., w + 1. We also get

A′
iV

−1Ai = A′
i

w+1∑
j=1

γ−1
j Qj

Ai = γ−1
i A′

iA
′
i = γ−1

i Igi
, i = 1, ..., w + 1 (11)

so that

(yn − µn)′V−1(yn − µn) =
w+1∑
i=1

1
γi

(yn − µn)′AiA′
i(y

n − µn)

=
m∑

i=1

‖η̃gi

i − λgi

i ‖2

γi
+

w+1∑
i=m+1

si

γi
, (12)
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where η̃gi

i = A′
iy

n and si = ‖A′
iy

n‖2. Thus, the model’s density will be

n(yn|µn,V) =
exp

(
−1

2

(
m∑

i=1

‖η̃gi

i − λgi

i ‖2

γi
+

w+1∑
i=m+1

si

γi

))
(2π)n

w+1∏
i=1

γ
gi
2

i

, (13)

and (see [26], pg. 31 and 32) we have the set of complete sufficient statistics
η̃gi

i , i = 1, ...,m, and si, i = m + 1, ..., w + 1. Moreover, according to the
Blackwell-Lehmann-Scheffé theorem, the η̃gi

i , i = 1, ...,m, and the γ̃i = si

gi
,

i = m + 1, ..., w + 1 are UMVUE for the λgi

i , i = 1, ...,m, and the γi, i =
m + 1, ..., w + 1. To avoid over-parametrization, we now assume that

γi =
w+1∑

j=m+1

bi,jγj , i = 1, ...,m, (14)

so that we will also have the UMVUE

γ̃i =
w+1∑

j=m+1

bi,j γ̃j , i = 1, ...,m. (15)

The estimable vectors will be the ψri
i = Biλ

gi

i , i = 1, ...m, for which we have
the UMVUE ψ̃ri

i = Biη
gi

i , i = 1, ...m.
The joint distribution of the A′

iy
n, i = 1, ..., w+1, is normal and, since their

cross covariance matrices are null, they will be (see [14], pg. 42) independent.
Thus the ηgi

i = A′
iy

n, i = 1, ...,m, and the γ̃i = 1
gi
‖A′

iy
n‖2, i = m+1, .., w +1,

will be independent. Moreover, the ηgi

i = A′
iy

n and the γ̃i = 1
gi
‖A′

iy
n‖2,

i = 1, ...,m, will also be independent, as well as the ψri
i and the γ̃i, i = 1, ...,m,

with ψri
i = Biλ

gi

i an estimable vector, i = 1, ...,m. It may be interesting to
point out that we may take Bi = Igi

, so that λgi

i is itself an estimable vector. If
rank(Bi) = ri, BiB′i will be positive definite and ψri

i = Biλ
gi

i will be a regular
estimable vector. In what follows we restrict ourselves to such estimable vectors.

Writing Z ∼ χ2
r [∼ χ2

r,δ] to indicate that Z is distributed as a central chi-
square with r degrees of freedom [non-central chi-square with r degrees of free-
dom and non-centrality parameter δ], we have

Zi =
Si

γi
∼ χ2

gi
, i = m + 1, ..., w + 1

Ui(ψri
i ) =

(ψri
i − ψ̃ri

i )′(BiB′i)
−1(ψri

i − ψ̃ri
i )

γi
∼ χ2

ri
, i = 1, ...,m

Ui(ψri
i,0) =

(ψri
i,0 − ψ̃

ri
i )′(BiB′i)

−1(ψri
i,0 − ψ̃

ri
i )

γi
∼ χ2

ri,δi,0
, i = 1, ...,m

(16)

with

δi,0 =
(ψri

i,0 −ψ
ri
i )′(BiB′i)

−1(ψri
i,0 −ψ

ri
i )

γi
, i = 1, ...,m, (17)

this non-centrality parameter being null when and only when ψri
i,0 = ψri

i , i =
1, ...,m. While Zi, i = m+1, ...w +1, and Ui(ψri

i ) are pivot variables, Ui(ψri
i,0),

i = 1, ...,m, are statistics. Since λgi

i are regular estimable vectors, i = 1, ...,m,
the pivot variables now defined relate to all canonical parameters.
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3.2 Direct Forms

We now consider the action of one or more factors. This approach is followed
usually, for instance see [8]. Then the model may be written as

Yn =
t∑

i=1

Xiβ
ci
i + en, (18)

with βci
i = δci

i fixed, i = 1, ..., d, and βci
i ∼ N (0ci , σ2

i Ici), i = d + 1, ..., t,
and en ∼ N (0n, σ2In), these vectors being independent. The mean vector and
covariance matrix of Yn will be

µn =
d∑

i=1

Xiβ
ci
i

V =
t∑

i=d+1

σ2
i Mi + σ2In

, (19)

where Mi = XiX′
i, i = 1, ..., t. The σ2

i , i = 1, ..., t, and σ2 will be the variance
components.

The necessary and sufficient condition for the matrices Mi, i = 1, ..., t, and
In to generate to a commutative Jordan algebra is (see [1]) that they commute.
Then they will generate a commutative Jordan algebra A with principal basis
{Q1, ...,Qw+1}.

We now point out that, with X = [X′
1, ...,X

′
d]
′, we have

µn ∈ R(X) = R(XX′) =
d∑

i=1

R(Mi) . (20)

Since M1, ...,Mt ∈ A, we will have

Mi =
w+1∑
j=1

ai,jQj , i = 1, ..., t, (21)

and so,

V =
t∑

i=d+1

σ2
i

w+1∑
j=1

Qj + σ2
w+1∑
j=1

Qj =
w+1∑
j+1

γjQj , (22)

where

γj = σ2 +
t∑

i=d+1

ai,jσ
2
i , j = 1, ..., w + 1. (23)

We now establish

Proposition 3. If R(X) ⊂ Rn we may order the matrices in the principal basis
so that the orthogonal projection matrix Q+ on R(X) will be

∑m
j=1 Qj, with

m < w + 1.

Proof. Since XX′ =
∑d

i=1 Mi ∈ A, it will be a linear combination of the
Q1, ...,Qw+1. Now R(XX′) = R(X) ⊂ Rn so that not all the coefficients in
that linear combination may be non null allowing us to reorder the matrices in
the principal basis to get XX′ =

∑m
j=1 ujQj with uj 6= 0, j = 1, ...,m. Since
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the matrices in the principal basis are mutually orthogonal so that QjQl is null
whenever j 6= l it is easy to show that (XX′)+ =

∑m
j=1 u−1

j Qj , and so (see [1],
page 16), Q+ = (XX′)(XX′)+ =

∑m
j=1 Qj .

Moreover we can, when R(X) ⊂ Rn, and the matrices Q1, ...,Qw+1 have
been reordered, consider the expressions of the γj , j = 1, ..., w + 1, as a system
of equations on the σ2

i , i = 1, ..., t, and on σ2. When this system has an unique
solution we can use the sj , j = m+1, ..., w+1, to estimate the γj , j = 1, ..., w+1,
and nextly obtain UMVUE for the σ2

i , i = 1, ..., t, and for σ2. We will then have
σ2

i =
w+1∑

j=m+1

bi,jγj , i = 1, ..., t

σ̃2
i =

w+1∑
j=m+1

bi,j γ̃j , i = 1, ..., t

. (24)

As it is well known we may obtain negative estimators for all variance com-
ponents but σ2. Now the first expression in (24) shows that the variance compo-
nents are linear combinations of the canonical parameters γm+1, ..., γw+1. Thus
requiring σ2

i ≥ 0, i = 1, ..., t, may be seen as imposing restrictions on the canoni-
cal formulation. Inference based on the less restrictive formulation will be more
robust. This will also lead to a better understanding of negative estimators.
They can be seen as a strong indication of nullity for the corresponding vari-
ance component or, in more extreme cases, suggesting a rethinking of the model
formulation.

Nevertheless, if we are confident about the direct formulation we may accept
the restriction imposed on the γm+1, ..., γw+1. This will lead, as we shall see, to
the use of screened samples.

It may be interesting to point out that the characteristic function of linear
combinations of independent central chi-squares has been recently studied in
[30]. Moreover numerical methods obtained in [5] may be useful in inverting
those characteristic functions.

3.3 Special Models

We start with balanced cross-nested models. We assume that there are L groups
of u1, .., uL factors. Let al(1) be the number of levels of the first factor in the
l-th group, l = 1, ..., L. If ul > 1, there is nesting in the l-th group, and for each
level of the first factor there will be al(2) levels of the second and so on. There
will be cl(h) =

∏h
t=1 al(t) of the first h factor levels, h = 1, ..., ul, each nesting

bl(h) = cl(ul)/cl(h) level combinations of the remaining factors in the l-th group.
We will also put cl(−1) = 0 and cl(0) = 1 as well as gl(h) = cl(h)−cl(h−1), h =
1, ..., hl, l = 1, ..., L. For all factors we have

∏L
l=1 = cl(ul) level combinations,

which define the treatments in the design. For each treatment we will have r
replicates so the number of observations will be n = r

∏L
l=1 cl(ul).

Factors in the same group do not interact so that we may indicate the general
mean, the factor effects and factor interactions by the vectors hL with compo-
nents hl = 0, ..., ul, l = 1, ..., L. The general mean will correspond to 0L, and if
hl′ is the only non-null component of the vector hL this vector will correspond

9



to the factor of group l′ with index hl′ . When hL has several non-null compo-
nents it will associated to the interaction between the factors labelled by these
components. We will represent by Γ the set of vectors hL. Then (see [3]) the
balanced cross-nested model can be written as

Yn =
∑

hL∈Γ

X(hL)βc(hL)(hL) + en, (25)

where c(hL) =
∏L

l=1 = cl(hl) and, representing by ⊗ the Kronecker matrix
product, we have

X(hL) =
L⊗

l=1

(
Icl(hl) ⊗ 1bl(hl)

)
⊗ 1r,hL ∈ Γ. (26)

This formulation is more detailed than the one given in [19] , pages 144–185.
To the hL ∈ Γ we can associate (see [3]) the, mutually orthogonal, orthogonal
projection matrices

Q(hL) =
L⊗

l=1

(
Ic(hl−1) ⊗ J̄al(hl) ⊗

1
bl(hl)

Jbl(hl)

)
⊗ 1

r
Jr,hL ∈ Γ, (27)

such that, with b(hL) =
∏L

l=1 bl(hl),

X(hL)X′(hL) = b(hL)
∑

kL:kL≤hL

Q(kL),hL ∈ Γ. (28)

In order to obtain the principal basis of a convenient commutative Jordan
algebra, besides the Q(hL), with hL ∈ Γ, we consider

Q⊥ = In −
∑

hL∈Γ

Q(hL). (29)

If besides µn we have only variance components as parameters, i.e., β1(0L) = µ

and βc(hL) ∼ N (0c(hL), σ2(hL)Ic(hL)) for hL 6= 0L we get Yn ∼ N (1nµ,V)
with (see [3])

V =
∑

hL∈Γ

γ(hL)Q(hL) + σ2Q⊥, (30)

where
γ(hL) = σ2 +

∑
kL:hL≤kL

b(hL)σ2(kL). (31)

With m(kL,hL) the number of components of kL exceeded by the corre-
sponding components of hL we have (see [3])

σ2(hL) = b(hL)−1
∑

kL∈~(hL)

(−1)m(kL,hL)γ(kL),hL ∈ Γ\{0L}, (32)

where
~(hL) =

{
hL : hl ≤ kl ≤ min{hl + 1, ul}, l = 1, ..., L

}
. (33)
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The sufficient statistics will be, besides the general mean, the

S(hL) = ‖Q(hL)‖2 ∼ χ2
g(hL),h

L ∈ Γ\{0L}, (34)

with g(hL) =
∏L

i=1 g(hl), hL ∈ Γ\{0L}. From these we get the UMVUE

γ̃(hL) = S(hL)
g(hL)

, hL ∈ Γ\{0L} and the

σ̃2(hL) =
∑

kL∈~(hL)

(−1)m(kL,hL)γ̃(kL),hL ∈ Γ\{0L}. (35)

It may be interesting to point out that, if ~(hL)+ [~(hL)−] is the set of the
kL ∈ ~(hL) for which m(kL,hL) is even [odd], we have

σ̃2(hL) = σ̃2(hL)+ − σ̃2(hL)−,hL ∈ Γ\{0L}, (36)

with 
σ̃2(hL)+ =

∑
kL∈~(hL)+

γ̃(kL),hL ∈ Γ\{0L}

σ̃2(hL)− =
∑

kL∈~(hL)−

γ̃(kL),hL ∈ Γ\{0L}
. (37)

Following [15] and [16] we could apply the generalized F tests with statistics

F(hL) =
σ̃2(hL)+

σ̃2(hL)−
,hL ∈ Γ\{0L}, (38)

to test
H0(hL) : σ2(hL) = 0,hL ∈ Γ\{0L}, (39)

but we will use other tests. Actually, if the g(kL), with kL ∈ ~(hL)+ [kL ∈
~(hL)+] are even, the exact distribution of F(hL) (see [2]) is known. It may be
interesting to point out (see [2]) that at least one of these evenness conditions
holds in many cases. Moreover, generalized F tests were applied successfully in
the study of grapevine genetic homogeneity breakdown (see [2]).

The extension of this model to the case when the first L′ < L groups are of
fixed effects factors was carried out by [17] using the same Jordan algebra. We
then get Q(hL) = A′(hL)A(hL), hL ∈ Γ, as well as the UMVUE given by

γ̃(hL) =
∑

kL∈Γ′C

b(hL,kL)
S(kL)
g(kL)

,hL ∈ Γ′. (40)

We omit the expression of the b(hL,kL) since it is quite cumbersome. For more
details see [17].

With Γ′ the sub-set of Γ of vectors with components hL′+1, ..., hL = 0 and
Γ′C = Γ\Γ′, we can use expression (35) to estimate the σ2(hL), hL ∈ Γ′C and
expression (38) to obtain the generalized F test for H0(hL), with hL ∈ Γ′C . As
for the fixed factors, using the

A(hL) =
1√

rb(hL)

L⊗
l=1

(
Icl(hl−1) ⊗ J̄al(hl) ⊗ 1bl(hl)

′)
⊗ 1r ′,hL ∈ Γ, (41)
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it was possible to derive generalized F tests for hypothesis in the fixed effects
part of the model.

Nextly we consider a variant of the model, presented by [31]. Now, a first
factor nests a second and a third that cross. Each of the a levels of the first
factor will nest different bc level combinations of the second and third factors.
There will be a, b and c levels for the first, second and third factors and r
replicates for all level combinations so that the model is balanced. We now have
n = abcr, and

Yn = 1nµ+X(1)βa(1)+X(2)βab(2)+X(3)βac(3)+X(2, 3)βabc(2, 3)+en, (42)

were single indexes refer to factors while (2, 3) refers to the interaction between
the second and third factors, and

X(1) = Ia ⊗ 1b ⊗ 1c ⊗ 1r

X(2) = Ia ⊗ Ib ⊗ 1c ⊗ 1r

X(3) = Ia ⊗ 1b ⊗ Ic ⊗ 1r

X(2, 3) = Ia ⊗ Ib ⊗ Ic ⊗ 1r

. (43)

In this model it is assumed that µ is fixed and unknown, while βa(1) ∼ N (0a, σ2(1)Ia),
βb(2) ∼ N (0b, σ2(2)Ib), βc(3) ∼ N (0c, σ2(3)Ic), βbc(2, 3) ∼ N (0bc, σ2(2, 3)Ibc)
and en ∼ N (0n, σ2In), all these variables being independent. Moreover, with
J̄v = Iv − 1

vJv, it is easy to see that the orthogonal projection matrices

Q(0) =
1
n
Ja ⊗ Jb ⊗ Jc ⊗ Jr

Q(1) =
1

bcr
J̄a ⊗ Jb ⊗ Jc ⊗ Jr

Q(2) =
1
cr

Ia ⊗ J̄b ⊗ Jc ⊗ Jr

Q(3) =
1
br

Ia ⊗ Jb ⊗ J̄c ⊗ Jr

Q(2, 3) =
1
r
Ia ⊗ J̄b ⊗ J̄c ⊗ Jr

, (44)

jointly with the

Q⊥ = In −Q(0)−Q(1)−Q(2)−Q(3)−Q(2, 3), (45)

constitute the principal basis of the Jordan algebra associated with the model,
and that

V = Σ�(Yn) = γ(1)Q(1)+γ(2)Q(2)+γ(3)Q(3)+γ(2, 3)Q(2, 3)+σ2Q⊥, (46)

with 
γ(1) = σ2 + r(σ2(2, 3) + bσ2(3) + cσ2(2) + bcσ2(1))
γ(2) = σ2 + r(σ2(2, 3) + cσ2(2))
γ(3) = σ2 + r(σ2(2, 3) + bσ2(3))
γ(2, 3) = σ2 + rσ2(2, 3)

, (47)
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so that 

σ2(1) =
1

rbc
(γ(1)− γ(2)− γ(3) + γ(2, 3))

σ2(2) =
1
rc

(γ(2)− γ(2, 3))

σ2(3) =
1
rb

(γ(3)− γ(2, 3))

σ2(2, 3) =
1
r
(γ(2, 3)− σ2)

. (48)

Since the ranks of the matrices in the principal basis are g(1) = a − 1, g(2) =
a(b− 1), g(3) = a(c− 1), g(2, 3) = a(b− 1)(c− 1) and g = abc(r − 1), we get

S(1) = ‖Q(1)Yn‖2 ∼ γ(1)χ2
g(1)

S(2) = ‖Q(2)Yn‖2 ∼ γ(2)χ2
g(2)

S(3) = ‖Q(3)Yn‖2 ∼ γ(3)χ2
g(3)

S(2, 3) = ‖Q(2, 3)Yn‖2 ∼ γ(2, 3)χ2
g(2,3)

S = ‖Q⊥Yn‖2 ∼ σ2χ2
g

, (49)

thus it is straightforward to get UMVUE for the variance components. The
models in this section may be trimmed when the nullity of some of the variance
components is strongly suggested.

4 Pivot Variables

4.1 Variance Components

Taking k = w + 1 −m, let γk have components γm+1, ..., γw+1. In many cases
the direct formulation γk will have to belong to a parameter space

Ω = {γk : Mγk ≥ 0d}, (50)

with M = [A′ Ik]′. Then, besides γk ≥ 0k, the direct formulation requires
Aγk ≥ 0k.

Let the si be the values taken by the ‖A′
iY

n‖2, i = 1, ..., w+1, and consider

θ =
w+1∑

i=m+1

biγi (51)

be the parameter of interest. We point out that θ may be a variance component
or its positive or negative part. To such parameters we have the UMVUE

θ̃ =
w+1∑

i=m+1

biγ̃i. (52)

These estimators may take negative values even when we require, in the direct
formulation, that θ = 0. This is a well known problem, there being two main
positions (for instance, see [10], pg. 151):

1. consider that getting a negative estimator is a clean indicator of having θ,
at least approximately, null;
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2. use alternative estimation that ensures obtaining non-negative estimators.
These techniques nonetheless have no small sample theoretical basis.

A third approach may rest in basing inference on the canonical formulation.
An advantage we thus get in carrying out more robust inference since it is based
in a less restrictive formulation of the models used. Now parameters θ will not
necessarily be non-negative.

Since Si ∼ γiχ
2
gi

, i = m + 1, ..., w + 1, we have the pivot variables Si

γi
∼ χ2

gi
,

i = m + 1, ..., w + 1, and may induce probability measures for the γi, i =
m + 1, ..., w + 1, using the

Wi =
si

Wi
, i = m + 1, ..., w + 1, (53)

where Wi ∼ χ2
gi

, i = m + 1, ..., w + 1. The probability generation would be
carried out using

U =
w+1∑
i=1

bi
si

Wi
. (54)

The chi squares Wi are assumed to be independent. It is possible to generate
sets {Wm+1,l, ...,Ww+1,l} of independent chi-squares with gm+1, ..., gw+1 degrees
of freedom, l = 1, ..., n̄, and obtain the

Ul =
w+1∑
i=1

bi
si

Wi,l
, l = 1, ...n̄. (55)

thus obtaining a sample of arbitrarily large size n̄, where the observations have
the distribution generated for θ.

If we want to assume that θ ≥ 0 we may screen the sample retaining only
the sets {Wm+1,l, ...,Ww,l} that originate non-negative Ul. Without screening
the point density of the Zi, i = m + 1, ..., w will be

f(zk) =
w+1∏

i=m+1

(
zi

2

) gi
2 −1

e−
zi
2

2Γ
(

gi

2

) (56)

and, if we consider the restriction, for the filtered sample we get the density

f∗(zk) =
f(zk)∫

Ω
f(uk)

∏w+1
i=m+1

, zk ∈ Ω. (57)

Apply the transformation zm+1 = u−
∑w+1

i=m+2 bizi, zi = zi, i = m+2, ..., w+1,
with jacobian 1

bm+1
and integrate in order to zi, i = m + 2, ..., w + 1. Thus, the

conditions in proposition 3 will hold for the density of U whether we assume or
not that θ ≥ 0. Then with un̄,1−α the empirical quantile for probability 1− α,
we will have

P[θ ≤ un̄,1−α] a.s.−−−−→
n̄→∞

1− α. (58)

In this way we obtain limit level 1 − α confidence intervals ] −∞;un̄,1−α],
[un̄, α

2
;un̄,1−α

2
], [un̄,α; +∞[ for θ. If we assume θ ≥ 0 the first of these must be

rewritten as [0; un̄,1−α], and screened samples must be used. These intervals
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can be used to obtain, through duality, limit level α right-sided, two-sided and
left-sided tests for

H0(θ0) : θ = θ0. (59)

These tests reject H0(θ0) when θ0 is not covered by the corresponding confidence
intervals.

It may be of interest to connect our previous discussion with the notion of
generalized test variable (see [28], pg. 115). To avoid repetitions we represent
the parameter of interest by θ and the tested hypothesis by H0(θ0), keeping the
notation we have introduced. Now, given the sufficient statistic vector Sk which
takes values sk and the nuissance parameter γk, g(Sk, skγk, θ) is a generalized
test variable if:

1. g(sk, skγk, θ) does not depend on unknown parameters;

2. the distribution of g(Sk, skγk, θ), given θ, is known;

3. g(Sk, skγk, θ) is stochastically non-decreasing with θ.

Taking

g(Sk, skγk, θ) = θ −
w+1∑

i=m+1

biγi
si

Si
(60)

we get {
g(sk, skγk, θ) = 0
g(Sk, skγk, θ) = θ −

∑w+1
i=m+1 bi

si

Wi

, (61)

with Wi ∼ χ2
gi

, i = m + 1, ...w + 1. It is now easy to see that g(Sk, skγk, θ) is a
generalized test variable well connected with our previous discussion since

g(Sk, skγk, θ) = θ − U. (62)

Since g(Sk, skγk, θ) increases stochastically with θ it will be used to test
H0(θ0) against

H1(θ0) : θ > θ0 (63)

Let P[θ0] be the generalized P value. Then

P[θ0] = P

[
d∑

i=m+1

bi
si

Wi
≤ θ −

w+1∑
i=d+1

bi
si

Wi

]
(64)

if bi > 0, i = m + 1, ...d, and bi < 0, i = d + 1, ...w + 1.
If we want to test H0(θ0) against

H1(θ0) : θ < θ0 (65)

we rewrite the generalized test variable as

g(Sk, skγk, θ) =
w+1∑

i=m+1

biγi
si

Si
− θ =

w+1∑
i=m+1

bi
si

Wi
− θ. (66)

The generalized p-value is now

P[θ0] = P

[
d∑

i=m+1

bi
si

Wi
≥ θ −

w∑
i=d+1

bi
si

Wi

]
. (67)

Thus, generalized test variables and the corresponding generalized p-values
enabled us to better understand one sided testing.
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4.2 Fixed Effects

With rank(Bi) = ai we take ψai
i = Biη

gi

i and ψ̃ai
i = Biη̃

gi

i so that ψ̃ai
i ∼

N (ψai
i , γiBiB′i) with rank(BiB′i) = ai and γi =

∑w
j=1 bi,jγj , i = 1, ...,m. Thus

(see [14], pg. 52)

(ψai
i − ψ̃ai

i )′(BiB′i)
−1(ψai

i − ψ̃ai
i ) ∼ γiχ

2
ai

, i = 1, ...,m. (68)

On the right side of the last expression we have the product by γi of a central
chi-square with ai degrees of freedom. Let Ul, l = 1, ..., n̄ be the elements in the
sample generated according to the probability measure induced by γ̃i, Dl = UlW
with W ∼ χ2

ai
, i = 1, ...,m. Let dn̄,1−α be the empirical quantile for probability

1− α of this last sample we will have

P
[
(ψai

i − ψ̃ai
i )′(BiB′i)

−1(ψai
i − ψ̃ai

i ) ≤ dn̄,1−α

]
−−−−→
n̄→∞

1− α, (69)

thus getting a limit level confidence 1−α ellipsoid for ψai
i . Through duality we

will also get a limit level α test for

H0,i(ψai
0,i) : ψai

i = ψai
0,i. (70)

This hypothesis is rejected when and only when ψai
0,i is not covered by the

ellipsoid. Moreover (see [18], pg. 406 to 411) we will also have

P

 ⋂
cai∈Rai

{
|cai ′ψai

i − cai ′ψ̃ai
i | ≤

√
dn̄,1−αcai ′BiB′icai

} −−−−→
n̄→∞

1− α. (71)

In this way we get simultaneous confidence intervals for cai ′ψai
i , i = 1, ...,m.

This last expression may be considered as a limit version of the well known
Scheffé theorem.

The tests considered in this and the previous section were obtained through
duality from UMVUE. To see that the optimality of the estimators ensures good
behavior of the resulting tests we establish

Proposition 4. If, for every level, the confidence regions obtained from a set
of estimators are contained in those obtained from another set of estimators,
the tests derived, through duality, from the first set of estimators have, for all
levels, at least the power of those derived from the second set.

Proof. It suffices to point out that whenever a test in the second set rejects an
hypothesis the test, of the same size, in the first set also rejects.

As for the tests considered in this section in defining H0,i(ψai
0,i), we must take

ψai
0,i ∈ R(Bi), otherwise the test hypothesis may never hold, i = 1, ...,m. We

then have ψai
0,i = Biη

ai
0,i and, with ∆i the kernel of Bi, H0,i(ψai

0,i) holds if and
only if ηai

i − ηai
0,i ∈ ∆i, i.e., when ηai

i and ηai
0,i belong to the same congruence

class in the quotient vector space Rai/∆i
, i = 1, ...,m. A similar formulation of

tested hypothesis for fixed effects models is given in [13].
Lastly we point out that the application of the results in these two sections,

when direct model formulation is used, is also quite straightforward, and that
right-sided tests for the nullity of variance components can be used as a basis
for model trimming in the integrated approach.
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[2] Fonseca M., Mexia J.T., Zmyślony R. (2002). Exact Distributions for
the Generalized F Statistic. Discussiones Mathematicae – Probability and
Statistics 22, 37–51
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[14] Mexia J.T. (1995). Introdução à Inferência Estat́ıstica Linear. Ed.
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