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Abstract. We address the problem of deriving a one sided tolerance interval in a two-
way nested model with mixed or random effects. The generalized confidence interval
idea is used in the derivation of our tolerance limit, and the results are obtained by
suitably modifying the approach in Krishnamoorthy and Mathew (2004), for the one-
way random model. In general, our tolerance limit has to be estimated by Monte Carlo
simulation. However, we have been able to develop closed form approximations in some
cases. The performance of our tolerance interval is numerically investigated, and the
performance is found to be satisfactory. The results are illustrated with an example.

1. Introduction

In the context of a random effects model, the tolerance interval problem has been
well investigated for the one-way random model; we refer to the recent article by Krish-
namoorthy and Mathew (2004) for some recent results and earlier references. For more
general mixed and random effects models, limited results are available; see Bagui, Bhau-
mik and Parnes (1996) and Liao and Iyer (2004). The purpose of this article is to derive
tolerance intervals for the two-way nested model with mixed or random effects. Such
models are used to analyze data from a variety of application areas including chemical,
industrial and animal breeding applications. We shall use the ideas in Krishnamoorthy
and Mathew (2004) in order to develop the tolerance intervals in this article. In partic-
ular, our approach is based on the tolerance interval idea due to Weerahandi (1993); see
also Weerahandi (1995). We have derived tolerance intervals for the observable random
variable as well as the unobservable random effect (i.e., the “true effect” without the
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error term). The latter problem was addressed for the first time by Wang and Iyer
(1994) and later by Krishnamoorthy and Mathew (2004).

Let A and B denote the two factors and suppose A has a levels with bi levels of B
nested within the ith level of A. Let Yijk denote the kth observation corresponding to
the jth level of B nested within the ith level of A; k = 1, 2, ...., nij. The model is then
given by

Yijk = µ + τi + βj(i) + ek(ij), (1)

with i = 1, .., a, j = 1, .., bi, k = 1, ...nij. Here µ is the general mean, τi is the effect
due to the ith level of A, βj(i) is the effect due to the jth level of B nested within
the ith level of A, and ek(ij) denotes an error term. In the case of the mixed effects
model, we make the assumptions that τi’s are fixed effects, βj(i)’s are random effects
with βj(i) ∼ N(0, σ2

β), and ek(ij) ∼ N(0, σ2
e). For the random effects model, we make the

additional distributional assumption that τi ∼ N(0, σ2
τ ). Furthermore, all the random

variables are assumed to be independent.
If Y is an observation corresponding to a particular level of B nested within the ith

level of A and following the model (1), then Y ∼ N(µ + τi, σ
2
β + σ2

e) when (1) is a mixed
effects model, and Y ∼ N(µ, σ2

τ + σ2
β + σ2

e) when (1) is a random effects model. The
problems we shall address deal with the computation of an upper tolerance limit for the
observable random variable Y , and the unobservable “true effect” µ + τi + βj(i), in the
case of the mixed effects model. Thus in the mixed effects model, we shall compute an
upper tolerance limit for N(µ + τi, σ

2
β + σ2

e) and for N(µ + τi, σ
2
β). In the random effects

model, our problem is the computation of an upper tolerance for N(µ, σ2
τ +σ2

β +σ2
e) and

for N(µ, σ2
τ +σ2

β). We shall denote by p the content of the tolerance interval and by γ the
coverage of the interval, and refer to the tolerance interval simply as a (p, γ) tolerance
interval, and the corresponding tolerance limit as a (p, γ) tolerance limit. Thus if c is a
(p, γ) upper tolerance limit for Y ∼ N(µ + τi, σ

2
β + σ2

e), then c will be a function of the
Yij’s, and satisfies the condition

PY ′
ijs

[
PY

{
Y ≤ c|Y ′

ijs
}
≥ p

]
= γ.

It is easy to verify that the (p, γ) upper tolerance limits mentioned above are 100γ%
upper confidence limits for the pth percentiles of the appropriate normal distributions.
For example, the (p, γ) upper tolerance limit for N(µ + τi, σ

2
β + σ2

e) is the 100γ% upper

confidence limit for the parametric function µ+τi +zp

√
σ2

β + σ2
e , where zp is the pth per-

centile of the standard normal distribution. The latter parametric function is obviously
the pth percentile of N(µ + τi, σ

2
β + σ2

e).
Inference concerning the variance components in the model (1) has already been

addressed in the literature; see the book by Burdick and Graybill (1992) for details on
the computation of confidence intervals. Except the error sum of squares, the ANOVA
sums of squares under the model (1) are not distributed as multiples of chisquares in
the unbalanced case. However, chisquare approximations can be used for the derivation
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of approximate confidence intervals. In particular, let Ȳij. = 1
nij

∑nij

k=1 Yijk and define

SSe =
a∑

i=1

bi∑
j=1

nij∑
k=1

(Yijk − Ȳij.)
2

SS∗
β =

a∑
i=1

bi∑
j=1

(Ȳij. −
1

bi

bi∑
j=1

Ȳij.)
2. (2)

It is easy to verify that

E(SS∗
β) = (b. − a)σ2

β + λσ2
e ,

where λ =
1

b. − a

a∑
i=1

bi − 1

bi

bi∑
j=1

1

nij

, (3)

and b. =
∑a

i=1 bi. In order to obtain approximate inferences in the unbalanced case of
the model (1), we can use the independent distributions

Ue =
SSe

σ2
e

∼ χ2
n..−b.

, exactly,

and U∗
β =

SS∗
β

σ2
β + λσ2

e

∼ χ2
b.−a, approximately, (4)

where n.. =
∑a

i=1

∑bi
j=1 nij and χ2

r denotes the chisquare distribution with r degrees
of freedom. The above approximate distribution associated with SS∗

β is given in Bur-
dick and Graybill (1992), and can be derived similar to the derivation in Thomas and
Hultquist (1978) for the one-way random model with unbalanced data.

The model (1) given above corresponds to the most general unbalanced data situ-
ation; however, we could accomplish our tolerance interval construction only in some
restricted cases. In the mixed effects model, we assume that bi = b and nij = nj

(i = 1, .., a, j = 1, .., b). In the random effects case, our derivations are only for the
balanced case, i.e., bi = b and nij = n (i = 1, .., a, j = 1, .., b). The tolerance interval
construction for the mixed effects model is described in the next section, and for the
random effects model, the procedure is developed in Section 3. As already pointed out,
our methodology for deriving a (p, γ) upper tolerance limit is based on the idea of a
generalized confidence interval. For this, we have defined a generalized pivot statistic
for the parametric function representing the pth percentile of the relevant normal dis-
tribution. The 100γth percentile of the generalized pivot statistic then gives the (p, γ)
upper tolerance limit. The limit can be easily estimated using a Monte Carlo simulation.
In some cases, it is also possible to develop a closed form approximation for the toler-
ance limit. We have numerically investigated the performance of our proposed tolerance
limits. The results are also illustrated with an example.

For mixed models with balanced data, Liao and Iyer (2004) have derived two-sided
tolerance limits following an approximation due to Wald and Wolfowitz (1946) along
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with the generalized confidence interval procedure. In the present paper, the approach
used is based entirely on the generalized confidence interval idea.

2. The Mixed Effects Model

We shall consider the model (1) in the special case where bi = b and nij = nj

(i = 1, .., a, j = 1, .., b). We shall write µi = µ + τi and rewrite the model as

Yijk = µi + βj(i) + ek(ij), (5)

with i = 1, .., a, j = 1, .., b, k = 1, ...nj. When bi = b and nij = nj, λ in (3) simplifies to

λ =
1

b

b∑
j=1

1

nj

.

Let

Wi = µ̂i =
1

b

b∑
j=1

Ȳij..

Then

Wi ∼ N

(
µi,

σ2
β + λσ2

e

b

)
. (6)

It is easy to verify that SSe, SS∗
β (given in (2)) and the Wi’s are all independently

distributed. Our tolerance limits will be based on these random variables. We shall also
denote by sse, ss∗β and wi the respective observed values.

2.1. An upper tolerance limit for N(µi, σ
2
β + σ2

e)

As already noted, a (p, γ) upper tolerance limit for N(µi, σ
2
β + σ2

e) is a 100γ% upper

confidence limit for µi + zp

√
σ2

β + σ2
e . In order to obtain a generalized confidence limit

for µi + zp

√
σ2

β + σ2
e , we shall first define a generalized pivot statistic. Following the

procedure in Krishnamoorthy and Mathew (2004), let

T1p = wi −
√

b(Wi − µi)√
SS∗

β

√
ss∗β
b

+ zp

[
σ2

β + λσ2
e

SS∗
β

ss∗β + (1− λ)
σ2

e

SSe

sse

]1/2

≈d wi −
Z√
U∗

β

√
ss∗β
b

+ zp

[
ss∗β
U∗

β

+ (1− λ)
sse

Ue

]1/2

, (7)

where Ue and U∗
β are defined in (4), and ≈d stands for “approximately distributed as”.

The distribution in the last line of (7) is only approximate since the chisquare distribution
of U∗

β in (4) is only approximate, and we will proceed as though U∗
β has a chisquare
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distribution. A generalized pivot statistic should satisfy the following conditions: (i)
given the observed data, the distributions of the generalized pivot statistic should be
free of any unknown parameters, and (ii) the observed value of the generalized pivot
statistic (obtained by replacing the random variables by their respective observed values)
should be the parameter of interest. It is readily verified that T1p in (7) satisfies the
first condition approximately. From the first expression for T1p, it is easy to see that

the observed value of T1p is µi + zp

√
σ2

β + σ2
e , the parameter of interest. The 100γth

percentile of T1p will give an approximate 100γ% generalized upper confidence limit

for µi + zp

√
σ2

β + σ2
e , or, equivalently, an approximate (p, γ) upper tolerance limit for

N(µi, σ
2
β + σ2

e).
It is easy to estimate the percentile T1p(γ) of T1p by Monte Carlo simulation. Note

that once we have the data, the quantities wi, sse and ss∗β can be computed, and
these are to be treated as fixed while simulating the percentile. We shall denote the
percentile so obtained by T1p(γ). It is also possible to develop an approximation for the
percentile, following the arguments in Krishnamoorthy and Mathew (2004). For this,
let tr;α(δ) denote the 100αth percentile of a non-central t distribution with r degrees of
freedom and non-centrality parameter δ, and Fr1,r2;α denote the 100αth percentile of an F
distribution with (r1, r2) degrees of freedom. Following the derivation in Krishnamoorthy
and Mathew (2004), an approximation, say T1p(γ)∗, for the (p, γ) upper tolerance limit
is given by

T1p(γ)∗ = wi + ta(b−1);γ(δ1)

√√√√ ss∗β
ab(b− 1)

,

where δ1 = zp

√√√√b +
b(b− 1)(1− λ)sse

(n. − b) ss∗β
Fa(b−1),a(n.−b);1−γ , (8)

with n. =
∑b

j=1 nj.

2.2. An upper tolerance limit for N(µi, σ
2
β)

The generalized pivot is now given by

T2p = wi −
√

b(Wi − µi)√
SS∗

β

√
ss∗β
b

+ zp

[
σ2

β + λσ2
e

SS∗
β

ss∗β − λ
σ2

e

SSe

sse

]1/2

+

≈d wi −
Z√
U∗

β

√
ss∗β
b

+ zp

[
ss∗β
U∗

β

− λ
sse

Ue

]1/2

+

, (9)

where for any real number c, c+ = max(c, 0). It can once again be checked that T2 satis-
fies the properties required of a generalized pivot statistic. Hence the 100γth percentile
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T2p(γ) of T2p gives an approximate (p, γ) upper tolerance limit for N(µi, σ
2
β). Similar to

T1p(γ)∗, an approximation for the 100γth percentile of T2p is given by

T2p(γ)∗ = wi + ta(b−1);γ(δ2)

√√√√ ss∗β
ab(b− 1)

,

where δ2 = zp

√√√√[b− λ
b(b− 1)sse

(n. − b)ss∗β
Fa(b−1),a(n.−b);1−γ

]
+

. (10)

2.3. Numerical results
In order to assess the performance of our tolerance intervals, the coverage proba-

bilities were estimated based on 10,000 simulated samples for p = .90 and γ = .95,
using the R statistical software. Without loss of generality we assumed µ = 0 and
σ2

e = 1. The estimated coverages given in Table 1 below are expressed as a function

of ρ =
σ2

β

σ2
β
+σ2

e
. The simulations were carried out under two set ups: (i) a balanced

model with a = b = n = 5, and (ii) an unbalanced model with a = b = 5 and
ni1 = 5, ni2 = 7, ni3 = 9, ni4 = 11, ni5 = 13, i = 1, ..., 5. The results are given in Table 1
below, where T̂1p(γ) and T̂2p(γ) denote Monte Carlo estimates of the tolerance limits ,
and T1p(γ)∗ and T2p(γ)∗ denote the approximations given in (8) and (10), respectively.

Table 1. Estimated coverages of the upper tolerance limits for
N(µi, σ

2
β + σ2

e) and N(µi, σ
2
β)

Table 1a. Coverages of the upper tolerance limits for N(µi, σ
2
β + σ2

e)

Balanced Model
ρ 0.1 0.3 0.5 0.7 0.9

T̂1p(γ) 0.9583 0.9548 0.9507 0.9495 0.9502
T1p(γ)∗ 0.8899 0.9187 0.9317 0.9457 0.9480

Unbalanced Model
ρ 0.1 0.3 0.5 0.7 0.9

T̂1p(γ) 0.9479 0.9512 0.9473 0.9471 0.9453
T1p(γ)∗ 0.8711 0.9153 0.9366 0.9437 0.9475

Table 1b. Coverages of the upper tolerance limits for N(µi, σ
2
β)

Balanced Model
ρ 0.1 0.3 0.5 0.7 0.9

T̂2p(γ) 0.9364 0.9445 0.9485 0.9510 0.9481
T2p(γ)∗ 0.9925 0.9755 0.9648 0.9560 0.9527

Unbalanced Model
ρ 0.1 0.3 0.5 0.7 0.9

T̂2p(γ) 0.9412 0.9482 0.9492 0.9458 0.9471
T2p(γ)∗ 0.9874 0.9721 0.9601 0.9527 0.9535
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From the numerical results in Table 1, it is clear that T̂1p(γ) and T̂2p(γ) ar very
satisfactory upper tolerance limits, providing coverages very close to the nominal level.
The approximation T1p(γ)∗ provides coverages below the nominal level for small values
of ρ and the approximation T2p(γ)∗ provides coverages above the nominal level for small
values of ρ. However, as ρ gets large, both the approximations perform satisfactorily.

3. The Random Effects Model

Our results in this section apply only to the case of balanced data. Thus let bi = b
and nij = n, and the model is given by

Yijk = µ + τi + βj(i) + ek(ij), (11)

k = 1, 2, ...., n; j = 1, 2, ...., b and i = 1, 2, ....., a. We assume τi ∼ N(0, σ2
τ ),

βj(i) ∼ N(0, σ2
β), eijk ∼ N(0, σ2

e), and all the random variables are independent. Define

Yij. =
∑n

k=1 Yijk, Yi.. =
∑b

j=1

∑n
k=1 Yijk and Y...

∑a
i=1

∑b
j=1

∑n
k=1 Yijk and consider the

usual ANOVA sums of squares given by

SSτ =
1

bn

a∑
i=1

(Yi.. − Ȳ...)
2

SSβ =
1

n

a∑
i=1

b∑
j=1

(Yij. − Ȳi..)
2

SSe =
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳij.)
2

Then

Uτ = SSτ/(bnσ2
τ + nσ2

β + σ2
e) ∼ χ2

a−1

Uβ = SSβ/(nσ2
β + σ2

e) ∼ χ2
a(b−1)

Ue = SSe/σ
2
e ∼ χ2

ab(n−1)

Z =
√

abn(Ȳ... − µ)/
√

bnσ2
τ + nσ2

β + σ2
e ∼ N(0, 1). (12)

We note that SSβ = nSS∗
β, where SS∗

β is given in (2). We also note that Yijk ∼
N(µ, σ2

τ + σ2
β + σ2

e).

3.1. An upper tolerance limit for N(µ, σ2
τ + σ2

β + σ2
e)

As before, a (p, γ) upper tolerance limit for N(µ, σ2
τ + σ2

β + σ2
e) is the same as a

100γ% upper confidence limit for µ+ zp

√
σ2

τ + σ2
β + σ2

e . We shall once again obtain such

a confidence limit using the generalized confidence interval idea. Thus let ȳ..., ssτ , ssβ

and sse denote the observed values of the corresponding random variables. Define

T3p = ȳ... −
√

abn(Ȳ... − µ)√
SSτ

×
√

ssτ

abn
+ zp

[
σ2

e

SSe

× sse +
1

n

(
nσ2

β + σ2
e

SSβ

× ssβ −
σ2

e

SSe

× sse

)
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+
1

bn

(
bnσ2

τ + nσ2
β + σ2

e

SSτ

× ssτ −
nσ2

β + σ2
e

SSβ

× ssβ

)]1/2

= ȳ... −
Z√
Uτ

×
√

ssτ√
abn

+ zp

[
sse

Ue

+
1

n

(
ssβ

Uβ

− sse

Ue

)
+

1

bn

(
ssτ

Uτ

− ssβ

Uβ

)]1/2

= ȳ... −
Z√
Uτ

×
√

ssτ√
abn

+
zp√
bn

[
ssτ

Uτ

+ (b− 1)
ssβ

Uβ

+ b(n− 1)
sse

Ue

]1/2

. (13)

The 100γth percentile of T3p will provide the required 100γ% upper confidence limit for

µ + zp

√
σ2

τ + σ2
β + σ2

e , and hence a (p, γ) upper tolerance limit for N(µ, σ2
τ + σ2

β + σ2
e).

The above percentile, say T3p(γ) is easily estimated by Monte Carlo simulation. In
order to develop an approximation for this percentile, similar to the approximation in
(8), we need to use a further approximation for the distribution of (b−1)

ssβ

Uβ
+b(n−1) sse

Ue

in (13). We shall use the approximation

(b− 1)
ssβ

Uβ

+ b(n− 1)
sse

Ue

≈d
c

χ2
f

, (14)

where the constant c and the degrees of freedom f have to be determined by equating
the first and second moments. For this, we use the fact that E[1/χ2

r] = 1/(r − 2)
and E[1/(χ2

r)
2] = 1/[(r − 2)(r − 4)]. Equating the first and second moments of both

expressions in (14), we get the following equations:

c

f − 2
=

(b− 1)ssβ

a(b− 1)− 2
+

b(n− 1)sse

ab(n− 1)− 2
= e1 (say)

c2

(f − 2)(f − 4)
=

(b− 1)2ss2
β

[a(b− 1)− 2][a(b− 1)− 4]
+

b2(n− 1)2ss2
e

[ab(n− 1)− 2][ab(n− 1)− 4]

+
2b(b− 1)(n− 1)ssβsse

[a(b− 1)− 2][ab(n− 1)− 2]
= e2 (say). (15)

Solving, we get

c =
2e1e2

e2 − e2
1

, f = 2

[
1 +

e2

e2 − e2
1

]
. (16)

We now have the approximation

T3p ≈d ȳ... −
Z√
Uτ

×
√

ssτ√
abn

+
zp√
bn

[
ssτ

Uτ

+
c

U

]1/2

, ( where U ∼ χ2
f )

= ȳ... −
√

ssτ√
abn(a− 1)

1√
Uτ/(a− 1)

−Z + zp

√
a

(
1 +

c(a− 1)

dssτ

F0

)1/2
 ,

where F0 = Uτ /(a−1)
U/f

≈d F(a−1),f , the central F distribution with (a − 1, f) degrees of

freedom. Now using the approximation in Krishnamoorthy and Mathew (2004) that

8



lead to (8), we replace F0 by the 100(1− γ)th percentile of F(a−1),f . This finally gives

T3p ≈d ȳ... −
√

ssτ√
abn(a− 1)

1√
Uτ/(a− 1)

−Z + zp

√
a

(
1 +

c(a− 1)

f × ssτ

F(a−1),f ;1−γ

)1/2


= ȳ... −
√

ssτ√
abn(a− 1)

ta−1(δ3),

where ta−1(δ3) denotes a non-central t random variable with (a− 1) degrees of freedom
and non-centrality parameter δ3 given by

δ3 = zp

√
a

(
1 +

c(a− 1)

f × ssτ

F(a−1),f ;1−γ

)1/2

. (17)

Hence an approximate 100γth percentile of T3p is given by

T3p(γ)∗ = ȳ... + ta−1;γ(δ3)

√
ssτ√

abn(a− 1)
. (18)

3.2. An upper tolerance limit for N(µ, σ2
τ + σ2

β)

A (p, γ) upper tolerance limit for N(µ, σ2
τ + σ2

β) is the same as a 100γ% upper confi-

dence limit for µ + zp

√
σ2

τ + σ2
β. Define the generalized pivot statistic

T4p = ȳ... −
√

abn(Ȳ... − µ)√
SSτ

×
√

ssτ

abn
+ zp

[
1

n

(
nσ2

β + σ2
e

SSβ

× ssβ −
σ2

e

SSe

× sse

)

+
1

bn

(
bnσ2

τ + nσ2
β + σ2

e

SSτ

× ssτ −
nσ2

β + σ2
e

SSβ

× ssβ

)]1/2

+

= ȳ... −
Z√
Uτ

×
√

ssτ√
abn

+ zp

[
1

n

(
ssβ

Uβ

− sse

Ue

)
+

1

bn

(
ssτ

Uτ

− ssβ

Uβ

)]1/2

+

= ȳ... −
Z√
Uτ

×
√

ssτ√
abn

+
zp√
bn

[
ssτ

Uτ

+ (b− 1)
ssβ

Uβ

− b
sse

Ue

]1/2

+

The 100γth percentile of T4, say T4p(γ), will provide the required 100γ% upper confidence

limit for µ+ zp

√
σ2

τ + σ2
β, and hence a (p, γ) upper tolerance limit for N(µ, σ2

τ +σ2
β). We

have not been able to develop an approximation for this percentile.

3.3. Numerical results
Simulation results similar to those in Table 1 are given in Table 2 below. The

simulations were carried out fixing n = 20, and the quantities a and b were chosen to
be 10 or 20. Once again, we chose p = .90 and γ = .95.We also chose σ2

β = 1 and
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σ2
e = 1 and have expressed the coverage probabilities as a function of ρ = σ2

τ

σ2
τ+σ2

β
+σ2

e
. The

results in Table 2 are also based on 10,000 simulations, and T̂3p(γ) and T̂4p(γ) represent
the tolerance limits estimated by Monte Carlo. The notation T3p(γ)∗ represents the
approximation given in (18).

Table 2. Estimated coverages of the upper tolerance limits for
N(µ, σ2

τ + σ2
β + σ2

e) and N(µ, σ2
τ + σ2

β)

Table 2a. Coverages of the upper tolerance limits for N(µ, σ2
τ + σ2

β + σ2
e)

a = 5, b = 5
ρ 0.1 0.3 0.5 0.7 0.9

T̂3p(γ) 0.9738 0.9703 0.9653 0.9594 0.9523
T3p(γ)∗ 0.8998 0.9171 0.9301 0.9390 0.9463

a = 5, b = 20
ρ 0.1 0.3 0.5 0.7 0.9

T̂3p(γ) 0.9694 0.9660 0.9611 0.9568 0.9518
T3p(γ)∗ 0.8821 0.9072 0.9250 0.9366 0.9454

a = 20, b = 5
ρ 0.1 0.3 0.5 0.7 0.9

T̂3p(γ) 0.9716 0.9683 0.9668 0.9647 0.9581
T3p(γ)∗ 0.8684 0.8945 0.9151 0.9313 0.9444

a = 20, b = 20
ρ 0.1 0.3 0.5 0.7 0.9

T̂3p(γ) 0.9634 0.9611 0.9598 0.9592 0.9573
T3p(γ)∗ 0.8375 0.8824 0.9084 0.9275 0.9443

Table 2b. Coverages of the upper tolerance limits for N(µ, σ2
τ + σ2

β)

a = 5, b = 5
ρ 0.1 0.3 0.5 0.7 0.9

T̂4p(γ) 0.9766 0.9723 0.9668 0.9593 0.9521

a = 5, b = 20
ρ 0.1 0.3 0.5 0.7 0.9

T̂4p(γ) 0.9715 0.9661 0.9600 0.9555 0.9512

a = 20, b = 5
ρ 0.1 0.3 0.5 0.7 0.9

T̂4p(γ) 0.9730 0.9717 0.9672 0.9624 0.9571

a = 20, b = 20
ρ 0.1 0.3 0.5 0.7 0.9

T̂4p(γ) 0.9642 0.9628 0.9602 0.9577 0.9553
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From the numerical results in Table 2, it follows that both T̂3p(γ) and T̂4p(γ) ex-
hibit satisfactory performance unless a, b and ρ are small, in which case the tolerance
intervals are somewhat conservative. However, the the approximation T3p(γ)∗ can be
recommended only for large values of ρ.
4. An Example

To illustrate the use of upper tolerance limits, we will consider a data set from a
breeding experiment given in Sahai and Ageel (2000, p. 379). The experiment evaluated
the breeding value of five sires in raising pigs. Each sire was mated to two randomly
selected dams and the average weight gain of two pigs from each litter were recorded.

Suppose that a two way nested model with mixed effects is applicable where τi’s rep-
resent the sire effects (fixed) and βj’s represent the dam effects (random). Computations
based on the data gave the values

y1·· = 2.67, y2·· = 2.53, y3·· = 2.63, y4·· = 2.47, y5·· = 2.57,
ssβ = 0.56, sse = 0.39

Thus, (0.9, 0.95) upper tolerance limits for N(µi, σ
2
β + σ2

e), i = 1, ..., 5, are

i T̂1p(γ) T1p(γ)∗

1 3.52 3.51
2 3.37 3.38
3 3.49 3.48
4 3.33 3.32
5 3.43 3.42

For the N(µi, σ
2
β), i = 1, ..., 5, the upper tolerance limits are

i T̂2p(γ) T2p(γ)∗

1 3.46 3.47
2 3.32 3.34
3 3.42 3.44
4 3.26 3.28
5 3.36 3.38

We notice the close agreement between the Monte Carlo estimate and the approximation.
If both factors are random, we have

ssτ = 0.05, ssβ = 0.56, sse = 0.39,

and the (.90, .95) upper tolerance limits are

For N(µ, σ2
τ + σ2

β + σ2
e): T̂3p(γ) = 3.08, T3p(γ)∗ = 2.87

For N(µ, σ2
τ + σ2

β): T̂4p(γ) = 2.99
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We note that T̂3p(γ) and T3p(γ)∗ produce significantly different values. From the nu-
merical results in Table 2, we recall that the tolerance interval based on T3p(γ)∗ results

in poor coverage, especially for small values of ρ = σ2
τ

σ2
τ+σ2

β
+σ2

e
. In other words, we expect

T3p(γ)∗ to be smaller than T̂3p(γ) for small values of ρ. For our example, the estimate
of ρ is ρ̂ = −0.30 (since σ̂2

τ = −0.01), leading us to believe that ρ is very small.

5. Concluding Remarks

The tolerance interval problem has been extensively investigated for the univariate
normal distribution, and for the one-way random model. This article addresses the
problem for a two-way nested model with mixed or random effects. Our approach
exploits the property that the computation of a one-sided tolerance limit reduces to the
computation of a confidence limit for an appropriate percentile of the distribution; the
generalized confidence interval idea is then used to derive the required confidence limit.
Our tolerance limit can be easily estimated by Monte Carlo simulation, and numerical
results indicate that the proposed tolerance interval exhibits satisfactory performance
in terms of providing coverage close to the nominal level. However, the approximations
that we have developed for the tolerance limit perform well only in some cases. Note
that even though we have addressed the problem of deriving an upper tolerance limit,
the computation of a lower tolerance limit can be carried out in an obvious manner. For
example, similar to (8), a lower tolerance limit has the approximation, say T̃1p(γ), given
by

T̃1p(γ) = wi − ta(b−1);γ(δ1)

√√√√ ss∗β
ab(b− 1)

,

where the various quantities are as defined in (8).
It should be emphasized that the approach pursued in his article is useful only for

the derivation of one-sided tolerance limits. We refer to Liao and Iyer (2000) for he
derivation of approximate two-sided tolerance limits in mixed and random effects mod-
els.
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