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synoptic abstract

Exact and limit distributions are obtained for the maximum claim, using
the collective model. Prediction bands are derived, falling either into a con-
trolled and or a non-controlled case. These cases are separated by a crucial
value of an estimable parameter. An application to automobile insurance data
is given.
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1. INTRODUCTION

Let Y (t) be the maximum claim paid up to time t ∈ R+. Let us assume

that the claims {Xi > 0 : i ∈ N} are random variables i.i.d., with common

distribution function FX(·). We also take the number of claims up to time t,

N(t) to be generated by a Poisson process with rate λ(t) (t ≥ 0), independent

of the claims. We obtain the exact distribution of the random variable Y (t),

FY (t)(·), and conditions for the limit distribution of the random variable Z(t) =

λ(t)g(Y (t)), with g(·) a known function, to be exponential. The expression of

Z(t) will be obtained for some special (and theoretically important) cases.

Our results refer to the Collective Risk model, for instance see Bowers

(1986), but instead of the sum of claims up to instant t we are interested in

the maximum of those claims. Thus we will be interested in the tails of the
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claims distribution, namely their representation, using the Pareto generalized

distribution, see McNeil (1997).

Moreover, we will obtain prediction bounds for Z(t), showing that these

fall into two situations corresponding to controlled and non-controlled max-

imum claim. The two situations are separated by a critical value for an es-

timable parameter. An example with real data on automobile insurance is

shown.

2. EXACT DISTRIBUTION

Let Y (t) = max{X1, ..., Xn} be the most severe claim up to time t ∈ R+

with n the total number of claims occurred up to that time, and let φN(t)(u) be

the moment generating function of N(t). We have for the distribution function

of Y (t), FY (t)(y), with y > 0:

FY (t)(y) = P [Y (t) ≤ y] =
∞∑

n=0

P [N(t) = n]P [
n⋂

i=1

Xi ≤ n]

=
∞∑

n=0

P [N(t) = n]F n
X(y) = φN(t)(ln(FX(y)))− P [N(t) = 0]

By definition Y (t) = 0 whenever N(t) = 0.

Since we suppose that N(t) is Poisson distributed with parameter λ∗(t) =∫ t

0
λ(u) du > 0, we immediately know that

FY (t)(y) = exp(−λ∗(t)(1− FX(y))), y ≥ 0. (1)

3. LIMIT LAW

3.1. Discrete Case

If g(·) is a continuous strictly decreasing function, verifying limv→∞ g(v) =

0 and limv→0 g(v) = ∞, the inverse function g−1(·) will have the same mono-

tonicity properties as the direct function. Let W (t) = g(Y (t)), then, according

to (1), the distribution function of W (t) will be

FW (t)(w) = P [g(Y (t)) ≤ w] = P [Y (t) ≥ g−1(w)] = 1− FY (t)(g
−1(w))

= 1− exp[λt(1− FX(g−1(w)))], w ≥ 0. (2)
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Defining the random variable Z(t) = λ∗(t)g(Y (t)), we have

Proposition 3: If L(w) = 1 − FX(g−1(w)) has an expansion in Mac-

Laurin series then, the limit distribution function of Z(t) is

lim
t→∞

FZ(t)(z) = 1− exp {L′(0) z} , z ≥ 0

with L′(0) ≥ 0.

Proof : Since limw→0 L(w) = 0, we will have

L(w) =
∞∑

j=0

dj L(w)

dwj

∣∣∣∣
w=0

wj

j!
,

so that, by (2),

FZ(t)(z) = FW (t)(z/(λ
∗(t))) = 1− exp

{
−λ∗(t)

∞∑
j=1

djL(w)

dwj

∣∣∣∣
w=0

(z/(λ∗(t)))j

j!

}

and so

lim
t→∞

FZ(t)(z) = 1− exp {L′(0) z} , z ∈ R+ .

To finish the proof we just have to show that L′(0) ≥ 0, but

L′(0) = −dFX(g−1(w)))

dg−1(w)

dg−1(w)

dw

∣∣∣∣
w=0

= −fX(g−1(0))
dg−1(w)

dw

∣∣∣∣
w=0

≥ 0

with fX(·) the probability density function of X. 2

So, when L′(0) > 0 the limit distribution is exponencial. Moreover, if

limx→∞ fX(x)xr = c > 0 with r > 1, we will have

lim
w→0

fX(g−1(w)) g−r(w) = c > 0 ,

hence

− lim
w→0

L′(w)
g−r(w)
dg−1(w)

dw

= c.

For instance, if we take g−1(w) = w−s, then, −g−r(w)dg−1(w)
dw

= sw(r−1)s−1 and

with s = 1/(r − 1), we obtain −g−r(w)dg−1(w)
dw

= (r − 1)−1 and consequently,

lim
w→0

L′(w) = L′(0) =
c

r − 1
.
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Since, the inverse function of g−1(w) = w−1/(r−1) = y is w = y1−r, we have

Proposition 4: If L(w) = 1 − FX(g−1(w)) has an expansion in Mac-

Laurin series, and limx→∞ fX(x)xr = c > 0 with r > 1, the limit distribution

of Z(t) = λ∗(t)Y (t)1−r is 1− exp{−c/(r − 1)z}, z ∈ R+
0.

For the Pareto generalized distribution

F (x|δ, γ) = 1− (1 + γ x/δ)−1/γ ; x > 0; δ > 0; γ > 0

we have

c =
1

δ

(γ

δ

)− 1
γ
−1

and r =
γ + 1

γ
. (3)

3.2. Excedances and adjustment

According to the Pickands-Balkema-de Haan theorem (see McNeil, 1997)

we assume that the distribution of the excedances over the high threshold v,

whenever FX(v) < 1,

FX(x|v) = P (X − v ≤ x|X > v),

as the threshold tends to the right endpoint, has as limit distribution the

generalized Pareto distribution F (x− v|δ, γ).

Let Nv(t) be the number of claims up to time t that exceede v. This will

be a Poisson process with rate λ∗v(t) = λ∗(t) (1− FX(v)). So

Zv(t) = λ∗v(t)Y (t)1−r

will have, according to Proposition 4, limit distribution 1− exp{−c/(r− 1)z},
where r and c may be estimated following the procedure due to de Haan (1994).

Let Xn−k,n ≤ . . . ≤ Xn,n be the claims exceeding v. Then (see de Haan,

1994), with

M (r)
n =

1

k

k∑

l=1

[
log

(
xn−l+1,n

xn−k,n

)]r

(scale invariant)

we have the estimators

γ̂n = 1 + M (1)
n − 1

2

(
1− M

(1)
n

2

M
(2)
n

)−1

(scale invariant)
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δ̂n = v
M

(1)
n

ρ

{
ρ = 1 if γ̂n ≥ 0
ρ = 1

1−γ
if γ̂n < 0

.

Applying these estimators to a sample of 16 trimestral claim totals for an

automobile insurance portfolio for 2001/2006, we obtained the estimates

γ̂ = 0.05204

δ̂ = 320.518 ,

so that

r̂ = 20.21599

and ĉ may be derived from (3).

4. PREDICTION BANDS

The limit distribution for Zv(t) has the quantiles zq = − r−1
c

log(1− q).

Since

Y (t) =

(
Zv

λ∗v(t)

) 1
1−r

increases with Zv = Zv(∞), we have the quantiles

yq(t) =

(
zq

λ∗v(t)

) 1
1−r

= a(q, r)

(
λ∗v(t)
r−1

c

) 1
r−1

with

a(q, r) =
(
− log(1− q)

) 1
r−1

> 0

when 0 << t. We point out that the ratios

yq2(t)

yq1(t)
=

a(q2, r)

a(q1, r)
=

(
log(1− q2)

log(1− q1)

) 1
r−1

do not depend on time.

Using the new time scale t∗ = c
r−1

λ∗(t) we get yq(t
∗) = a(q, r) t∗

1
r−1 with

y′q(t
∗) =

a(q, r)

r − 1
(t∗)

2−r
r−1 > 0

and

y′′q (t
∗) =

a(q, r)

r − 1

2− r

r − 1
(t∗)

3−2r
r−1





< 0, r < 0
= 0, r = 2
> 2, r > 2 .
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To illustrate the cases with r < 2 and r > 2 we present the graphs of the

80% prediction bands for the maximum claim, for r = 1.9 and r = 7.5, in

Figure 1.
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Figure 1. – 80% prediction bands for the maximum claim.

For the automobile insurance data we have the 90% prediction band in

Figure 2, which displays a situation with good control of the increase of the

maximum claims over time.
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Figure 2. – 90% prediction band for the maximum claim for
the automobile insurance.

5. TIME RANDOMIZATION

We now randomize time t∗. Since the actual value of this parameter at a

given time will depend on a great number of factors we can avail ourselves of

Fisher’s metatheorem (Fisher, 1918) to assume that t∗ is normally distributed

with mean vector µ(t) and variance bµ(t). Thus, the q-th quantile of t∗ is given

by

t∗q(t) = µ(t) + zq

√
b µ(t) .
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Accordingly, for the random variable

g(t∗) = c (t∗)s , s > 0,

we have the quantiles

gq(t) = c
(
t∗1−q(t)

)s
= c

(
µ(t) + z1−q

√
b µ(t)

)s

from which we can obtain tollerance intervals for the yq(t) = yq(t
∗(t))

yq∗,q(t) = c a(q∗, r)
(
µ(t) + z1−q

√
b µ(t)

)s

.

Taking

q = p/2 , q∗ = p∗/2

we get

P
(
Y (t) ∈ [yq∗,q(t) ; y1−q∗,1−q(t)]

)
≥ 1− (p + p∗) .
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