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Abstract

In this paper we first show how a mixture of particular Generalized Integer Gamma (GIG)
distributions is the distribution of time till absorption into state 0 for a Cox-Markov process.
Based on this approach, several generalizations of the Cox-Markov model are then proposed.
For all the cases the distribution of the time till absorption into state 0 is derived, using the
GIG distribution as a basis. The moments of these waiting times are derived for all cases
and modules for the computation of their exact distributions are provided.
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1 Introduction

1.1 The usual Cox-Markov process

A Cox-Markov process is a Markov process with n+1 states as the one depicted in Figure 1 (Augustin
and Büscher, 1982). The process remains in state k (1 ≤ k ≤ n) an amount of time Xk, exponentially
distributed with parameter λk, and upon departure from state k the process moves to state 0 with
probability αk and to state k − 1 with probability αk = 1− αk. We will suppose that the amount of
time the process remains in a given state is independent of the amount of time the system remains
in any other state. To avoid trivial situations we will assume that αk < 1 for all k > 1. Clearly, we
always have α1 = 1.

A Cox distribution is then the distribution of the random variable Yk that represents the time till
absorption into state 0, starting from state k, for the Markov process above.

. . . . . .

. . . . . .
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Figure 1 – A Cox-Markov process with n+1 states, and corresponding transition
probabilities.

The probability that, starting from state k, the system reaches state 0 in m ≤ k steps is

pmk = αk−m+1

m−1∏

j=1

(1− αk−j+1) , m = 1, . . . , k , (1)

obviously with p1k = αk and
∑k

m=1 pmk = 1.
Let

Xk ∼ Exp(λk)

be the time that the Markov process remains in state k (1 ≤ k ≤ n).
1corresponding author: Carlos A. Coelho (cmac@fct.unl.pt) is Associate Professor and João T. Mexia is Professor

of Statistics at the Department of Mathematics of the Faculty of Sciences and Technology of the New University of
Lisbon, 2829-516 Caparica, Portugal

1



Then

P (Yk < y) =
k∑

m=1

pmk P

(
m∑

j=1

Xk−j+1

︸ ︷︷ ︸
X∗

mk

< y

)
=

k∑
m=1

pmk P (X∗
mk < y)

(2)

where X∗
mk =

∑m
j=1 Xk−j+1 is the sum of m independent random variables with Exponential distri-

butions, having what we will call a simple Generalized Integer Gamma (GIG) distribution with shape
parameters all equal to one and rate parameters λk, . . . , λk−m+1 (see the next section for a com-
plete definition of the GIG distribution as well as its probability density and cumulative distribution
functions).

Although it is not hard, after some algebraic manipulation, to show that the mixture representation
in (2) is equivalent to the representation used by Koole (2004), we will stick with this representation
since it is not only more convenient for the generalizations of the Cox-Markov process presented in the
next section but also for the derivation of the moments as well as of the probability density function
(p.d.f.) and the cumulative distribution function (c.d.f.), since these will be immediately available
from the p.d.f. and c.d.f. of the GIG distribution shown in the next section, since once obtained the
p.d.f. and c.d.f. for X∗

mk, the p.d.f. and c.d.f. of Yk is readily at hand.
From (2) we may then see Yk as a mixture of k simple GIG distributions, the m-th (m = 1, . . . , k)

of which with depth at most m, since it is the sum of m independent Exponentially distributed random
variables. If Xj (j = 1, . . . , p) are p independent random variables, using the Multinomial Theorem
we may express, for h ∈ IN0 the h-th moment of Z =

∑p
j=1 Xj , as

E
(
Zh

)
= h!

∑

∀⊕nj=h

j=1:p

p∏

j=1

E
(
X

nj

j

)

nj !
, (3)

where
∑

∀⊕nj=h

j=1:p

stands for the summation over all sets of p non-negative integers nj such that they add

up to h.
Thus, we have the h-th moment (h ∈ IN0) of Yk given by

E
(
Y h

k

)
=

k∑
m=1

pmk E




(
m∑

i=1

Xk−i+1

)h

 =

k∑
m=1

pmk h!
∑

∀⊕ni=h

i=1:m

m∏

i=1

Γ(1 + ni)
Γ(1)ni!

λ−ni

k−i+1

= h!
k∑

m=1

pmk

∑

∀⊕ni=h

i=1:m

m∏

i=1

λ−ni

k−i+1 .

(4)

1.2 The Generalized Integer Gamma distribution

Let
Xj ∼ Γ(rj , λj) , j = 1, . . . , p

b p independent random variables with a Gamma distribution with integer shape parameters rj and
all different rate parameters λj > 0, that is, the probability density function (p.d.f.) of Xj is written
as

fXj
(x) =

λ
rj

j

Γ(rj)
e−λjx xrj−1 x > 0 .

Then the distribution of

Z =
p∑

j=1

Xj
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is what Coelho (1998) called a GIG distribution of depth p, with p.d.f. and c.d.f.

fZ(z) = K

p∑

j=1

Pj(z) e−λj z , FZ(z) = 1−K

p∑

j=1

P ∗j (z) e−λj z (5)

where

K =
p∏

j=1

λ
rj

j , Pj(z) =
rj∑

k=1

cjk zk−1 (6)

and

P ∗j (z) =
rj∑

k=1

cjk (k − 1)!
k−1∑

i=0

zi

i! λk−i
i

(7)

with

cj,rj
=

1
(rj − 1)!

p∏

i=1
i 6=j

(λi − λj)−ri , j = 1, . . . , p , (8)

and

cj,rj−k =
1
k

k∑

i=1

(rj − k + i− 1)!
(rj − k − 1)!

R(i, j, p, r, λ) cj,rj−(k−i) , (k = 1, . . . , rj − 1)
(j = 1, . . . , p)

(9)

where

r = [r1, r2, . . . , rp]′ , and R(i, j, p, r, λ) =
p∑

k=1
k 6=j

rk (λj − λk)−i (i = 1, . . . , rj − 1) . (10)

Of course, for p = 1 the GIG distribution yields the integer Gamma distribution.
Using (3) and the Multinomial Theorem, for h ∈ IN0, the h-th non-central moment of Z is given

by

E
(
Zh

)
= h!

∑

∀⊕nj=h

j=1:p

p∏

j=1

E
(
X

nj

j

)

nj !
= h!

∑

∀⊕nj=h

j=1:p

p∏

j=1

Γ(rj + nj)
Γ(rj)nj !

λ
−nj

j .

We will use the notation
Z ∼ GIG

(
r1, . . . , rp︸ ︷︷ ︸

p

; λ1, . . . , λp︸ ︷︷ ︸
p

)

to denote the fact that the random variable Z has a GIG distribution of depth p with shape parameters
r1, . . . , rp and rate parameters λ1, . . . , λp, avoiding the use of the underbrace notation whenever the
depth is clear from the list of parameters.

We may note that the distribution of
∑m

i=1 Xk−i+1 (m = 1, . . . , k) in (2) is a particular case of the
above GIG distribution. In case all λk−i+1 are different (for i = 1, . . . ,m), all ri’s will be equal to 1.
For short, we will call this distribution a ’simple’ GIG distribution.

Anyway, whenever there are say p−m (m < p) groups of Xi’s with the same rate parameter, all
we have to do is to add the corresponding shape parameters and consider then a GIG distribution
with depth m(< p). More precisely, if among the p random variables Xi there are only m(< p)
different rate parameters, we may consider, without any loss of generality, that there are p1 of them
with rate parameter λ1, p2 with rate parameter λ2, ..., and pm of them with rate parameter λm,
with

∑m
j=1 pj = p. The distribution of Z will be in this case a GIG distribution with depth m, with

shape parameters s1, . . . , sm and rate parameters λ1, . . . , λm, where sj (j = 1, . . . ,m) is the sum of
the shape parameters of the pj random variables Xi with rate parameter λj . Ahead in this paper, for
short, we will call this process just the ’grouping’ of the shape and rate parameters. In section 4 a
Mathematica module is provided to do this job.
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In the next section, in order to be able to better precise the parameters involved in the GIG
distributions, we will use

FY

(
y; GIG

(
r1, . . . , rp︸ ︷︷ ︸

p

; λ1, . . . , λp︸ ︷︷ ︸
p

))
. (11)

to denote the c.d.f. of a random variable Y with a GIG distribution of depth p with shape parameters
r1, . . . , rp and rate parameters λ1, . . . , λp. We will be using the underbraced indication of the depth
mainly in some cases where the indexation may be not so simple. In any case the expressions for either
the p.d.f. or the c.d.f. may be obtained directly from (5)-(10) by adequately replacing the depth and
the shape and rate parameters.

1.3 The usual Cox-Markov process revisited

As we saw above, in this case the distribution of Yk is a mixture of GIG distributions. If all the k
rate parameters λk−j+1 are different for j = 1, . . . , k, from (2) we may take the distribution of Yk as
a mixture of k simple GIG distributions, the m-th (m = 1, . . . , k) of which has depth m,

X∗
mk ∼ GIG( 1, . . . , 1︸ ︷︷ ︸

m

; λk, . . . , λk−m+1︸ ︷︷ ︸
m

)

so that the c.d.f. of Yk may in this case be written as

FYk
(y) =

k∑
m=1

pmk


1−K

m∑

j=1

cj e−λk−j+1y




where

K =
m∏

j=1

λk−j+1 , cj =
m∏

i=1
i 6=j

(λk−i+1 − λk−j+1)−1 .

If among the m rate parameters λk−j+1 (j = 1, . . . , m) there are only nm < m different ones, then
each X∗

mk has a GIG distribution of depth nm. If after adequate ’grouping’, we denote by λ∗1, . . . , λ
∗
m∗

the nm < m different rate parameters and by r∗1 , . . . , r∗m∗ the corresponding shape parameters, using
the notation in (11), we may write the c.d.f. of Yk as

FYk
(y) =

k∑
m=1

pmk FX∗
mk

(
y; GIG(r∗1 , . . . , r∗nm

; λ∗1, . . . , λ
∗
nm

)
)

. (12)

We may note that the above way to compute the parameters cjk is much simpler than the one
usually used, see for example (Koole, 2004), including for the case when there are some rate parameters
λk−j+1 that are equal. Also, their computation is rendered precise when we use the computation
capabilities of a software like Mathematica. Modules for the complete computation of the above c.d.f.
are provided in section 4.

2 Generalizations of the Cox-Markov process

2.1 A first generalization of the Cox-Markov process

A first generalization of the Cox-Markov process may be thought of when we consider that the time the
process remains in state k (1 ≤ k ≤ n) is the waiting time for the Nk-th event of a non-homogeneous
Poisson process. In this case the distribution of Xk, the waiting time in state k, will be the sum of Nk

independent Exp(λik) (i = 1, . . . , Nk) random variables, that is a GIG distribution of depth at most
Nk. This distribution will be a simple GIG distribution of depth Nk if all the Nk rates in the Poisson
process are different and it will be a GIG distribution of depth N∗

k < Nk if there are N∗
k < Nk sets of
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different rate parameters. Since the Xk are considered independent and since the GIG distribution is
closed for sums, that is, the distribution of the sum of independent GIG distributions is still a GIG
distribution, as it is easy to see from the definition of the GIG distribution in the previous section,
the distribution of Yk will still be in this case a mixture of GIG distributions, since the distribution
of each sum

∑m
i=1 Xk−i+1 (m = 1, . . . , k) will be a GIG distribution.

More precisely, we may say that in this case, from (2), Yk is a mixture of k sums, the m-th
(m = 1, . . . , k) of which of m independent GIG random variables, the j-th (j = 1, . . . ,m) of these
with depth at most Nk−j+1. We say of depth at most Nk−j+1, since although we assume that the
waiting time Xk−j+1 is the waiting time for the Nk−j+1-th event from a non-homogeneous Poisson
process, in the more general case, some of the Nk−j+1 rates may be equal, what would yield for
Xj−k+1 a GIG distribution of depth smaller than Nk−j+1, more precisely, of depth Nk−j+1−n, where
n is the number of rates that are equal to other ’previous’ ones. Since the random variables Xk−j+1

are assumed independent for j = 1, . . . , k, any sum of these random variables is also a GIG distributed
random variable and as such Yk will be a mixture of k GIG distributions, the m-th (m = 1, . . . , k) of
which with depth at most

∑m
j=1 Nk−j+1.

However, in order to obtain the moments of Yk it will be easier to stick with the first definition,
given the difficulty in specifying the depth and the shape parameters for the GIG in the case where
some of the rate parameters would be equal. We have

E
(
Y h

k

)
=

k∑
m=1

pmk E




(
m∑

i=1

Xk−i+1

)h

 =

k∑
m=1

pmk h!
∑

∀⊕nj=h

j=1:m

m∏

j=1

E
(
X

nj

k−i+1

)

nj !

= h!
k∑

m=1

pmk

∑

∀⊕nj=h

j=1:m

m∏

j=1

∑

∀⊕ki=nj

i=1:Nk−j+1

Nk−j+1∏

i=1

λ−ki

i,k−j+1

where it actually doesn’t matter whether some of the rate parameters λi,k−j+1 (i = 1, . . . , Nk−j+1; j =
1, . . . , k) are equal or not.

Assuming that the rates λi,k−j+1 are all different for i = 1, . . . , Nk−j+1, since Xk−j+1 is the sum
of Nk−j+1 independent Exp(λi,k−j+1) random variables (i = 1, . . . , Nk−j+1), we have

Xk−j+1 ∼ GIG( 1, . . . , 1︸ ︷︷ ︸
Nk−j+1

; λ1,k−j+1, . . . , λNk−j+1,k−j+1︸ ︷︷ ︸
Nk−j+1

)

that is a simple GIG distribution of depth Nk−j+1. If we further assume that the rates λi,k−j+1 are
all different (for j = 1, . . . , k), then X∗

mk has also a simple GIG distribution of depth
∑m

j=1 Nk−j+1.
In this case the c.d.f. of Yk may be written as

FYk
(y) =

k∑
m=1

pmk


1−K

m∑

j=1

Nk−j+1∑

i=1

cij e−λi,k−j+1y




with

K =
m∏

j=1

Nk−j+1∏

i=1

λi,k−j+1 , cij =
m∏

n=1

Nk−n+1∏

h=1
n 6=j for h=i

(λh,k−n+1 − λi,k−j+1)−1 .

If some of the λi,k−j+1 (i = 1, . . . , Nk−j+1; j = 1, . . . , k) are equal we will denote the c.d.f. of Yk and
the GIG distribution of X∗

mk as in (12), now with

nm <
m∑

j=1

Nk−j+1

and where now λ∗1, . . . λ
∗
nm

stand for the set of different rate parameters among the rate parameters
in the set {λ1,k, . . . , λNk,k; . . . ; λ1,k−m+1, . . . , λNk−m+1,k−m+1}.
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2.2 A second generalization of the Cox-Markov process

A second generalization may be obtained if in each state k (k = 1, . . . , n) we suppose that t ∈
{0, 1, . . . , Nk} trials are administered, where Nk ∈ IN is a fixed number for each k. Let pk be the
probability of undergoing the Nk trials at state k. Then, if N represents the number of trials the
process undergoes at state k, we have

P (N = Nk) = pk

with

P (N = t) =
(

Nk

t

)
p

t/Nk

k

(
1− p

1/Nk

k

)Nk−t

, t = 0, 1, . . . , Nk .

Further, let us suppose that the time spent in each trial, in state k, is

Zjk ∼ Γ(rjk, λjk) , rjk ∈ IN ; j = 0, 1, . . . , Nk

k = 1, . . . , n,

that is, it has a Gamma distribution with shape parameter rjk ∈ IN and rate parameter λjk. Let us
suppose that the Zjk are independent in j and k. Let Xtk be the time spent till the completion of
t ∈ {0, 1, . . . , Nk} trials. We have

Xtk =
t∑

j=0

Zjk

with X0k = Z0k being the ’residual’, ’base’ or minimum waiting time in state k, that is, the waiting
time in state k when no trials are undergone.

The random variables Xtk (t = 0, 1, . . . , Nk; k = 1, . . . , n) will have integer Gamma distributions
if all the λjk are equal for j = 0, . . . , Nk and will have a GIG distribution if some or all of them are
different.

Then, being Xk the waiting time in state k, we have

P (Xk ≤ x) =
Nk∑
t=0

P (N = t)P (Xk ≤ x|N = t)

=
Nk∑
t=0

(
Nk

t

)
pt/Nk

(
1−p1/Nk

)Nk−t

︸ ︷︷ ︸
θtk

P (Xtk ≤ x) =
Nk∑
t=0

θtk P (Xtk ≤ x) ,

clearly with
∑Nk

t=0 θtk = 1, being thus the distribution of Xk, in the general case, a mixture of GIG
distributions. Then, from (1) the distribution of Yk, the waiting time till absorption in state 0 will be a
mixture of sums of mixtures of GIG distributions, or, since the sum of mixtures of GIG distributions is
itself a mixture of GIG distributions, so that we may just say that the distribution of Yk is a mixture
of mixtures of GIG distributions, or yet just a mixture of GIG distributions. However, reporting
the distribution of the random variables X∗

mk under the form of just a mixture of GIG distributions,
instead of under the form of the sum of mixtures of GIG distributions may indeed be more complicated
and not much useful, since then it would be hard to report the depth of the GIG distributions involved
and their parameters, mainly in the case where there are some rate parameters that are equal.

More precisely, Yk is a mixture of k sums, the m-th (m = 1, . . . , k) of which is a sum of m mixtures
(the Xk−j+1, j = 1, . . . , m), the j-th (j = 1, . . . , m) of which is a mixture of Nk−j+1 +1 distributions,
the t-th of which is a GIG with depth at most t+1 with shape parameters ri,k−j+1 and rate parameters
λi,k−j+1, i = 0, . . . , t, that is, if all rate parameters λi,k−j+1 are different, for i = 0, . . . , t,

Xt,k−j+1 ∼ GIG
(

r0,k−j+1, . . . , rt,k−j+1︸ ︷︷ ︸
t+1

; λ0,k−j+1, . . . , λt,k−j+1︸ ︷︷ ︸
t+1

)
t = 0, . . . , Nk

j = 1, . . . , m .
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We thus have the h-th (h ∈ IN0) non-central moment of Yk given by

E
(
Y h

k

)
=

k∑
m=1

pmk E







m∑

j=1

Xk−j+1




h



=
k∑

m=1

pmk h!
∑

∀⊕nj=h

j=1:m

m∏

j=1

E
(
X

nj

k−j+1

)

nj !

= h!
k∑

m=1

pmk

∑

∀⊕nj=h

j=1:m

m∏

j=1

1
nj !

Nk−j+1∑
t=0

θt,k−j+1 E
(
X

nj

t,k−j+1

)

= h!
k∑

m=1

pmk

∑

∀⊕nj=h

j=1:m

m∏

j=1

Nk−j+1∑
t=0

θt,k−j+1

∑

∀⊕ki=nj

i=0:t

t∏

i=0

Γ(ri,k−j+1 + ki)
Γ(ri,k−j+1) ki!

λ−ki

i,k−j+1.

Since the sum of independent GIG distributions is again a GIG distribution, the sum of mixtures
of GIG distributions is itself a mixture of GIG distributions. However, although it may be not too
easy to express the distribution of each X∗

mk under this form of a mixture of GIG distributions, such
is necessary in order to be able to obtain an expression for the c.d.f. of Yk in this case.

Summarizing, we have

P (Yk ≤ y) =
k∑

m=1

pmk P (X∗
mk ≤ y)

where

X∗
mk =

m∑

j=1

Xk−j+1

with

P (Xk−j+1 ≤ y) =
Nk−j+1∑

t=0

θt,k−+1 P (Xt,k−j+1 ≤ y)

where, for t = 0, . . . , Nk−j+1,

Xt,k−j+1 ∼ GIG(r0,k−j+1, . . . , rt,k−j+1; λ0,k−j+1, . . . , λt,k−j+1)

is a GIG of depth t + 1 if all rate parameters involved are different and in general will be a GIG of
depth at most t + 1.

Thus, the distribution of X∗
mk will be a mixture of

Km =
m∏

j=1

(Nk−j+1 + 1)

GIG distributions of varying depth, which will be at most, that is, if all rate parameters involved are
different,

Nt1,...,tm =
m∑

j=1

tj with tj ∈ {0, . . . , Nk−j+1} .

The Km weights in this mixture are

θ∗t1,...,tm
=

m∏

j=1

θtj ,k−j+1 for all tj ∈ {0, . . . , Nk−j+1}
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and the corresponding GIG distribution in the mixture is, assuming that all the rate parameters
involved are different,

GIG(r0,k, . . . , rt1,k, r0,k−1, . . . , rt2,k−1, . . . , r0,k−m+1, . . . , rtm,k−m+1;

λ0,k, . . . , λt1,k, λ0,k−1, . . . , λt2,k−1, . . . , λ0,k−m+1, . . . , λtm,k−m+1)

that is a GIG with depth Nt1,...,tm
. We may note that this GIG distribution is the distribution of

m∑

j=1

Xtj ,k−j+1

(
tj ∈ {0, . . . , Nk−j+1}

)

where the Xtj ,k−j+1 are assumed independent for j = 1, . . . , m.
Thus, for the re-indexation from 1 through Km of all the Km different sequences t1, . . . , tm (with

tj ∈ {0, . . . , Nk−j+1}, j = 1, . . . ,m), the c.d.f. of X∗
mk, using the notation in (11), may be written as

FX∗
mk

(y) =
Km∑

j=1

θ∗j F
(
y; GIG(r0,k, ..., rt1,k, r0,k−1, ..., rt2,k−1, ..., r0,k−m+1, ..., rtm,k−m+1;

λ0,k, ..., λt1,k, λ0,k−1, ..., λt2,k−1, ..., λ0,k−m+1, ..., λtm,k−m+1)
)
,

(13)

where the re-indexation of the weights θ∗t1,...,tm
and the corresponding GIG distributions follow the

natural order of the weights (see Appendix A onto this account).
In the case where some of the rate parameters are equal, an adequate ’grouping’ of the shape and

rate parameters has to be done before writing and considering the c.d.f. for the GIG distributions
involved, which in this case will have a depth smaller than Nt1,...,tm .

Now we may re-write the expression for the moments of Yk as

E
(
Y h

k

)
=

k∑
m=1

pmk E
[
(X∗

mk)h
]

= h!
k∑

m=1

pmk

Km∑

j=1

θ∗j
∑

∀⊕nl=h

l=1:Nt1,...,tm

Nt1,...,tm∏

l=1

Γ(rl + nl)
Γ(rl)nl!

λ−nl

l ,

generally with

rl ≡ rdj ,k−j+1 for l = 1 + dj +
j−1∑

k=1

tk (j = 1, . . . ,m; 0 ≤ dj ≤ tj) .

The c.d.f. of Yk may then, using again the notation in (11) and from (2) and (13), be written as

FYk
(y) =

k∑
m=1

pmk

Km∑

j=1

θ∗j F
(
y; GIG(r0,k, ..., rt1,k, r0,k−1, ..., rt2,k−1, ..., r0,k−m+1, ...,

rtm,k−m+1; λ0,k, ..., λt1,k, λ0,k−1, ..., λt2,k−1, ..., λ0,k−m+1, ..., λtm,k−m+1)
)
,

We may stress that once we have the adequate programmed modules to handle the possible rep-
etitions of the rate parameters in the GIG distributions and the modules to handle the correct way
the summations the computation of the above c.d.f. is not too complicated. See section 3 ahead.

2.3 A third generalization of the Cox-Markov process

A third and more elaborate generalization is originated if we consider that the staying time in state
k is determined by the following stochastic process. In each state k (1 ≤ k ≤ n) after a time with
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Exponential duration Exp(λi), there is a trial with two possible outcomes: i) remain in state k, or ii)
pass on to state k − 1, being pk the probability of this latter event. The number Nk of proofs before
passing to the next state will have a Geometric distribution with parameter pk, that is,

P (Nk = N) = (1− pk)N−1 pk , N = 1, 2, . . . .

Being Xk,1, . . . , Xk,Nk
i.i.d. Exp(λk), the distribution of the staying time in state k is given by

P (Xk ≤ x) =
∞∑

N=1

P (Nk = N) P (Xk ≤ x|Nk = N)

=
∞∑

N=1

(1−pk)N−1pk P

(
N∑

j=1

Xk,j ≤ x

)
=

∞∑

N=1

(1−pk)N−1pk P (X∗
Nk ≤ x)

where

X∗
Nk =

N∑

j=1

Xk,j ∼ Γ(N,λk) .

Thus, the distribution of Xk is an infinite mixture of integer Gamma distributions with weights
(1− pk)N−1pk.

Summarizing, in this case we have,

P (Yk ≤ y) =
k∑

m=1

pmk P (X∗
mk ≤ y)

where

X∗
mk =

m∑

j=1

Xk−j+1

where Xk−j+1 is an infinite mixture of integer Gamma distributions, since

P (Xk−j+1 ≤ y) =
∞∑

N=1

θN,k−j+1 P (X∗
N,k−j+1 ≤ y)

where

θN,k−j+1 = (1− pk−j+1)N−1pk−j+1 , X∗
N,k−j+1 =

N∑

l=1

Xk−j+1,l ∼ Γ(N, λk−j+1) .

Thus, directly from above, X∗
mk may be seen as a sum of m infinite mixtures of integer Gamma

random variables, the j-th (j = 1, . . . , m) of which with weights θN,k−j+1 of Γ(N, λk−j+1 random
variables (N = 1, 2, . . .), what would lead us to write the h-th non-central moment of Yk as

E
(
Y h

k

)
=

k∑
m=1

pmk E







m∑

j=1

Xk−j+1




h

 =

k∑
m=1

pmk h!
∑

∀⊕nj=h

j=1:m

m∏

j=1

E
(
X

nj

k−j+1

)

nj !

= h!
k∑

m=1

pmk

∑

∀⊕nj=h

j=1:m

m∏

j=1

λ
nj

k−j+1

nj !

∞∑

N=1

θN,k−j+1
Γ(N + nj)

Γ(N)
.

However, since a sum of m infinite mixtures of integer Gamma distributions is an infinite mixture
of GIG distributions of depth (at most) m, the distribution of X∗

mk may be equivalently seen as an
infinite mixture with weights

pi1,...,im =
m∏

j=1

θij ,k−j+1 , for ij = 1, 2, . . .

9



being the associated GIG distribution, supposing the rate parameters λk−j+1 all different for j =
1, . . . , m,

GIG( i1, . . . , im︸ ︷︷ ︸
m

; λk, . . . , λk−m+1︸ ︷︷ ︸
m

)

and thus the distribution of X∗
mk given by, in this case,

P (X∗
mk ≤ y) =

∞∑

i1,...,im=1

pi1,...,im F
(
y; GIG( i1, . . . , im︸ ︷︷ ︸

m

; λk, . . . , λk−m+1︸ ︷︷ ︸
m

)
)

. (14)

From (14) we may get both a second expression for the moments and an expression for the c.d.f. of
Yk. Directly from (14) above we get

E
(
Y h

k

)
=

k∑
m=1

pmk E
[
(X∗

mk)h
]

= h!
k∑

m=1

pmk

∞∑

i1,...,im=1

pi1,...,im

∑

∀⊕nj=h

j=1:m

m∏

j=1

Γ(ij + nj)
Γ(ij)nj !

λ
−nj

k−j+1

and

FYk
(y) =

k∑
m=1

pmk

∞∑

i1,...,im=1

pi1,...,im F
(
y; GIG( i1, . . . , im︸ ︷︷ ︸

m

; λk, . . . , λk−m+1︸ ︷︷ ︸
m

)
)

,

supposing, as above, the rate parameters λk−j+1 all different for j = 1, . . . , m. Otherwise, the adequate
’grouping’ has to be done before defining the GIG distributions.

2.4 A fourth generalization of the Cox-Markov process

A fourth generalization of the Cox-Markov process may be thought of, if we consider a situation in all
similar to the one in the previous subsection, now with the distribution of each Xkj being a Γ(rkj , λkj)
distribution instead of being an Exponential distribution, being the waiting time for the rkj-th event
of a Poisson process with rate λkj .

Now we have

X∗
N,k−j+1 =

N∑

l=1

Xk−j+1,l ∼ GIG(rk−j+1,1, . . . , rk−j+1,N ; λk−j+1,1, . . . , λk−j+1,N ) ,

so that now the distribution of X∗
mk is an infinite mixture of GIG distributions with the GIG distri-

bution corresponding to the weight pi1,...,im having depth
∑m

j=1 ij . The c.d.f. of Yk is thus

FYk
(y) =

k∑
m=1

pmk

∞∑

i1,...,im=1

pi1,...,im

F
(
y;GIG( rk1, ..., rki1 , rk−1,1, ..., rk−1,i2 , ..., rk−m+1,1, ..., rk−m+1,im︸ ︷︷ ︸

i1+i2+...+im

;

λk1, ..., λki1 , λk−1,1, ..., λk−1,i2 , ..., λk−m+1,1, ..., λk−m+1,im︸ ︷︷ ︸
i1+i2+...+im

)
)
,

with

E
(
Y h

k

)
= h!

k∑
m=1

pmk

∞∑

i1,...,im=1

pi1,...,im

∑

⊕IN03njl

j=1:m

l=1:ij

m∏

j=1

ij∏

l=1

Γ(rk−j+1,l + njl)
Γ(rk−j+1,l)njl!

λ
−njl

k−j+1,l .
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3 Mathematica modules for the computation of the distribu-
tion of Yk

We provide modules programmed using version 5.1 of the Mathematica software (from Wolfram Re-
search), to compute or obtain the expression for either the p.d.f. or the c.d.f. of the distribution of Yk.
The base module is the module GIG, in Figure 3, used to compute either the p.d.f. or the c.d.f. of a GIG
distribution. This module uses the module Makec, in Figure 2, to compute the parameters cjk in the
GIG distribution. We should note that the computation of these parameters is done using the integer
computation capabilities of Mathematica by previously rationalizing all the rate parameters λj and
receiving only for integer shape parameters rj . This way the computation problems that might arise
(Koole, 2004) are overcome. This module uses as arguments a first list with the shape parameters,
a second list with the rate parameters and a third argument with the common length of these lists.
Although this third argument could be avoided to be passed on, it seemed more functional to do it
this way.

Makec[r , l , p ] := Module[{c},
c = Table[Table[1, {j, 1, Max[r]}], {i,1,p}];
Table[c = ReplacePart[c, (Product[(l[[j]]-l[[i]])ˆ(-r[[j]]), {j,1,i-1}]*

Product[(l[[j]]-l[[i]])ˆ(-r[[j]]), {j,i+1,p}])/(r[[i]]-1)!, {i,r[[i]]}], {i,1,p}];
Table[Table[c=ReplacePart[c,Sum[((r[[i]]-k+j-1)!*(Sum[r[[h]]/(l[[i]]-l[[h]])ˆj,{h,1,i-1}]

+Sum[r[[h]]/(l[[i]]-l[[h]])ˆj, {h,i+1,p}])*c[[i]][[r[[i]]-(k-j)]])/(r[[i]]-k-1)!,
{j,1,k}]/k, {i,r[[i]]-k}], {k, 1, r[[i]]-1}], {i,1,p}];

c ]

Figure 2 – Mathematica module for the computation of the parameters cjk in
the GIG distribution.

The module GIG in Figure 3 uses four arguments. The first is an optional argument, with default
value of 1, that indicates whether to compute the p.d.f. or the c.d.f.. If it is given the value 0, the p.d.f.
is computed. The two following arguments are the same as the two first arguments of the module
Makec, that is, two lists with the shape and rate parameters. The fourth argument is the running
variable for the p.d.f. or c.d.f. or the value at which these are to be computed. If we give an explicit
numerical value to this fourth argument we obtain the computed value of either the GIG p.d.f. or
c.d.f. at that point and if we give this fourth argument as a letter we will obtain the expression for
the p.d.f. or c.d.f. with that letter representing the running value.

GIG[pdfcdf :1,r , li , z ] := Module[{p, l, c}, p=Length[r];
If[r∈Integers && And@@Positive[r] && And@@Positive[li] && p==Length[li],
l=Rationalize[li, 0]; c=Makec[r, l, p];
If[pdfcdf==0, P[w ]:=Table[Sum[c[[j]][[k]]*wˆ(k - 1), {k, 1, r[[j]]}], {j, 1, p}];

Product[l[[j]]ˆr[[j]], j, 1, p]*Sum[P[z][[j]]*Exp[-l[[j]]*z], {j, 1, p}],
P[w ]:=Table[Sum[c[[j]][[k]]*(k-1)!*Sum[wˆi/(i!*l[[j]]ˆ(k-i)), {i,0,k-1}],

{k,1,r[[j]]}],{j,1,p}];
1 - Product[l[[j]]ˆr[[j]], {j, 1, p}]*Sum[P[z][[j]]*Exp[-l[[j]]*z], {j, 1, p}] ] ]]

Figure 3 – Mathematica module for both the p.d.f. and the c.d.f. of the GIG
distribution.

The module Group in Figure 4 receives as arguments a vector of shape parameters and a second
vector of rate parameters which are supposed to have the same length and is used to group together
all equal rate parameters and add the corresponding shape parameters. The output of this module is
thus the set of a shape and a rate parameter vector after grouping. The module does not require the
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shape parameters to be integer and does not check for equal length of the two argument vectors since
in the context of its use such is assured a priori.

We may illustrate the use of the module Group with the following call

Group[{1.5, 2, 2.5, 3, 3.5, 4, 4.5}, {1.23, 4.6, 3.4, 4.6, 1.23, 1.23, 3.4}]
that produces the output

{{9., 7., 5}, {1.23, 3.4, 4.6}} .

The module Weights also in Figure 4 is used to compute the weights pmk in (2) for the mixture
distribution of Yk. It receives as argument a vector with the values of αk, . . . , α2 and it adds by itself
the value of α1 = 1 at the end of the list.

The module Params, yet in Figure 4, which is actually just a Mathematica function, taking as
argument the set of rate parameters λk, . . . , λ1, computes the sets of shape and rate parameters for
the k r.v.’s X∗

m,k in (2), passing them through the Group module in order to group possible equal rate
parameters. The parameters for X∗

1k are not passed through the Group module since this is one only
Exponential r.v..

Finally the module Distwt in Figure 5 is used to compute either the p.d.f. or the c.d.f. of Yk in
section 1. This module receives four arguments, the first of which is similar to the first argument of
the module GIG being used to choose between the p.d.f. and the c.d.f., the second one is the vector
of values of αk, . . . , α2, the third is the vector of rate parameters λk, . . . , λ1 and the fourth is the
running variable for either the p.d.f. or the c.d.f., which works as the similar argument described for
the module GIG.

The module checks if the values of αj (j = 2, . . . , k) are between 0 and 1 and if the lengths of the
vectors with the probabilities αj and the rate parameters λj do match.

The module Momwt in Figure 6 is used to compute directly the moments of Yk, using (4). This
module has as arguments the vector of probabilities αk, . . . , α2, the vector of rate parameters λk, . . . , λ1

and the order of the moment. This module needs the Mathematica package Combinatorica, in order
to be able to use the Compositions module therein to compute the integer partitions of h.

Group[r , l ] := Module[{ls, rs, ds, ln, rn, flag0, radd},
ls=Sort[l]; rs=r[[Ordering[l]]]; ds=Drop[ls,-1]-Drop[ls,1]; ln=rn={}; flag0=radd=0;
Do[If[ds[[i]]==0,

If[flag0==0, {flag0=1; radd=radd+rs[[i]]+rs[[i+1]]; ln=Append[ln,ls[[i]]]},
radd=radd+rs[[i+1]]],

If[flag0==1, {flag0=0; rn=Append[rn,radd]; radd=0},
{ln=Append[ln,ls[[i]]]; rn=Append[rn,rs[[i]]]}]], {i,1,Length[r]-1}];

If[ds[[Length[r]-1]]==0, rn=Append[rn,radd],
{rn=Append[rn,rs[[Length[r]]]]; ln=Append[ln,ls[[Length[r]]]]}];

{rn, ln} ]

Weights[alpha ] := Module[{k, nalpha},
k = 1+Length[alpha]; nalpha = Prepend[Reverse[alpha],1];
Table[nalpha[[k-m+1]]*Product[(1-nalpha[[k-j+1]]), {j,1,m-1}], {m,1,k}] ]

Params[lambda ]:=Prepend[Table[Group[Table[1,{i,1,j}],Table[lambda[[i]],{i,1,j}]],
{j,2,Length[lambda]}],{{1},{lambda[[1]]}}]

Figure 4 – Mathematica modules for the grouping of equal rate parameters and
the computation of the weights pmk in (2) and Mathematica function
for the computation of the rate parameters for the r.v.’s X∗

mk in (2).
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Distwt[pdfcdf :1,alpha ,lambda ,z ]:=Module[{k,w,par}, k=Length[lambda];
If[And @@ Positive[alpha] && And @@ Negative[alpha-1],

If[k==1+Length[alpha] && And @@ Positive[lambda],
w=Weights[alpha]; par=Params[lambda];
Sum[w[[j]]*GIG[pdfcdf,par[[j]][[1]],par[[j]][[2]],z],{j,1,k}] ]]]

Figure 5 – Mathematica module for the computation of both the p.d.f. and the
c.d.f. of the r.v. Yk in section 1.

Momwt[alpha ,lambda ,h ]:=Module[{k,w},
Needs[”DiscreteMath‘Combinatorica‘”];
k=Length[lambda]; w=Weights[alpha];
h!*Sum[ w[[j]]*Sum[ Product[lambda[[i]]ˆ(-Compositions[h, j][[m]][[i]]), {i,1,j}],

{m,1,Length[Compositions[h,j]]}],{j,1,k}] ]

Figure 6 – Mathematica module for the computation of the moments in (4).

An example of the use of both modules Distwt and Momwt may be the following, in which we com-
pute the second moment of a waiting time Y3 with probabilities α3 = .2, α2 = .5 and rate parameters
λ1 = 1.23, λ2 = 3.4, λ1 = 2.3,

NIntegrate[xˆ2*Distwt[0, {.2, .5}, {1.23, 3.4, 2.3}, x], {x, 0, Infinity}]
and

Momwt[{.2, .5}, {1.23, 3.4, 2.3}, 2]

either call with output, 2.37928.
The modules provided allow only for the computation of the distribution of Yk for the usual

case in section 1, but based on these modules it is not hard to build other modules to compute the
distributions of Yk for the generalizations in section 2.

4 Conclusions

The GIG distribution is a much useful tool in representing and studying the exact distribution of
the waiting time till absorption in state 0 both for the usual Cox distribution and its proposed
generalizations.

The use of the GIG distribution allows us to easily generalize the Cox-Markov process to several
other situations, including situations where the waiting times in each state are generated by non-
homogeneous Poisson processes and still be able to quite easily devise the exact distribution (and
moments) of the waiting time till absorption in state 0. The usual Cox distribution may thus be seen
as a particular case of the mixture of GIG distributions presented as the distribution of the waiting
times till absorption in state 0.

This way we have easily at hand the exact distribution for waiting times in more general models
for queues where the time in each state may be generated either by homogeneous or non-homogeneous
Poisson processes as it may be the case when the waiting time in each state depends on the occurrence
of multiple actions as for example not only the time each element ahead in the queue may take to
leave the queue once it reaches its end but also the rate at which the elements in each state abandon
the queue. With the generalizations proposed for the Cox-Markov model we will be able to model
more precisely such situations.
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Appendix A

A number written in the multiple basis (N1 +1), (N2 +1), . . . , (Nm +1) is a number with m digits
whose j-th digit (j = 1, . . . ,m) dj is such that 0 ≤ dj ≤ Nj , (j = 1, . . . , m). There are a total of∏m

j=1(Nj + 1) different numbers in this basis.
The natural order of these numbers is the one imposed by the evolving of the values once the

multiple basis system is taken into account. That is, for example, for m = 3 with N1 = 2, N2 = 4 and
N3 = 3, the number 200 is the one that follows immediately the number 143, the number 100 is the
one that follows immediately the number 43, 40 is the number that follows 33, and 10 the one that
follows 3. The highest number in this multiple basis system would be 243 and there are 60 different
numbers in this multiple basis system, their ordered sequence being

000, 001, 002, 003, 010, 011, 012, 013, 020, . . . , 033, 040, . . . , 043, 100, . . . , 143, 200, . . . , 243.
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Augustin, R. and Büscher, K-J. (1982). Characteristics of the Cox-Distribution. ACM Sigmet-
rics Performance Evaluation Review, 12, 1, 22-32.

Coelho, C. A. (1998). The Generalized Integer Gamma distribution as a basis for distributions in
Multivariate Analysis. J. Multiv. Analysis, 64, 182-192.

Koole, G. (2004). A formula for tail probabilities of Cox distributions. J. Applied Prob., 41,
935-938.

14


