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Abstract

We deal with generalized notions of convexity for sets. Namely, the
polyconvexity, quasiconvexity, rank one convexity and separate convex-
ity. The question has its origin in the calculus of variations. We try to
systematize the results concerning these generalized notions imitating as
much as possible the classical approach of convex analysis. Throughout
the article, we will discuss the relations between the different convexities,
separation and Carathéodory type theorems, the notion of hull of a set
and extremal points.

1 Introduction

We discuss here the extension of the notion of convex set to generalized convex
sets that are encountered in the vector valued calculus of variations and in
partial differential equations. These are: polyconvex, quasiconvex and rank one
convex set.

Contrary to classical convex analysis, where the notion of convex set precedes
the one of convex function; this is not the case for the generalized ones. This is of
course due to historical reasons. Morrey introduced the notions of polyconvex,
quasiconvex and rank one convex functions in 1952 (although the terminology
is the one of Ball). It was not until the systematic studies of partial differential
equations and inclusions by Dacorogna-Marcellini and Müller-Šverák that the
equivalent definitions for sets became an important issue. Moreover these no-
tions were essentially seen through the different generalized convex hulls, leading
somehow to terminologies that do not exactly covers the same concepts. One
of the aims of the present paper is to try to imitate as much as possible the
classical approach of convex analysis in the present context. This will, we hope,
allow to clarify the situation.
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In order to describe the content of our article, we have to get back to classical
convex analysis. Here are important facts that we will try to mimic in the
generalized context.

1) A set E is convex if and only if its indicator function

χE (x) =

{
0 if x ∈ E

+∞ if x /∈ E

is convex.
2) Important facts concerning convex sets are the separation and Carathéodory

theorems.
3) The convex hull of a set E is the smallest convex set, denoted co E, that

contains E. As consequences of this definition, one finds that if

FE = {f : Rm → R ∪ {+∞} : f |E ≤ 0}
FE = {f : Rm → R : f |E ≤ 0}

then
co E =

{
x ∈ Rm : f (x) ≤ 0, for every convex f ∈ FE

}
(1)

co E = {x ∈ Rm : f (x) ≤ 0, for every convex f ∈ FE} (2)

where co E denotes the closure of co E.

4) Minkowski theorem for the convex hull of extreme points of compact sets.
The article is organized as follows.
In Section 3, we define the notions of polyconvex, quasiconvex and rank one

convex set. The first and the third one are straightforward and are equivalent,
as they should be, to the polyconvexity and rank one convexity of the indicator
function. The second one is more delicate. Indeed one would have liked to define
it as equivalent to the quasiconvexity of the indicator function; but quasiconvex
functions allowed to take the value +∞ are, at the moment, poorly understood.
We will give a definition of quasiconvex set which is compatible with many of
the desired properties that should have such definition. Notably we will have
that

E convex ⇒ E polyconvex ⇒ E quasiconvex ⇒ E rank one convex

and all counterimplications turn out to be false whenever N, n ≥ 2. This last
result is better than the corresponding one for functions, since we have examples
of rank one convex functions that are not quasiconvex (cf. Šverák [15]) only
when n ≥ 2 and N ≥ 3.

Separation and Carathéodory type theorems exist for polyconvex sets and
we will discuss these extensions in Section 4.

In Section 5, we consider the definitions of polyconvex, quasiconvex and
rank one convex hulls of a given set E denoted respectively Pco E, QcoE, RcoE.
They are, as they should be, the smallest polyconvex, quasiconvex and rank one
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convex set, respectively, that contains E. It turns out that for polyconvex sets
(and in a similar way for rank one convex sets) we have

PcoE =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

}

as for the convex case. However, the representation of the closure of the hulls
analogous to (2) is not true for general sets. We will discuss this question in
details introducing three more types of hulls, namely

Pcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

}

Qcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every quasiconvex f ∈ FE

}

Rcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}
.

It turns out that, in general,

PcoE ⊂
6=

Pcof E, QcoE ⊂
6=

Qcof E and Rco E ⊂
6=

Rcof E.

However, if E is compact, then

Pco E = Pcof E.

In Section 6 we will introduce the notion of extreme points in these general-
ized senses and establish Minkowski type theorems.

2 Notations and preliminaries

We recall the notation below (cf. Dacorogna [4]) used in the context of poly-
convexity.

Notation 1 (i) For ξ ∈ RN×n we let

T (ξ) = (ξ, adj2ξ, . . . , adjN∧nξ) ∈ Rτ(N,n)

where adjsξ stands for the matrix of all s× s subdeterminants of the matrix ξ,
1 ≤ s ≤ N ∧ n = min {N, n} and where

τ = τ (N,n) =
m∧n∑
s=1

(
N

s

)(
n

s

)
and

(
N

s

)
=

N !
s! (N − s)!

.

In particular if N = n = 2, then T (ξ) = (ξ, det ξ) .

(ii) For s ∈ N, let

Λs =

{
λ = (λ1, ..., λs) : λi ≥ 0,

s∑

i=1

λi = 1

}
.
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We also introduce a useful notation when defining a quasiconvex set (cf.
Definition 6).

Notation 2 Let Ω be the hypercube (0, 1)n of Rn. For an orthogonal transfor-
mation R ∈ O(n),
– W 1,∞

per (R Ω;RN ) will denote the space of periodic functions in W 1,∞(R Ω;RN ),
i.e. functions u verifying u(Rx) = u(R(x+ei)) for all vectors ei of the canonical
basis of Rn and all x ∈ Ω;
– Affpiec(R Ω;RN ) will denote the space of piecewise affine functions in RΩ;
– WR will denote the space W 1,∞

per (R Ω;RN ) ∩ Affpiec(R Ω;RN ) of functions
whose gradients take only a finite number of values.

We now recall the different notions of convexity for functions.

Definition 3 (i) A function f : Rm → R ∪ {+∞} is said to be convex if

f (λξ + (1− λ)η) ≤ λ f (ξ) + (1− λ) f (η)

for every λ ∈ [0, 1] and every ξ, η ∈ Rm.
(ii) A function f : RN×n → R ∪ {+∞} is said to be polyconvex if there

exists a convex function g : Rτ(N,n) −→ R ∪ {+∞} such that

f(ξ) = g(T (ξ)).

(iii) A Borel measurable function f : RN×n → R is said to be quasiconvex if

f (ξ) meas(U) ≤
∫

U

f (ξ + Dϕ (x)) dx

for every bounded open set U ⊂ Rn, ξ ∈ RN×n and ϕ ∈ W 1,∞
0

(
U ;RN

)
.

(iv) A function f : RN×n → R ∪ {+∞} is said to be rank one convex if

f (λξ + (1− λ)η) ≤ λ f (ξ) + (1− λ) f (η)

for every λ ∈ [0, 1] and every ξ, η ∈ RN×n with rank(ξ − η) = 1.
(v) A function f : Rm → R ∪ {+∞} is said to be separately convex if

f (λξ + (1− λ)η) ≤ λ f (ξ) + (1− λ) f (η)

for every λ ∈ [0, 1] and every ξ, η ∈ Rm with ξ − η = sei, for some s ∈ R and
i ∈ {1, ...,m} (ei denoting the ith-vector of the canonical basis of Rm).

(vi) A Borel measurable function f : RN×n → R is said to be quasiaffine if
both f and −f are quasiconvex.

Remark 4 A good definition of quasiconvex functions equivalent to the weak
lower semicontinuity of the corresponding integral taking the value +∞ is not
available at the moment. Moreover, if we allow it in the above definition, then
the known implication

f quasiconvex ⇒ f rank one convex

is no longer true.
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Equivalent conditions for polyconvexity and quasiconvexity are given in the
next result. For the proofs see, respectively, Dacorogna [4, page 106] and Šverák
[15].

Theorem 5 (i) A function f : RN×n → R∪ {+∞} is polyconvex if and only if

f

(
τ+1∑

i=1

λiξi

)
≤

τ+1∑

i=1

λif (ξi)

whenever (λ1, ..., λτ+1) ∈ Λτ+1 and

T

(
τ+1∑

i=1

λiξi

)
=

τ+1∑

i=1

λiT (ξi) .

(ii) A Borel measurable function f : RN×n → R is quasiconvex if and only
if

f (ξ) ≤
∫

RΩ

f (ξ + Dϕ (x)) dx

for Ω := (0, 1)n and every R ∈ O(n), ϕ ∈ W 1,∞
per

(
RΩ;RN

)
and ξ ∈ RN×n.

The different envelopes are then defined as

Cf = sup {g ≤ f : g convex} ,

Pf = sup {g ≤ f : g polyconvex} ,

Qf = sup {g ≤ f : g quasiconvex} ,

Rf = sup {g ≤ f : g rank one convex} ,

Sf = sup {g ≤ f : g separately convex} .

As well known we have that, provided f : RN×n −→ R, the following impli-
cations hold

f convex ⇒ f polyconvex ⇒ f quasiconvex
⇒ f rank one convex ⇒ f separately convex

and thus
Cf ≤ Pf ≤ Qf ≤ Rf ≤ Sf ≤ f.

3 Generalized notions of convexity

We start giving the generalized definitions of convexity for sets.

Definition 6 (i) We say that E ⊂ Rm is convex if for every λ ∈ [0, 1] and
ξ, η ∈ E, then

λξ + (1− λ)η ∈ E.
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(ii) We say that E ⊂ RN×n is polyconvex if there exists a convex set K ⊂
Rτ(N,n) such that

π(K ∩ T (RN×n)) = E,

where π denotes the orthogonal projection of (the first component of) Rτ(N,n) in
RN×n. Equivalently, E is polyconvex if there exists a convex set K ⊂ Rτ(N,n)

such that {
ξ ∈ RN×n : T (ξ) ∈ K

}
= E.

(iii) We say that E ⊂ RN×n is quasiconvex if we have

ξ + Dϕ(x) ∈ E, a.e. x ∈ R Ω,

for some R ∈ O(n) and ϕ ∈ WR

}
⇒ ξ ∈ E

(Ω denoting the hypercube (0, 1)n).
(iv) Let E ⊂ RN×n. We say that E is rank one convex if for every λ ∈ [0, 1]

and ξ, η ∈ E such that rank(ξ − η) = 1, then

λξ + (1− λ)η ∈ E.

(v) We say that E ⊂ Rm is separately convex if for every λ ∈ [0, 1] and
ξ, η ∈ E such that ξ − η = sei, for some s ∈ R and i ∈ {1, ..., m} (ei denoting
the ith-vector of the canonical basis of Rm), then

λξ + (1− λ)η ∈ E.

Remark 7 (i) The operator π introduced in the above definition is more pre-
cisely defined as follows. If

X = (X1, ..., Xτ(N,n)) then π(X) = (X1, ..., XN×n).

In particular, if N = n = 2 and X = (ξ, δ) ∈ R2×2 × R, then π(X) = ξ.
(ii) The definitions of convex, rank one convex and separately convex sets

are standard.
(iii) In what concerns polyconvexity, the more usual way to define it is with

the condition in Theorem 8 below. However, the two conditions turn out to be
equivalent. With our definition we get some coherence with the analogous notion
for functions.

We note that one could think, in view of Definition 3 (ii), that a set E is
polyconvex if T (E) is convex. This is however not true. Consider, for example,
the polyconvex set E = {I, ξ}, where I is the identity matrix and ξ = diag(2, 0).
Then T (E) = {(I, 1), (ξ, 0)} which is not convex.

(iv) The best definition for quasiconvex sets is unclear. Several definitions
have already been considered (see Dacorogna-Marcellini [5], Müller [11], Zhang
[18]). The one we propose here is consistent with known properties for functions
and have most properties which are desirable (cf. Theorem 11 below).

We first give an equivalent condition for polyconvexity.
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Theorem 8 Let E ⊂ RN×n. The following conditions are equivalent.
(i) E is polyconvex.

(ii)
I∑

i=1

λiT (ξi) = T

(
I∑

i=1

λiξi

)

ξi ∈ E, (λ1, ..., λI) ∈ ΛI




⇒

I∑

i=1

λiξi ∈ E.

Moreover one can take I = τ(N, n) + 1.

(iii) Denoting by co T (E) the convex hull of T (E),

E = π(co T (E) ∩ T (RN×n))

or equivalently
E = {ξ ∈ RN×n : T (ξ) ∈ co T (E)}.

Proof. (i) ⇒ (ii). Suppose

I∑

i=1

λiT (ξi) = T

(
I∑

i=1

λiξi

)
, (3)

for some ξi ∈ E and (λ1, ..., λI) ∈ ΛI . By hypothesis, ξi ∈ π(K ∩ T (RN×n))
for some convex set K ⊂ Rτ(N,n) and so T (ξi) ∈ K. Therefore

∑I
i=1 λiT (ξi) ∈

co K = K and, by (3), we conclude that
∑I

i=1 λiξi ∈ E.
The fact that we can take I = τ(N,n) + 1 in (ii) is a consequence of

Carathéodory theorem (see Dacorogna [4, Theorem 1.3, page 106]).
(ii) ⇒ (iii). We have to see that E = π(co T (E)∩T (RN×n)). Evidently E

is contained in the set in the right hand side. For the reverse inclusion, consider
ξ ∈ π(co T (E) ∩ T (RN×n)). So, T (ξ) ∈ co T (E) and we can write

T (ξ) =
I∑

i=1

λiT (ξi)

for some ξi ∈ E and (λ1, ..., λI) ∈ ΛI . We then use (ii) to get that ξ ∈ E, as
wished.

(iii) ⇒ (i) This is immediate.
The next result shows the relation between the notions of convexity for sets

and the corresponding notions for functions (the proof is straightforward).

Proposition 9 Let E ⊂ RN×n and χE denote the indicator function of E:

χE (ξ) =

{
0 if ξ ∈ E

+∞ if ξ /∈ E.

Then E is, respectively, convex, polyconvex, rank one convex or separately
convex, if and only if χE is, respectively, convex, polyconvex, rank one convex
or separately convex.
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Remark 10 One would have liked to have the same result for quasiconvex sets
but, as already discussed, quasiconvex functions taking the value +∞ are not
considered here.

The convexity conditions are related in the following way.

Theorem 11 Let E ⊂ RN×n. We have the following implications

E convex ⇒ E polyconvex ⇒ E quasiconvex
⇒ E rank one convex ⇒ E separately convex.

All counterimplications are false, as soon as N, n ≥ 2.

Remark 12 We will see (cf. Proposition 28) that, as for the convex case:
E, respectively, polyconvex, quasiconvex, rank one convex or separately convex
implies that intE is also, respectively, polyconvex, quasiconvex, rank one convex
or separately convex. However, this is not anymore true for E. Indeed we will
give (cf. Proposition 28) an example of a bounded polyconvex set E ⊂ R2×2

with E not even separately convex.

Proof. Part 1. We only prove the implications related to the notion of quasi-
convexity since the others are trivial and well known.
(i) We prove that if E is polyconvex then E is quasiconvex. Assume that

ξ + Dϕ(x) ∈ E, a.e. x ∈ R Ω

for some R ∈ O(n) and ϕ ∈ WR. We can write Dϕ(x) ∈ {η1, ..., ηk}, a.e. x ∈
R Ω for some ηi such that ξ + ηi ∈ E, i = 1, ..., k. Defining

λi = meas{x ∈ R Ω : Dϕ(x) = ηi},

we have λi ≥ 0,
∑k

i=1 λi = 1. Since ϕ is periodic and the functions adjs are
quasiaffine (s = 1, ..., N ∧ n) we have

T (ξ) =
∫

R Ω

T (ξ + Dϕ(x)) dx =
k∑

i=1

λiT (ξ + ηi).

Using the polyconvexity of the set E we obtain that ξ ∈ E.
(ii) We now prove that if a set E is quasiconvex then it is rank one convex.
Let ξ, η ∈ E be such that rank(ξ − η) = 1 and λ ∈ (0, 1). We will prove that
λξ + (1− λ)η ∈ E. To achieve this, it is enough to find R ∈ O(n) and ϕ ∈ WR

such that
λξ + (1− λ)η + Dϕ(x) ∈ {ξ, η}, a.e. x ∈ R Ω

or equivalently

Dϕ(x) ∈ {(1− λ)(ξ − η),−λ(ξ − η)}, a.e. x ∈ R Ω.
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The result will then follows from the quasiconvexity of E. The construction of
such ϕ is standard for relaxation theorems (see, for example, Dacorogna [4]).
We just outline the proof. Since rank(ξ − η) = 1, we can write ξ − η = a ⊗ ν
with a ∈ RN and ν a unit vector in Rn. Choose R ∈ O(n) any orthogonal
transformation such that Re1 = ν (e1 denoting the first vector of the canonical
basis) and define the function h : R −→ R by

h(s) =
{

s, 0 ≤ s ≤ λ
λ, λ ≤ s ≤ 1

and h(s+1) = h(s)+λ, ∀ s ∈ R. Then ϕ(x) = −λ(ξ−η)x+a h(〈x; ν〉) satisfies
the required conditions, which finishes the proof.

Part 2. We will next see that the reverse implications are, in general, not true.
(i) There are polyconvex sets which are not convex. Consider, for example, the
set E = {ξ, η} ⊂ R2×2, where ξ = diag(1, 0) and η = diag(0, 1).
(ii) Quasiconvexity does not imply polyconvexity. Consider the matrices (cf.
Dacorogna [4])

ξ1 =
(

1 0
2 0

)
, ξ2 =

(
0 1
0 1

)
, ξ3 =

(−1 −1
0 0

)

and

η =
(

0 0
2/3 1/3

)
.

We have
T (η) =

1
3
T (ξ1) +

1
3
T (ξ2) +

1
3
T (ξ3).

The set E = {ξ1, ξ2, ξ3} is not a polyconvex set since η /∈ E. However, it is
quasiconvex. Suppose ξ + Dϕ ∈ E for some ϕ ∈ WR where R ∈ O(2). Since
rank(ξi − ξj) = 2 for i 6= j, we have that the solution of this three gradient
problem is an affine function (cf. Šverák [13], [14], Zhang [20]) that is to say
ξ + Dϕ is identically equal to one of the matrices ξi. Using then the periodicity
of ϕ it results that ξ = ξi ∈ E. We can then conclude that E is quasiconvex.
(iii) Rank one convexity does not imply quasiconvexity. We should again draw
the attention to the fact that our result is better for sets than for functions. We
prove this assertion in two steps.

Step 1. There are (cf. Kirchheim-Preiss [7]) η1, ..., ηk ∈ ∂B(0, 1) ⊂ R2×2

such that rank(ηi − ηj) = 2, ∀ i 6= j and there is a non affine Lipschitz
function u : (0, 1)2 −→ R2 with affine boundary data and satisfying Du(x) ∈
{η1, ..., ηk}, a.e. in (0, 1)2.

Step 2. Let E = {η1, ..., ηk}. Since there are no rank one connections
between the matrices ηi, the set E is rank one convex. We will see that E
is not quasiconvex. Let u be the function mentioned in Step 1. Since u is
Lipschitz and has affine boundary data, we can write u = uξ + ϕ for some
ϕ ∈ W 1,∞

0 ((0, 1)2;R2), denoting by uξ an affine function such that Duξ = ξ.
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Besides Du(x) = ξ + Dϕ(x) ∈ E, a.e. in (0, 1)2, but, as we will see, ξ /∈ E,
which ensures that E is not quasiconvex. We argue by contradiction.

If ξ ∈ E, say ξ = η1 then, since

ξ =
∫

(0,1)2
Du(x) dx =

k∑

i=1

λiηi,

with λi ∈ (0, 1) since u is not affine (in particular λ1 6= 1), we would have

η1 =
k∑

i=2

λi

1− λ1
ηi.

But, since ηi ∈ ∂B(0, 1), i = 1, ..., k, the above identity is not possible and thus
ξ 6= η1.
(iv) Separate convexity does not imply rank one convexity. Indeed, the set
E = {ξ, η} ⊂ R2×2, where

ξ =
(

2 2
0 0

)
, η =

(
1 1
1 1

)

is separately convex but not rank one convex.

4 Separation results for polyconvex sets

We next deal with the problem of separating polyconvex sets generalizing in
this way known results in the convex context.

Theorem 13 Let E be a polyconvex set of RN×n.
(i) If η /∈ E or η ∈ ∂E, then there exists β ∈ Rτ(N,n) \ {0} such that

〈β;T (η)− T (ξ)〉 ≤ 0, ∀ ξ ∈ E.

(ii) If E is compact and η /∈ E, then there exists β ∈ Rτ(N,n) \ {0} such that

〈β;T (η)〉 < inf
ξ∈E

{〈β; T (ξ)〉}.

Proof. (i) Since E is polyconvex, if η /∈ E then T (η) /∈ co T (E); in the case
η ∈ ∂E then we get T (η) ∈ ∂ coT (E). In both cases, using the separation
theorem for convex sets we obtain the existence of β satisfying

〈β; T (η)−X)〉 ≤ 0, ∀ X ∈ co T (E),

and, in particular, for X ∈ T (E) as desired.
(ii) This stronger result can be obtained using the strong separation theorem

for the closed convex set co T (E).
As a consequence of the previous separation theorem we have the character-

ization of a polyconvex set given in the following result. This is an extension
of the classical version for convex sets which ensures that a closed convex set is
the intersection of the closed half-spaces containing the set.
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Theorem 14 A compact set E ⊂ RN×n is polyconvex if and only if

E = {ξ ∈ RN×n : ϕ(ξ) ≥ 0, for every quasiaffine ϕ with ϕ|E ≥ 0}.
Proof. Let E be a compact polyconvex set and ξ0 be such that ϕ(ξ0) ≥ 0 for
every quasiaffine ϕ satisfying ϕ|E ≥ 0. We will see that ξ0 ∈ E. If this was not
the case, then, from Theorem 13 (ii),

〈β; T (ξ0)〉 < c < inf
ξ∈E

{〈β; T (ξ)〉}

for some β ∈ Rτ(N,n) \ {0} and c ∈ R. Defining C = c− infξ∈E{〈β; T (ξ)〉} and
the quasiaffine function

ψ(ξ) = 〈β; T (ξ)〉+ C − 〈β; T (ξ0)〉
we get a contradiction since ψ(ξ0) = C < 0 but, since ψ|E ≥ 0 we should have
ψ(ξ0) ≥ 0.

The reverse inclusion is evident.

5 Generalized convex hulls

Having defined the generalized notions of convexity, we are now in position to in-
troduce the concepts of generalized convex hulls. We follow the same procedure
as in the classical convex case.

Definition 15 The polyconvex, quasiconvex, rank one convex and separately
convex hulls of a set E ⊂ RN×n are, respectively, the smallest polyconvex, qua-
siconvex, rank one convex and separately convex sets containing E and are re-
spectively denoted by PcoE, QcoE, Rco E and Sco E.

From the discussion made in Section 3, the following inclusions hold:

E ⊂ Sco E ⊂ Rco E ⊂ Qco E ⊂ Pco E ⊂ co E.

As we note below (cf. Remark 25) there are some authors who have adopted
other definitions for the rank one convex hull, but this one is more consistent
with the convex case. Besides, with the above definitions one has the following
result (cf. Dacorogna-Marcellini [5]) whose proof follows in a straightforward
manner from Theorem 23 below.

Proposition 16 Let E be a subset of RN×n and χE be its indicator function.
Then

PχE = χPco E

RχE = χRco E

SχE = χSco E

where PχE, RχE and SχE are, respectively, the polyconvex, rank one convex
and separately convex envelopes of χE.

11



In the following we will give some representations of the hulls defined above. We
start giving two characterizations of the polyconvex hull of a set. The second
one, which has been proved in Dacorogna-Marcellini [5], is a consequence of
Carathéodory theorem and is the equivalent to what is obtained in the convex
case.

Theorem 17 Let E ⊂ RN×n. Then
(i) Pco E = π(co T (E) ∩ T (RN×n)),

(ii) PcoE =

{
ξ ∈ RN×n : T (ξ) =

τ+1∑

i=1

λiT (ξi), ξi ∈ E, (λ1, ..., λτ+1) ∈ Λτ+1

}
.

In particular, if E is compact, then PcoE is also compact and if E is open, then
Pco E is also open.

Proof. (i) We prove the first representation of PcoE. It is clear that Pco E ⊂
π(co T (E)∩T (RN×n)). For the other inclusion we start noting that, since PcoE
is polyconvex, by definition,

Pco E = π(K ∩ T (RN×n))

for some convex set K ⊂ Rτ(N,n). Since E ⊂ Pco E, K must contain T (E) and,
consequently, must contain co T (E), from that the desired inclusion follows.

(ii) For this second representation of Pco E, denoting by Y the set on the
right hand side, it immediately follows, from the definition of polyconvex set,
that Y ⊂ PcoE. Moreover, one easily verifies that Y is a polyconvex set
containing E which implies that Pco E ⊂ Y .

For the assertion concerning compact sets, it is trivial that PcoE is bounded
if E is compact. Let then ξν ∈ PcoE with ξν → ξ. By the first representation
of Pco E, T (ξν) ∈ co T (E), which is a compact set since T (E) is compact. Then
T (ξ) = lim T (ξν) ∈ coT (E) and thus ξ ∈ PcoE as wished.

Finally, it can be seen, using an inductive argument, that, if

T (ξ) =
τ+1∑

i=1

λiT (ξi),

for some ξ, ξi ∈ RN×n and (λ1, ..., λτ+1) ∈ Λτ+1, then

T (ξ + η) =
τ+1∑

i=1

λiT (ξi + η), ∀ η ∈ RN×n.

From this and (ii), it easily follows that Pco E is open if E is open.

We now give a different representation of the polyconvex hull, using the
separation results of the previous section.
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Theorem 18 Let E ⊂ RN×n be such that Pco E is compact. Then

Pco E = {ξ ∈ RN×n : ϕ(ξ) ≥ 0, for every quasiaffine ϕ with ϕ|E ≥ 0}.

Proof. The set in the right hand side is polyconvex and contains E, then it
contains Pco E. On the other hand, since PcoE is polyconvex and compact
then, by Theorem 13 we have

PcoE = {ξ ∈ RN×n : ϕ(ξ) ≥ 0, for every quasiaffine ϕ with ϕ|Pco E ≥ 0}.

Since any quasiaffine function ϕ with ϕ|Pco E ≥ 0 verifies also ϕ|E ≥ 0, one gets

{ξ ∈ RN×n : ϕ(ξ) ≥ 0, for every quasiaffine ϕ with ϕ|E ≥ 0} ⊂ PcoE,

which finishes the proof.
We next give a representation for the quasiconvex hull, similar to (ii) of

Theorem 17. This representation is however weaker than the one obtained in
the polyconvex case since we cannot obtain the representation formula in a
prescribed finite number of steps.

Theorem 19 Let E ⊂ RN×n. Let Q0coE = E and define by induction the sets

Qi+1coE =

{
ξ ∈ RN×n :

∃ R ∈ O(n), ϕ ∈ WR such that

ξ + Dϕ(x) ∈ QicoE, a.e. x ∈ RΩ

}
, i ≥ 0.

Then Qco E = ∪i∈NQicoE.
In particular, if E is open, then QcoE is also open.

Proof. By definition of quasiconvex set and by induction, we have QicoE ⊂
QcoE, for every i and thus ∪i∈NQicoE ⊂ Qco E. The reverse inclusion follows
from the fact that ∪i∈NQicoE is, as we will see, a quasiconvex set.

Let R ∈ O(n), ϕ ∈ WR and ξ +Dϕ(x) ∈ ∪i∈NQicoE, a.e. x ∈ RΩ. One has

Dϕ(x) ∈ {η1, ..., ηk} a.e. x ∈ RΩ, with

meas{x ∈ RΩ : Dϕ(x) = ηi} > 0, i = 1, ..., k.

Moreover, ξ + ηi ∈ Qα(i)coE for some α(i) ∈ N. Let s = max{α(1), ..., α(k)}.
Since QicoE ⊂ Qi+1coE, we have, for all i = 1, ..., k, ξ + ηi ∈ QscoE. Thus
ξ + Dϕ(x) ∈ QscoE and, by definition, we get ξ ∈ Qs+1coE ⊂ ∪i∈NQicoE; the
quasiconvexity of this last set follows.

Under the hypothesis of E being an open set, one easily gets, using induction
arguments, that each QicoE is open. By the preceding representation of Qco E
it follows that this set is also open.

The analogous representation for the rank one convex hull of a set is given
in the result below (for the proof, see Dacorogna-Marcellini [5, page 136]).

13



Theorem 20 Let E ⊂ RN×n. Let R0coE = E and define by induction the sets

Ri+1coE =

{
ξ ∈ RN×n :

ξ = λA + (1− λ)B, λ ∈ [0, 1],

A,B ∈ RicoE, rank(A−B) = 1

}
, i ≥ 0.

Then Rco E = ∪i∈NRicoE.
In particular, if E is open, then RcoE is also open.

Remark 21 (i) Similar construction and results can be obtained for Sco E.
(ii) The last assertion of the theorem follows, as in the quasiconvex case,

from the fact that each RicoE is open if E itself is open.
(iii) In general it is not true that rank one convex hulls or separately convex

hulls of compact sets are compact (see Aumann-Hart [1] and Kolář [9]).

We will now consider representations of the convex hulls through functions
as we can get in the convex case.

Notation 22 Given a set E ⊂ RN×n, we consider the following sets of func-
tions

FE =
{
f : RN×n → R ∪ {+∞} : f |E ≤ 0

}

FE =
{
f : RN×n → R : f |E ≤ 0

}
.

With the above notation, one has, for E ⊂ RN×n,

co E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every convex f ∈ FE

}
(4)

co E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every convex f ∈ FE

}
(5)

where co E denotes the closure of the convex hull of E.
Analogous representations to (4) can be obtained in the polyconvex, rank

one convex and separately convex cases. However, (5) can only be generalized
to the polyconvex case if the sets are compact (see Theorem 26). When dealing
with the other notions of convexity, (5) is not true, even if compact sets are
considered.

Theorem 23 Let E ⊂ RN×n, then

Pco E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

}

Rco E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}

Sco E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every separately convex f ∈ FE

}
.

Proof. We prove the first identity, the others being analogous. Let us call X
the set in the right hand side. Evidently X is a polyconvex set containing E and
thus Pco E ⊂ X. Consider now ξ ∈ X. Since χPco E is a polyconvex function
of FE , one has χPco E(ξ) ≤ 0 and consequently ξ ∈ PcoE obtaining the other
inclusion.

We next introduce some new sets which will allow a better understanding of
the closure of the different hulls.
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Definition 24 For a set E of RN×n, let

cof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every convex f ∈ FE

}

Pcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

}

Qcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every quasiconvex f ∈ FE

}

Rcof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}

Scof E =
{
ξ ∈ RN×n : f (ξ) ≤ 0, for every separately convex f ∈ FE

}
.

Remark 25 (i) As well known,

cof E = coE.

(ii) The above sets are all closed because any separately convex function tak-
ing only finite values is continuous. Besides, they are, respectively, (according to
our definitions) convex, polyconvex, quasiconvex, rank one convex and separately
convex.

(iii) Some authors (see, for example, Müller-Šverák [12], Šverák [16], Zhang
[19]), when dealing with quasiconvexity and rank one convexity, have adopted
the above definitions for the hull of a set (in the generalized senses). They call
laminate convex hull what we have called Rco E.

(iv) As in Theorem 17, it can easily be shown that

Pcof E = π(cof T (E) ∩ T (RN×n)).

We next see the relations between the closures of the convex hulls and the
sets introduced in the above definition.

Theorem 26 Given any set E ⊂ RN×n and denoting by Pco E, QcoE, Rco E
and Sco E the closure of, respectively, the polyconvex, quasiconvex, rank one
convex and separately convex hulls of E, we have

PcoE ⊂ Pcof E

QcoE ⊂ Qcof E

RcoE ⊂ Rcof E

Sco E ⊂ Scof E.

In general, the four inclusions are strict. However if E is compact, then

PcoE = PcoE = Pcof E.

Remark 27 We call the attention to the fact that, contrary to what was stated
in Dacorogna-Marcellini [5, page 132], in general, Pco E 6= Pcof E, unless E is
compact. We should also draw the attention (cf. Proposition 28) that in general
the sets Pco E, QcoE, Rco E, Sco E are not even separately convex.
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Proof. Since Pcof E is a closed polyconvex set containing E then PcoE ⊂
Pcof E. In the same way we get the inclusions for the quasiconvex, rank one
convex and separately convex cases.

We now deal with the fact that the inclusions are strict. The first one follows
(cf. Proposition 28 below) from the fact that there are polyconvex sets whose
closure is not polyconvex though Pcof E is always a polyconvex set. If we
assume E to be compact then we have, as we will see,

PcoE = PcoE = Pcof E.

By Theorem 17, in this case, PcoE is compact and then Pco E = Pco E. We
will prove that Pcof E ⊂ PcoE. We start noting that, since E is compact,
T (E) is compact and thus co T (E) is also compact. Considering ξ ∈ Pcof E
then, since the function η 7→ dist(T (η), co T (E)) is a polyconvex function,
dist(T (ξ), co T (E)) = 0. Since co T (E) is closed, we can deduce that T (ξ) ∈
co T (E) and thus, ξ ∈ PcoE.

Next we use an example due to Casadio [2] (or equivalent examples by
Aumann-Hart [1] and Tartar [17]) which will give at once Qco E ⊂

6=
Qcof E,

Rco E ⊂
6=

Rcof E and Sco E ⊂
6=

Scof E. The second non inclusion was already

observed in Dacorogna-Marcellini [5, page 133]. Consider the following four
diagonal matrices of R2×2

ξ1 = diag(−1, 0), ξ2 = diag(1,−1), ξ3 = diag(2, 1), ξ4 = diag(0, 2).

Since rank(ξi − ξj) = 2 for i 6= j, the set E = {ξ1, ξ2, ξ3, ξ4} is rank one convex.
It is also quasiconvex, the argument is the same as in the proof of Theorem
11, assertion (ii) of Part 2, here using the non existence of non-affine Lipschitz
functions whose gradient takes four possible values with no rank one connections
(cf. Chleb́ık-Kirchheim [3]). However, any separately convex function f ∈ FE

and consequently any rank one convex or quasiconvex function in FE , has f(0) ≤
0 (see [5]). Thus 0 ∈ Scof E, but 0 /∈ QcoE.

We can write

Sco E ⊂ Rco E ⊂ Qco E ⊂ Pco E ⊂ co E = cof E

and also

Scof E ⊂ Rcof E ⊂ Qcof E ⊂ Pcof E ⊂ coE = cof E.

Moreover, the same example and arguments used in the proof of Theorem
26 (see also Proposition 28) shows that, in general,

Scof E * Rco E, Rcof E * QcoE and Qcof E * PcoE.

However, if E is compact one has Qcof E ⊂ PcoE.
We draw the attention to the fact that several characterizations of the sets

in Definition 24 have been used in the literature according to the specific needs
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of each situation. These sets can be written in terms of measures (cf. Kirchheim
[8], Müller [11]) or using the distance function (cf. Zhang [18]): if E ⊂ RN×n is
compact, then

Qcof E =
{
ξ ∈ RN×n : Qdist(ξ, E) = 0

}
,

where Qdist(·, E) is the quasiconvex envelope of the function dist(·, E).
We next prove, as already mentioned in Remark 12, that the interior of

generalized convex sets keeps the convexity (in the generalized sense), but that,
contrary to the classical convex case, this is not true for the closure.

Proposition 28 (i) Let E ⊂ RN×n be, respectively, a polyconvex, quasicon-
vex, rank one convex or separately convex set. Then intE is also, respectively,
polyconvex, quasiconvex, rank one convex or separately convex.

(ii) There is E ⊂ R2×2 a polyconvex and bounded set such that E is not
separately convex.

Proof. (i) We present the proof in the context of polyconvexity. For the other
convexities the proof is analogous. It is sufficient to prove that Pco(intE) =
intE. The non trivial inclusion is Pco(intE) ⊂ intE. Since E is polyconvex,
evidently

Pco(intE) ⊂ Pco E = E. (6)

On the other hand, intE is open and thus (cf. Theorem 17) Pco(intE) is also
open. From (6), it follows then the desired inclusion.

(ii) We define

E =
{
±

(
1 0
0 x

)
: 0 < x < 1

}
.

It is a bounded set and E is not separately convex. In fact, let ξ1 = diag(1, 0)
and ξ2 = diag(−1, 0), one has ξ1, ξ2 ∈ E, but λξ1 + (1 − λ)ξ2 /∈ E for any
0 < λ < 1.

We now show that E is polyconvex. Let ξ1, ..., ξ6 ∈ E and suppose

T (ξ) =
6∑

i=1

λiT (ξi), for some (λ1, ..., λ6) ∈ Λ6. (7)

We have to see that ξ ∈ E. We can write {1, ..., 6} = I+ ∪ I− for some I+ and
I− such that

ξi =
(

1 0
0 xi

)
if i ∈ I+ and ξi =

( −1 0
0 −xi

)
if i ∈ I−,

where 0 < xi < 1, i = 1, ..., 6. In any case det ξi = xi.
If I+ = ∅ or I− = ∅ then it is clear that ξ ∈ E. We will see that the other

case: I+ 6= ∅ and I− 6= ∅, is not an admissible one. In fact, from (7), we can
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write

ξ =




∑

i∈I+

λi −
∑

i∈I−

λi 0

0
∑

i∈I+

λixi −
∑

i∈I−

λixi


 =

(
α 0
0 β

)

and det ξ = αβ =
6∑

i=1

λixi.

Then |α| < ∑6
i=1 λi = 1, |β| < ∑6

i=1 λixi and thus |αβ| < ∑6
i=1 λixi, which

is a contradiction.

6 Extreme points

An important tool in convex analysis is the notion of extreme point. In a
straightforward manner we can define it for generalized convex sets as follows
(cf. Dacorogna-Marcellini [5, page 138]).

Definition 29 (i) If E ⊂ Rm is convex, ξ ∈ E is said to be an extreme point
of E in the convex sense if

ξ = λξ1 + (1− λ)ξ2

λ ∈ (0, 1), ξ1, ξ2 ∈ E

}
⇒ ξ1 = ξ2 = ξ.

For an arbitrary set E ⊂ Rm, the set of extreme points of co E will be denoted
Ec

ext.
(ii) If E ⊂ RN×n is polyconvex, ξ ∈ E is said to be an extreme point of E

in the polyconvex sense if

T (ξ) =
τ+1∑

i=1

λiT (ξi),

(λ1, ..., λτ+1) ∈ Λτ+1, λi > 0, ξi ∈ E




⇒ ξi = ξ, i = 1, ..., τ + 1.

For an arbitrary set E ⊂ RN×n, the set of extreme points of Pco E will be
denoted Ep

ext.
(iii) If E ⊂ RN×n is quasiconvex, ξ ∈ E is said to be an extreme point of E

in the quasiconvex sense if

ξ + Dϕ(x) ∈ E, a.e. x ∈ R Ω,

Ω = (0, 1)n, R ∈ O(n), ϕ ∈ WR

}
⇒ Dϕ ≡ 0.

For an arbitrary set E ⊂ RN×n, the set of extreme points of QcoE will be
denoted Eq

ext.
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(iv) If E ⊂ RN×n is rank one convex, ξ ∈ E is said to be an extreme point
of E in the rank one convex sense if

ξ = λξ1 + (1− λ)ξ2

λ ∈ (0, 1), ξ1, ξ2 ∈ E, rank(ξ1 − ξ2) ≤ 1

}
⇒ ξ1 = ξ2 = ξ.

For an arbitrary set E ⊂ RN×n, the set of extreme points of RcoE will be
denoted Er

ext.
(v) If E ⊂ Rm is separately convex, ξ ∈ E is said to be an extreme point of

E in the separately convex sense if

ξ = λξ1 + (1− λ)ξ2

λ ∈ (0, 1), ξ1, ξ2 ∈ E, ξ1 − ξ2 = s ei,

with s ∈ R and ei a vector of the canonical basis of Rm




⇒ ξ1 = ξ2 = ξ.

For an arbitrary set E ⊂ Rm, the set of extreme points of Sco E will be denoted
Es

ext.

We next see the relations between the sets of extreme points for the different
notions of convexity.

Proposition 30 Let E ⊂ RN×n. Then

Ec
ext ⊂ Ep

ext ⊂ Eq
ext ⊂ Er

ext ⊂ Es
ext.

Proof. The non trivial inclusions are those related to Eq
ext, the set of extreme

points of QcoE, but it can be obtained with the same arguments used in the
proof of Theorem 11, Part 1, and we opt not to repeat them.

Minkowski theorem (often better known as Krein-Milman theorem which
is its infinite dimensional version) assures that the convex hull of a compact
set coincides with the convex hull of its extreme points. We next deal with
the generalization of this result to the other convexities. We start with the
polyconvex case (see also Dacorogna-Tanteri [6]).

Theorem 31 Let E ⊂ RN×n be a compact set. Then

Pco E = Pco Ep
ext.

Proof. One inclusion is trivial: Pco Ep
ext ⊂ Pco E, since Ep

ext ⊂ Pco E. We will
next show the reverse inclusion. We start remarking that

Pco E = π(co T (E) ∩ T (RN×n))

Pco Ep
ext = π(co T (Ep

ext) ∩ T (RN×n)).

Let ξ ∈ Pco E. We will see that ξ ∈ PcoEp
ext. By the above characterization

of Pco E we have T (ξ) ∈ coT (E). Moreover, by Minkowski theorem, and using
the fact that T (E) is compact, we have

coT (E) = co(T (E)c
ext),
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where T (E)c
ext is the set of extreme points of co T (E) (in the convex sense).

We will next prove that

T (E)c
ext ⊂ T (Ep

ext),

which will finish the proof.
Let then X ∈ T (E)c

ext. In particular, X ∈ T (E) and we can write X = T (η)
with η ∈ E. It suffices then to see that η ∈ Ep

ext. Suppose that

T (η) =
τ+1∑

i=1

λiT (ηi)

for some (λ1, ..., λτ+1) ∈ Λτ+1, λi > 0, ηi ∈ Pco E. Noting that, since ηi ∈
Pco E then T (ηi) ∈ co T (E), it immediately follows, from the fact that T (η)
is an extreme point of co T (E), that ηi = η for every i, that is to say η is an
extreme point of Pco E. The proof is finished.

As remarked in Kirchheim [8], the result above is not true for quasiconvex,
rank one convex or separately convex hulls (see Example 33 below). Even
though, for these cases, a weaker result can be proved (cf. Theorem 32). We
reproduce the proof of Matoušek-Plecháč [10], which is also seen to apply to the
quasiconvex case. See also Zhang [18] for the quasiconvex case.

Theorem 32 Let E ⊂ RN×n be a bounded set and Eqf
ext, Erf

ext, Esf
ext denote,

respectively, the set of extreme points of Qcof E (in the quasiconvex sense), the
set of extreme points of Rcof E (in the rank one convex sense) and the set of
extreme points of Scof E (in the separately convex sense). Then

Qcof E = Qcof Eqf
ext Rcof E = Rcof Erf

ext and Scof E = Scof Esf
ext.

Proof. We divide the proof in two steps. The first is common to the three
convexities and we present it in the context of quasiconvexity. In the second
step we consider separately the quasiconvex and the rank one convex cases (this
last being analogous to the separately convex case). In all what follows we will
denote by E

qf

ext the closure of Eqf
ext

Step 1. We remark that, for any set K ⊂ RN×n, since Qcof is automat-
ically closed, Qcof K = Qcof K. Thus, it is enough to prove that Qcof E =

Qcof E
qf

ext. The inclusion Qcof E
qf

ext ⊂ Qcof E is trivial. It remains to verify
the reverse inclusion. We use a contradiction argument.

Suppose there is some η ∈ Qcof E \ Qcof E
qf

ext, then, by definition, there
exists a quasiconvex function f : RN×n −→ R with f ∈ F

E
qf
ext

, such that
f(η) > 0.

Now let

M = max
Qcof E

f and A = {ξ ∈ Qcof E : f(ξ) = M}.
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This set is nonempty and compact (since Qcof E is compact and f is a con-
tinuous function). Thus, considering RN×n with the lexicographic order (the
elements of RN×n being seen as vectors) one can consider the maximum element
of A, say ξ0. We have ξ0 /∈ Eqf

ext, which follows from

0 < f(η) ≤ max
Qcof E

f = M = f(ξ0).

As we will see in Step 2 this will lead to the existence of an element in A
greater than ξ0 for the lexicographic order, which is absurd.

Step 2. Quasiconvex case. Since ξ0 ∈ Qcof E \Eqf
ext, there are R ∈ O(n) and

ϕ ∈ WR such that

ξ0 + Dϕ(x) ∈ Qcof E, a.e. x ∈ RΩ, with Dϕ 6≡ 0.

We can write

Dϕ(x) ∈ {ξ1, ..., ξk} and λi = meas{x ∈ RΩ : Dϕ(x) = ξi} > 0.

Since ξ0 + ξi ∈ Qcof E, we have f(ξ0 + ξi) ≤ M . Consequently, by the quasi-
convexity of f we get

M = f(ξ0) ≤
∫

RΩ

f(ξ0 + Dϕ(x)) dx =
k∑

i=1

λif(ξ0 + ξi) ≤ M

implying f(ξ0 + ξi) = M , i = 1, ..., k that is ξ0 + ξi ∈ A. Finally, from the
fact that Dϕ 6≡ 0 and 0 =

∫
RΩ

Dϕ(x) dx =
∑k

i=1 λiξi we conclude that among
the elements ξ0 + ξi there must be at least one which is greater than ξ0 (in the
lexicographic order) which contradicts the fact that ξ0 is the maximum element
of A.

Rank one convex case. We recall that in this case the function f is a rank
one convex function. Since ξ0 ∈ Rcof E \ Erf

ext, there are η1, η2 ∈ Rcof E, with
rank(η1 − η2) ≤ 1 such that ξ0 = λη1 + (1 − λ)η2 and ξ0 6= η1, ξ0 6= η2. As in
the quasiconvex case we get f(η1) = f(η2) = M and from ξ0 = λη1 + (1− λ)η2

it follows that η1 or η2 must be greater than ξ0, which is a contradiction.
As observed by Kirchheim [8], the example of Casadio [2] (or those of

Aumann-Hart [1] and Tartar [17]) considered in the proof of Theorem 26 shows
that, in general,

QcoEq
ext 6= Qco E, Rco Er

ext 6= Rco E and Sco Es
ext 6= Sco E.

Example 33 We consider a set of diagonal matrices which we identify with
elements of R2. In particular, rank one convexity and separate convexity coin-
cide.

Let
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5,

where
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E1 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
E2 = {(x, 1) ∈ R2 : 1 ≤ x ≤ 2}, E3 = {(0, y) ∈ R2 : 1 ≤ y ≤ 2},
E4 = {(x, 0) ∈ R2 : −1 ≤ x ≤ 0}, E5 = {(1, y) ∈ R2 : −1 ≤ y ≤ 0}.

Note that E is a compact rank one convex set and

Eq
ext ⊂ Er

ext = {ξ1, ξ2, ξ3, ξ4},
where

ξ1 = (−1, 0), ξ2 = (1,−1), ξ3 = (2, 1), ξ4 = (0, 2).

Thus, since there are no rank one connections between the elements ξi,
QcoEq

ext = Eq
ext and Rco Er

ext = Er
ext. However, Eq

ext ⊂ Er
ext $ E = Rco E ⊂

QcoE.

In Dacorogna-Tanteri [6], it was also proved the existence of the Choquet
function for the polyconvex case. The result is the following.

Theorem 34 Let E ⊂ RN×n be a nonempty compact polyconvex set. Then
there exists a polyconvex function ϕ : RN×n → R ∪ {+∞} such that

Ep
ext = {x ∈ E : ϕ(x) = 0} and ϕ(x) ≤ 0 ⇔ x ∈ E.
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Birkhäuser Boston Inc., Boston, 1999.

[6] B. Dacorogna and C. Tanteri. Implicit partial differential equations and
the constraints of nonlinear elasticity. J. Math. Pures Appl., 81(4):311–341,
2002.

22



[7] B. Kirchheim. Deformations with finitely many gradients and stability of
quasiconvex hulls. C. R. Acad. Sci. Paris Sér. I Math., 332(3):289–294,
2001.

[8] B. Kirchheim. Rigidity and geometry of microstructures. Preprint MPI for
Mathematics in the Sciences, Leipzig, Lecture Note 16, 2003.
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