
USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN

SEARCH METHODS

A. L. CUSTÓDIO ∗ AND L. N. VICENTE †

Abstract. Pattern search methods can be made more efficient if past function evaluations are
appropriately reused. In this paper we will introduce a number of ways of reusing previous evaluations
of the objective function based on the computation of simplex derivatives (e.g., simplex gradients)
to improve the efficiency of a pattern search iteration.

At each iteration of a pattern search method, one can attempt to compute an accurate simplex
gradient by identifying a sampling set of previous iterates with good geometrical properties. This
simplex gradient computation can be done using only past successful iterates or by considering all
past function evaluations.

The simplex gradient can then be used, for instance, to reorder the evaluations of the objective
function associated with the positive spanning set or positive basis used in the poll step. But it can
also be used to update the mesh size parameter according to a sufficient decrease criterion. None
of these modifications demands new function evaluations. A search step can also be tried along the
negative simplex gradient at the beginning of the current pattern search iteration.

We will present these procedures in detail and show how promising they are to enhance the
practical performance of pattern search methods.

Key words. derivative free optimization, pattern search methods, simplex gradient, simplex
Hessian, multivariate polynomial interpolation, poisedness

AMS subject classifications. 65D05, 90C30, 90C56

1. Introduction. We are interested in this paper in designing efficient pattern
search methods for derivative free nonlinear optimization problems. Although most of
the strategies introduced here apply to the constrained case when constraints deriva-
tives are available, we will focus our attention on unconstrained optimization problems
of the form minx∈Rn f(x), where f is a continuous differentiable function.

The curve representing the objective function value as a function of the number
of function evaluations frequently exhibits an L-shape for pattern search runs. This
class of methods, perhaps because of their directional features, is relatively good in
improving the initial guess, quickly decreasing the initial function value. However,
these methods tend to be quite slow during the course of the iterations and especially
towards stationarity, when the frequency of unsuccessful iterations increases.

There has not been too much effort in trying to develop efficient serial implemen-
tations of pattern search methods for the minimization of general functions. Some at-
tention has been paid to parallel pattern search (see Hough, Kolda, and Torczon [11]).
Other authors have considered particular instances where the problem structure can
be exploited efficiently. Price and Toint [15] examined how to take advantage of par-
tial separability. Alberto et al [2] have shown ways of incorporating user provided
function evaluations. Abramson, Audet, and Dennis [1] looked at the case where
some incomplete form of gradient information is available.

The goal of this paper is to develop a number of strategies for improving the
efficiency of a current pattern search iteration, based on function evaluations calcu-

∗Departamento de Matemática, FCT-UNL, Quinta da Torre 2829-516 Caparica, Portugal
(alcustodio@fct.unl.pt). Support for this author was provided by Centro de Matemática e
Aplicações da Universidade Nova da Lisboa.

† Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt). Support for this author was provided by Centro de Matemática da Universidade
de Coimbra and by FCT under grant POCTI/35059/MAT/2000.

1

lated at previous iterations. We make no use or assumption about the structure of
the objective function, so that one can apply the techniques here to any functions (in
particular those resulting from running black-box codes or performing physical exper-
iments). More importantly, these strategies (i) require no extra function evaluation
(except for the one in the search step where the payoff is clear) and (ii) have no inter-
ference in the global convergence requirements typically imposed in these methods.

The paper is organized as follows. Section 2 describes the pattern search frame-
work over which we introduce the material of this paper. Section 3 summarizes geo-
metrical features of sample sets (Λ–poisedness) and simplex derivatives, like simplex
gradients and simplex Hessians.

The key ideas of this paper are reported in Section 4, where we show how to
use sample sets of points previously evaluated in pattern search to compute simplex
derivatives. The sample sets can be built by storing points where the function has been
evaluated or by storing only points which lead to a decrease. The main destination
of this computation is the efficient ordering of the vectors in the positive spanning
set or positive basis used for polling. A descent indicator direction (like a negative
simplex gradient) can be used to order the polling directions according to a simple
angle criterion.

In Section 5 we describe one way of ensuring sample sets with adequate geom-
etry at iterations succeeding unsuccessful ones. We study the pruning properties of
negative simplex gradients in Section 6. Other uses of simplex derivatives in pattern
search are suggested in Section 7, namely ways of performing a search step and of
updating the mesh size parameter according to a sufficient decrease condition.

Most of these ideas were tested in a set of problems collected from papers on
derivative free optimization. The numerical results are presented and discussed in
Section 8 and show the effectiveness of using sampling-based simplex derivatives in
pattern search. The paper is ended in Section 9 with some concluding remarks and
prospects of future work.

2. Pattern search. Pattern search methods are directional methods that make
use of a finite number of directions with appropriate descent properties. In the un-
constrained case, these directions must positively span Rn. A positive spanning set is
guaranteed to contain one positive basis, but it can contain more. A positive basis is
a positive spanning set which has no proper subset positively spanning R

n. Positive
bases have between n+1 and 2n elements. Properties and examples of positive bases
can be found in [2, 8, 13]. It is known that pattern search methods exhibit global
convergence to stationary points (in the lim inf sense) if one or more than one positive
basis are used as long as the number of such bases remains finite.

We present pattern search methods in their generalized format introduced by
Audet and Dennis [3]. The positive spanning set used by a pattern search method is
represented by D (and its cardinal by |D|). It is convenient to view D as an n × |D|
matrix whose columns store the positive generators. A positive basis in D is denoted
by B and is also viewed as a matrix (an n × |B| column submatrix of D).

At each iteration k of a pattern search method, the next iterate xk+1 is selected
among the points of a mesh Mk, defined as

Mk = {xk + αkDz : z ∈ Z},

where Z is a subset of Z|D| (containing the canonical basis of R|D|). This mesh is
centered at the current iterate xk and its discretization size is defined by the mesh size
parameter αk. Each direction d ∈ D must be of the form d = Gz̄, z̄ ∈ Zn, where G

2

is a nonsingular (generating) matrix. This property is crucial for global convergence,
ensuring that the mesh has only a finite number of points in a compact set (provided
that the mesh size parameter is also updated according to some rational requirements,
as we will point out later).

The process of finding a new iterate xk+1 ∈ Mk can be described in two phases
(the search step and the poll step). The search step is optional and unnecessary for the
convergence properties of the method. It consists of evaluating the objective function
at a finite number of points in the mesh Mk. The choice of points in Mk is totally
arbitrary as long as its number remains finite. The points could be chosen according to
specific application properties or following some heuristic algorithm. The search step
is declared successful if a new mesh point xk+1 is found such that f(xk+1) < f(xk).

The poll step is only performed if the search step has been unsuccessful. It
consists of a local search around the current iterate, exploring the points in the mesh
neighborhood defined by ∆k and by a positive basis Bk ⊂ D:

Pk = {xk + αkb : b ∈ Bk} ⊂ Mk.

We call the points xk +αkb ∈ Pk the polling points and the vectors b ∈ Bk the polling
vectors.

The purpose of the poll step is to ensure decrease of the objective function for
sufficiently small mesh size parameters. One knows that the poll step must be even-
tually successful unless the current iterate is a stationary point. In fact, given any
vector w in R

n there exists at least one vector b in Bk such that w>b > 0. If one
selects w = −∇f(xk), one is guaranteed the existence of a descent direction in Bk.

The polling vectors (or points) are ordered according to some criterion in the
poll step. In most papers and implementations this ordering is the ordering in which
they are originally stored and it is never changed during the course of the iterations.
Another ordering that we are aware of consists of bringing into the first column (in
Bk+1) the polling vector bk associated to a successful polling iterate (f(xk + αkbk) <
f(xk)). We will return to this issue later. Our presentation of pattern search considers
that the polling vectors are ordered in some given form before polling starts.

If the poll step also fails to produce a point where the objective function is lower
than f(xk) than both the poll step and the iteration are declared unsuccessful. In
this circumstance the mesh size parameter is typically decreased. On the contrary,
the mesh size parameter is typically increased if in either the search step or in the
poll step a new iterate is found yielding objective function decrease.

The class of pattern search methods used in this paper is described in Figure 2.1.
Our description follows the one given in [3] for the generalized pattern search. We
leave three procedures undetermined in the statement of the method: the search

procedure in the search step, the determination of the order of the polling vectors,
and the procedure mesh that updates the mesh size parameter. These procedures are
called within squared brackets for better visibility.

The search and order routines are not asked to meet any requirements for global
convergence purposes (rather than finiteness in the search). The mesh procedure,
however, must update the mesh size parameter as described in Figure 2.2 (this mesh

procedure is called mesh-classical to be distinguished from the one introduced in
Section 7).

The global convergence analysis for this class of pattern search methods is divided
in two parts. First it is shown that a subsequence of mesh size parameters goes to zero.
This result was first proved by Torczon in [17] and it is stated here as Proposition 1.

3

Pattern Search Method

Initialization

Choose x0 and α0 > 0. Choose all constants needed for procedures [search], [order],
and [mesh]. Set k = 0.

Search step

Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating the
function only at a finite number of points in Mk. If such a point is found then set
xk+1 = x, declare the iteration as successful, and skip the poll step.

Poll step

Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following the order
determined. If a polling point xk + αkbk is found such that f(xk + αkbk) < f(xk) then
stop polling, set xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise
declare the iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter

Call [mesh] to compute αk+1. Increment k by one and return to the search step.

Fig. 2.1. Class of pattern search methods used in this paper.

procedure mesh-classical

If the iteration was successful then maintain or expand mesh by taking αk+1 = τm
+

k αk,
with m+

k
∈ {0, 1, 2, . . . , mmax}. Otherwise contract mesh, by decreasing the mesh size

parameter αk+1 = τm
−

k αk, with m−
k
∈ {−1,−2, . . .}.

Fig. 2.2. Updating the mesh size parameter (for rational lattice requirements). The
constant τ must satisfy τ ∈ N and τ > 1 and should be initialized at iteration k = 0.

Proposition 1. Consider a sequence of iterates {xk} generated by a pattern
search method. Assume that L(x0) = {x ∈ R

n : f(x) ≤ f(x0)} is compact. Then the
sequence of the mesh size parameters satisfies lim infk→+∞ αk = 0.

The second part of the proof can be found, for instance, in Audet and Dennis [3]
for the generalized pattern search framework. We formalize it here for unconstrained
minimization in the continuous differentiable case.

Theorem 1. Consider a sequence of iterates {xk} generated by a pattern search
method. Assume that L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} is bounded and that f is
a continuously differentiable function in an open set of Rn containing L(x0). Then
there exists at least one convergent subsequence {xk}k∈K (with limit point x∗) of
unsuccessful iterates for which the corresponding subsequence of the mesh size pa-
rameters {αk}k∈K converges to zero. For this subsequence limk∈K ∇f(xk) = 0, i.e.,
∇f(x∗) = 0.

Pattern search and direct search methods are surveyed in the excellent SIAM Re-
view paper of Kolda, Lewis, and Torczon [13]. Although we only focus on uncon-
strained optimization in this paper, we point out that a number of papers have dealt
recently with pattern search methods for linearly and nonlinearly constrained opti-
mization (see [4], [13], [14], [16] and references therein).

4

3. Simplex derivatives. Simplex derivatives of order one are known as simplex
gradients. Simplex gradients are used in the implicit filtering method of Bortz and
Kelley [5], where the major step of each iteration is a line search along the negative
simplex gradient. A simplex gradient is calculated by first computing or selecting a set
of sample points. The geometrical properties of the sample set determine the quality
of the corresponding simplex gradient as an approximation to the exact gradient of
the objective function. In this paper, we use (determined) simplex gradients as well
as underdetermined and overdetermined simplex gradients.

A simplex gradient in the determined case is computed by first sampling the ob-
jective function at n+1 points. The convex hull of a set of n+1 points {y0, y1, . . . , yn}
is called a simplex. The n + 1 points are called vertices. The simplex is said to be
nonsingular if the matrix S = [y1 − y0 · · · yn − y0] is nonsingular. Given a non-
singular simplex of vertices y0, y1, . . . , yn, the simplex gradient at y0 is defined as
∇Sf(y0) = S−>δ(f ; S) with δ(f ; S) = [f(y1) − f(y0) · · · f(yn) − f(y0)]>.

The simplex gradient is intimately related to linear multivariate polynomial inter-
polation. In fact, it is easy to see that the linear model m(y) = f(y0)+∇Sf(y0)>(y−
y0) centered at y0 interpolates f at the points y1, . . . , yn.

In practical instances one might have less then or more then n + 1 points. We
will see instances in this paper where the number of points available for a simplex
gradient calculation is different from n+1. The definition given in the next paragraph
describes the extension of simplex gradients to underdetermined and overdetermined
cases.

A sample set is said to be poised for the simplex gradient calculation if S is full
rank, i.e., if rank(S) = min{n, q}. Given the sample set {y0, y1, . . . , yq}, the simplex
gradient ∇Sf(y0) of f at y0 can be defined as the “solution” of the system

S>g = δ(f ; S),

where S = [y1 − y0 · · · yq − y0] and δ(f ; S) = [f(y1) − f(y0) · · · f(yq) − f(y0)]>.
This system is solved in the least-squares sense if q > n. A minimum norm solution
is computed if q < n. This definition includes the determined case (q = n) as a
particular case.

The formulae for the under and over determined simplex gradients can be ex-
pressed using the singular value decomposition of the matrix S>. However, to deal
with the geometrical properties of the poised sample set and to better express the
error bound for the corresponding gradient approximation, it is appropriated to take
the SVD of a scaled form of S>. For this purpose, let

∆ = max
1≤i≤q

‖yi − y0‖

be the radius of the smallest enclosing ball of {y0, y1, . . . , yq} centered at y0. Now
we write the SVD of the scaled matrix S>/∆ = UΣV >, which corresponds to a
sample set in a ball of radius one centered around y0. The underdetermined and
overdetermined simplex gradients are both given by ∇Sf(y0) = V Σ−1U>δ(f ; S)/∆.

The accuracy of simplex gradients is summarized in the following theorem. The
proof of the determined case (q = n) is given, for instance, in Kelley [12]. The
extension of the analysis to the nondetermined cases is developed in Conn, Scheinberg,
and Vicente [6].

Theorem 2. Let {y0, y1, . . . , yq} be a poised sample set for a simplex gradient
calculation in Rn. Consider the enclosing (closed) ball B(y0; ∆) of this sample set,

5

centered at y0, where ∆ = max1≤i≤q ‖yi − y0‖. Let S = [y1 − y0 · · · yq − y0] and let
UΣV > be the SVD of S>/∆.

Assume that f is continuously differentiable in an open domain Ω containing
B(y0; ∆) and that ∇f is Lipschitz continuous in Ω with constant γ > 0.

Then the error of the simplex gradient at y0, as an approximation to ∇f(y0),
satisfies

‖V >[∇f(y0) −∇Sf(y0)]‖ ≤
(

q
1
2
γ

2
‖Σ−1‖

)

∆,

where V = I if q ≥ n.

Notice that the error difference is projected over the null space of S>/∆. Un-
less we have enough points (q + 1 ≥ n + 1), there is no guarantee of accuracy for
the simplex gradient. Despite this observation, underdetermined simplex gradients
contain relevant gradient information for q close to n and might be of some value in
computations where the number of sample points is relatively low.

The quality of the error bound of Theorem 2 depends on the size of the constant√
qγ‖Σ−1‖/2 which multiplies ∆. This constant, in turn, depends essentially on the

Lipschitz constant γ (which is unknown) and on ‖Σ−1‖ (which is associated to the
sample set).

Conn, Scheinberg, and Vicente [7] introduced an algorithmic framework for build-
ing and maintaining sample sets with good geometry. They have suggested the notion
of a Λ–poised sample set, where Λ is a positive constant. The notion of Λ–poisedness
is closely related to Lagrange interpolation in the determined case. If a sample set
{y0, y1, . . . , yq} is Λ–poised in the sense of [7] then one can prove that ‖Σ−1‖ is
bounded by a multiple of Λ. For the purpose of this paper, it is enough to consider
‖Σ−1‖ as a measure of the well-poisedness (quality of the geometry) of our sample
sets. We will therefore say that a poised sample set is Λ–poised if ‖Σ−1‖ ≤ Λ, for
some positive constant Λ.

We do not need algorithms to build or maintain Λ–poised sets. Rather, we are
given a sample set at each iteration of a pattern search method, and our goal is just
to identify a poised subset of it that is Λ–poised. The constant Λ > 0 is chosen at
iteration k = 0.

The notion of simplex gradient can be extended to higher order derivatives [6].
One can consider the computation of a simplex Hessian, by extending the linear system
S>g = δ(f ; S) to

(yi − y0)>g +
1

2
(yi − y0)>H(yi − y0) = f(yi) − f(y0), i = 1, . . . , p.

The number of points in the sample set Y = {y0, y1, . . . , yp} must be equal to p+1 =
(n + 1)(n + 2)/2 if one wants to compute a full symmetric simplex Hessian. Similarly
to the linear case, the simplex gradient g = ∇Sf(y0) and the simplex Hessian H =
∇2

Sf(y0) computed from the above system with p+1 = (n+1)(n+2)/2 points coincide
with the coefficients of the quadratic multivariate polynomial interpolation model
associate with Y . The notions of poisedness and Λ–poisedness and the derivation
of the error bounds for simplex Hessians in determined and nondetermined cases is
reported in [6].

In our application to pattern search we are interested in using sample sets with
a relatively low number of points. One alternative is to consider less points than
coefficients and to compute solutions in the minimum norm sense. Another process

6

is to choose to approximate only some portions of the simplex Hessian. For instance,
if one is given 2n+1 points one can compute the n components of a simplex gradient
and an approximation to the n diagonal terms of a simplex Hessian. The system to
be solved in this case is of the form

[

y1 − y0 · · · y2n − y0

(1/2)(y1 − y0).̂ 2 · · · (1/2)(y2n − y0).̂ 2

]> [

g
diag(H)

]

= δ(f ; S),

where δ(f ; S) = [f(y1) − f(y0) · · · f(y2n) − f(y0)]> and the notation .̂ 2 stands for
component-wise squaring. Once again, if the number of points is lower than 2n + 1 a
minimum norm solution can be computed.

4. Ordering the polling in pattern search. A pattern search method gen-
erates a number of function evaluations at each iteration. One can store some of
these points and corresponding objective function values during the course of the it-
erations. Thus, at the beginning of each iteration of a pattern search method, one
can try to identify a subset of these points with some desirable geometrical properties
(Λ–poisedness in our context).

If we are successful in such an attempt, we compute some form of simplex deriva-
tives. For instance, we can calculate a simplex gradient. Using these simplex deriva-
tives, we can compute a direction of potential descent or of potential steepest descent
(a negative simplex gradient for example). We call such direction a descent indicator.
It cost us no additional function evaluation to compute a descent indicator. There
might be iterations (especially at the beginning) where we fail to compute a descent
indicator but such failures cost no extra function evaluations.

We adapt the description of pattern search to follow the approach described above.
The class of pattern search methods remains essentially the same and it is spelled
out in Figure 4.1. A new procedure named store is called every time a new function
evaluation is made. The algorithm maintains a list of points Xk of maximum size pmax.
The points are added (or not) to this list by store.

A new step is included at the beginning of each iteration to take care of the simplex
derivatives calculation. In this step, the algorithm attempts first to extract from Xk a
sample set Yk with appropriate size and desirable geometrical properties. The points
in Yk must be within a distance of ∆k to the current iterate xk. The size of the radius
∆k is chosen such that B(xk ; ∆k) contains all the points in Pk = {xk +αkb : b ∈ Bk},
where Bk is the polling positive basis to be chosen in the poll step. In other words,
we choose

∆k = σ αk max
b∈Bk

‖b‖,

where σ ≥ 1 is a constant fixed a priori for all iterations. All the modifications to
the algorithm reported in Figure 2.1 are marked in italic in Figure 4.1 for better
identification. The fact that Bk has not be chosen yet is not restrictive. We could
have set ∆k = σ αk maxb∈Bk−1

‖b‖ and nothing would have changed in this paper. We
keep Bk instead of Bk−1 mostly because we want to highlight the fact that the sample
set Yk is part of a ball of the same radius (when σ = 1) of the smallest enclosing ball
containing the polling set Pk.

It is possible to implement different criteria for deciding whether to store or not
a point where the function has been evaluated. In this paper, we consider the two
following simple ways of storing points:

7

Pattern Search Method — Using Sampling and Simplex Derivatives

Initialization

Choose x0 and α0 > 0. Choose all constants needed for procedures [search], [order],
and [mesh]. Set k = 0. Set X0 = [x0] to initialize the list of points maintained by
[store]. Choose a maximum pmax number of points that can be stored. Choose also
the minimum smin and the maximum smax number of points involved in any simplex
derivatives calculation. Choose Λ > 0 and σ > 0.

Identifying a Λ–poised sample set and computing simplex derivatives

Skip this step if there are not enough points, i.e., if |Xk| < smin. Set
∆k = σ αk maxb∈Bk

‖b‖. Try to identify a set of points Yk in Xk ∩ B(xk; ∆k),
with as many points as possible (up to smax) and such that Yk is Λ–poised and includes
the current iterate xk. If |Yk| ≥ smin compute some form of simplex derivatives based
on Yk (and from that compute a descent indicator dk).

Search step

Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating
the function only at a finite number of points in Mk and calling [store] each time a
point is evaluated. If such a point is found then set xk+1 = x, declare the iteration as
successful, and skip the poll step.

Poll step

Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following
the order determined and calling [store] each time a point is evaluated. If a polling
point xk + αkbk is found such that f(xk + αkbk) < f(xk) then stop polling, set
xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise declare the
iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter

Call [mesh] to compute αk+1. Increment k by one and return to the simplex derivatives
step.

Fig. 4.1. Class of pattern search methods used in this paper, adapted now for identifying
Λ–poised sample sets and computing simplex derivatives.

• store-successful: in this case store keeps only the successful iterates xk+1

(for which f(xk+1) < f(xk)). The points in the list Xk are therefore ordered
by decreasing objective function values.

• store-all: corresponds to the case where every point (for which the objective
function is computed) is stored, independently of increasing or decreasing
f(xk).

In both cases, the incoming points are added to Xk at the end of the list. When (and
if) Xk has reached its predetermined size pmax, we must remove a point first before
adding a new one. We assume that points are removed from the beginning of the list.
Note that both variants store successful iterates xk+1 (for which f(xk+1) < f(xk)). It
is thus obvious that the current iterate xk is always in Xk, when store-successful

is chosen. However, if one chooses store-all, and without any further provision, the
current iterate xk could had been removed from the list if a number of unsuccessful
iterates would occurred consecutively. We must therefore assume that the current

8

procedure order

Compute cos(dk, b) for all b ∈ Bk. Order the columns in Bk according to decreasing
values of the corresponding cosines.

Fig. 4.2. Ordering the polling vectors according to their angle distance to the descent
indicator.

iterate is never removed from the list in the store-all variant.
Having a descent indicator dk at hands, we can order the polling vectors according

to the increasing amplitudes of the angles between dk and the polling vectors. So,
the first polling point to be evaluated is the one corresponding to the polling vector
that lead to the angle of smallest amplitude. We describe such procedure order in
Figure 4.2 and illustrate it in Figure 4.3.

The descent indicator could be a negative simplex gradient dk = −∇Sk
f(xk),

where Sk = [y1
k−xk · · · yqk

k −xk] is formed from the sample set Yk = [y0
k y1

k · · · yqk

k],
with qk + 1 = |Yk| and y0

k = xk. This way of calculating the simplex derivatives and
the descent indicator will be designated by sgradient.

Another possibility is to compute dk = −H−1
k gk, where gk is a simplex gradient

and Hk approximates a simplex Hessian (in this paper we will test numerically the
diagonal simplex Hessians described at the end of Section 3). This way of calculating
the simplex derivatives and the descent indicator will be designated by shessian.

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

d-� 6

?
xk

�
�
�
���

dk

1

4

23

Fig. 4.3. Ordering the polling vectors using a descent indicator. The positive basis considered
is Bk = [−I I].

5. Geometry of the sample sets. If the points where the objective function is
evaluated are added to the list Xk according to the store-all criterion, it is possible
to guarantee the quality of the sample sets Yk used to compute the simplex derivatives
after the occurrence of unsuccessful iterations.

Let us focus on the case where our goal is to compute simplex gradients. To
simplify the presentation we assume that there exists only one positive basis B in
the positive spanning set D. Let us assume too that smin has been chosen so that
smin ≥ |B|, in other words, that we require at least |B| points in Xk with appropriate
geometry to compute a simplex gradient.

If the iteration k − 1 was unsuccessful then there were at least |B| points added
to the list (the polling points xk−1 + αk−1b, for all b ∈ B). Such points are part of
Xk as well as the current iterate xk = xk−1.

As we show now, the sample set Yk ⊂ Xk formed by xk and by these |B| points
is poised for a simplex gradient calculation. Let us write Yk = [y0

k y1
k · · · yqk

k] with
qk + 1 = |Yk| = |B| + 1 and y0

k = xk. Then

Sk = [y1
k − xk · · · yqk

k − xk] = [αk−1b1 · · · αk−1b|B|] = αk−1B.

9

The matrix B has rank n since any positive spanning set or positive basis linearly
spans Rn. If we choose σ = 2 in the formula for ∆k, we get

1

∆k

Sk =
αk−1

2 αk maxb∈B ‖b‖B =
1

maxb∈B ‖b‖B.

Thus, the geometry constant associated with this sample set Yk is constant and given
by

‖Σ−1‖ with
1

maxb∈B ‖b‖B = UΣV >.

If we choose the poisedness constant such that Λ ≥ ‖Σ−1‖ then we are guaranteed to
identify a Λ-poised sample set after each unsuccessful iteration.

The sample set Yk ⊂ Xk formed by xk and by only |B| − 1 of the points xk−1 +
αk−1b, where b ∈ B, is also poised for a simplex gradient calculation. In this case
qk + 1 = |Yk| = |B| and

Sk = αk−1B|B|−1,

where B|B|−1 is some column submatrix of B with |B| − 1 columns. Since B is a
positive spanning set then B|B|−1 linearly spans Rn (see [8, Theorem 3.7]). It results
that the matrix B|B|−1 has rank n. We take σ = 2 as before in the formula for ∆k.
The difference now is that we must take into consideration all submatrices B|B|−1 of
B. Thus, if we choose the poisedness constant such that

Λ ≥ max

{

‖Σ−1‖ :
1

maxb∈B ‖b‖B|B|−1 = UΣV >, ∀ B|B|−1 ⊂ B

}

,

we are also guaranteed to identify a Λ-poised sample set after each unsuccessful iter-
ation.

6. Pruning the polling directions. Abramson, Audet, and Dennis [1] have
shown for a special choice of positive spanning set D that rough approximations to
the gradient of the objective function can reduce the polling step to a single function
evaluation. The gradient approximations considered were ε–approximations to the
large components of the gradient vector.

Let g be a nonzero vector in Rn and ε ≥ 0. Consider

Jε(g) = {i ∈ {1, . . . , n} : |gi| + ε ≥ ‖g‖∞} ,

and for every i ∈ {1, . . . , n} let

dε(g)i =

{

sign(gi) if i ∈ Jε(g),
0 otherwise.

The vector g is said to be an ε–approximation to the large components of a nonzero
vector v ∈ Rn if and only if i ∈ Jε(g) whenever |vi| = ‖v‖∞ and sign(gi) = sign(vi)
for every i ∈ J ε(g).

The question that arises now is whether a descent indicator dk, and in particular a
negative simplex gradient −∇Sk

f(xk), is an ε–approximation to the large components
of −∇f(xk), for some ε > 0. We show in the next theorem that the answer is
affirmative provided that the mesh size parameter αk is sufficiently small, an issue we

10

will return at the end of this section. We will use the notation previously introduced in
this paper. We consider a sample set Yk and the corresponding matrix Sk. The set Yk

is included in the ball B(xk; ∆k) centered at xk with radius ∆k = σ αk maxb∈Bk
‖b‖,

where Bk is the positive basis used for polling.

Theorem 3. Let Yk be a Λ–poised sample set (for simplex gradients) computed
at iteration k of a pattern search method.

Assume that f is continuously differentiable in an open domain Ω containing
B(xk; ∆k) and that ∇f is Lipschitz continuous in Ω with constant γ > 0.

Then, if

αk ≤ ‖∇f(xk)‖∞√
qγΛσ maxb∈Bk

‖b‖ ,(6.1)

the negative simplex gradient −∇Sf(xk) is an εk–approximation to the large compo-
nents of −∇f(xk), where

εk =

(

q
1
2 γΛσ max

b∈Bk

‖b‖
)

αk.

Proof. For i in the index set

Ik = {i ∈ {1, . . . , n} : |∇f(xk)i| = ‖∇f(xk)‖∞},

we get from Theorem 2 that

‖∇Sk
f(xk)‖∞ ≤ ‖∇f(xk) −∇Sk

f(xk)‖∞ + |∇f(xk)i|
≤ 2‖∇f(xk) −∇Sk

f(xk)‖ + |∇Sk
f(xk)i|

≤ q
1
2 γΛ∆k + |∇Sk

f(xk)i|
= εk + |∇Sk

f(xk)i|.

From Theorem 2 we also know that

−∇Sk
f(xk)i = −∇f(xk)i + ξk,i, where |ξk,i| ≤ q

1
2
γ

2
Λ∆k.

If −∇f(xk)i and ξk,i are equally signed so are −∇f(xk)i and −∇Sk
f(xk)i. Otherwise,

they are equally signed if

|ξk,i| ≤ q
1
2
γ

2
Λ∆k ≤ ‖∇f(xk)‖∞ =

1

2
|∇f(xk)i|.

The proof is concluded using the expression for ∆k and the bound for αk given in the
statement of the theorem.

Theorem 4 in Abramson, Dennis, and Audet [1] shows that an ε–approximation
prunes the set of the polling directions to a singleton, when considering

D = {−1, 0, 1}n

and the positive spanning set

Dk = {dε(gk)} ∪ A(−∇f(xk)),

11

where gk is an ε–approximation to −∇f(xk) and

A(−∇f(xk)) = {d ∈ D : −∇f(xk)>d < 0}

represents the set of the ascents directions in D. The pruning is to the singleton
{dε(gk)}, meaning that dε(gk) is the only vector d in Dk such that −∇f(xk)>d ≥ 0.

So, under the hypotheses of Theorem 3, the negative simplex gradient −∇Sk
f(xk)

prunes the positive spanning set of Rn,

Dk = {dεk(−∇Sk
f(xk))} ∪ A(−∇f(xk)),

to a singleton, namely {dεk(−∇Sk
f(xk))}, where εk is given in Theorem 3.

Now we analyze in more detail the role of condition (6.1). There is no guarantee
that this condition on αk can be satisfied assymptoticaly. Condition (6.1) gives us
only an indication of the pruning effect of the negative simplex gradient, and it is
more likely to be satisfied at points where the gradient is relatively large. What is
known is actually a condition that shows that αk dominates ‖∇f(xk)‖ at unsuccessful
iterations k:

‖∇f(xk)‖ ≤
(

γκ(Bk)−1 max
b∈Bk

‖b‖
)

αk,

where

κ(Bk) = min
d∈Rn

max
b∈Bk

d>b

‖d‖‖b‖ > 0

is the cosine measure of the positive basis Bk (see [13, Theorem 3.3]). Since only a
finite number of positive bases is used, κ(Bk)−1 is uniformly bounded. So, one can
be assured that at unsuccessful iterations the norm of the gradient is bounded by a
constant times αk.

However, it has been observed in [9] for some problems that αk goes to zero
typically faster than ‖∇f(xk)‖. Our numerical experience with pattern search has
also pointed us in this direction. It is harder however to sharply verify condition (6.1)
since it depends on the Lipschitz constant of ∇f . A detailed numerical study of these
asymptotic behaviors is out of the scope of this paper.

7. Other uses for simplex derivatives. Having computed before some form
of simplex derivatives, one can use the available information for purposes rather then
just ordering the polling vectors. In this section, we suggest two other uses for simplex
derivatives in pattern search: the computation of a search step and the update of the
mesh size parameter.

There are many possibilities for a search step. One possibility is to first form a
surrogate model mk(y) based on some form of simplex derivatives computed using
the sample set Yk, and then to minimize this model in B(xk; ∆k). At the end we
would project the minimizer onto the mesh Mk. If the model mk(y) is linear and
purely based on the descent indicator, i.e., if mk(y) = f(xk) − d>k (y − xk) then this
procedure is described in Figure 7.1. A natural choice for dk is −∇Sk

f(xk) but other
descent indicators dk could be used. As we said before, we could set dk = −H−1

k gk,
where gk is a simplex gradient and Hk approximates a simplex Hessian.

The model mk(y) could be used for imposing a sufficient decrease condition on the
update of the mesh size parameter αk. We describe one such procedure in Figure 7.2,

12

procedure search

Compute

x = proj

„

xk +
∆k

‖dk‖
dk

«

with ∆k = σαk max
b∈Bk

‖b‖,

where proj(·) represents the projection operator onto the mesh Mk.

Fig. 7.1. A search step based on the descent indicator.

procedure mesh

If the iteration was successful then compute

ρk =
f(xk) − f(xk+1)

mk(xk) − mk(xk+1)
.

If ρk > γ2 then αk+1 = τm
+

k αk,
If γ1 < ρk ≤ γ2 then αk+1 = αk,

If ρk ≤ γ1 then αk+1 = τm
−

k αk.

Otherwise contract mesh, by decreasing the mesh size parameter αk+1 = τm
−

k αk.
The exponents satisfy m−

k
∈ {−1,−2, . . .} and m+

k
∈ {0, 1, 2, . . .}.

Fig. 7.2. Updating the mesh size parameter (using sufficient decrease but meeting rational
lattice requirements). The constants τ , γ1, and γ2 must satisfy τ ∈ N, τ > 1, and γ2 > γ1 > 0
and should be initialized at iteration k = 0.

where the sufficient decrease is only applied to successful iterations. For a linear model
computed using a simplex gradient, we get

ρk =
f(xk) − f(xk+1)

mk(xk) − mk(xk+1)
=

f(xk) − f(xk+1)

−∇Sk
f(xk)>(xk+1 − xk)

.

If xk+1 is computed in the poll step then xk+1 − xk = αkbk. Since the expansion
and contraction parameters are restricted to integer powers of τ and the contraction
rules match what was given in the mesh procedure of Figure 2.2, this modification
has no influence on the global convergence properties of the underlying pattern search
method.

8. Implementation and numerical results. We have implemented a basic
pattern search algorithm of the form given in Figure 2.1, without any search step and
using the classical update of the mesh size parameter reported in Figure 2.2. We have
tried positive spanning sets with only one positive basis, setting D = B. The order of
the evaluations in the poll step of the basic implementation is the so-called consecutive
poll ordering, where the columns in B are never reordered during the course of the
iterations, staying always ordered as originally. We have tested two positive bases:
[−e I] and [−I I]. The first one, with n + 1 elements, was according to our tests
one of the most efficient in terms of function evaluations. The second one, with 2n
elements, corresponds to coordinate search and provides more accurate final iterates.

As we have mentioned in Section 2, another ordering for polling vectors consists
of bringing into the first column (in Bk+1) the polling vector bk associated to a
successful polling iterate (f(xk + αkbk) < f(xk)). This ordering procedure has been
called dynamic polling (see [4]). Our numerical tests have shown that dynamic polling
is worse that consecutive polling for ordering the polling vectors. On our test set,

13

dynamic polling took more 1.75% iterations when using B = [−e I] and more 0.48%
iterations when using B = [−I I], compared to consecutive polling. (The quality of
the final iterates in terms of the optimal objective gap was similar.) As a result, we
decided to use consecutive polling in our basic version of pattern search.

We have tested a number of pattern search methods of the form described in
Figure 4.1. The strategies order (Figure 4.2), search (Figure 7.1), and mesh (Fig-
ure 7.2) were run in four different modes according to the way of storing points
(store-successful or store-all) and to the way of computing simplex derivatives
and descent indicators (sgradient or shessian). Each of these 28 combined strate-
gies was compared against the basic pattern search method (consecutive polling

& mesh-classical), for the bases [−e I] and [−I I].

The algorithms were coded in Matlab and tested on a set of 27 problems of the
CUTEr collection [10], with dimensions mostly equal to 10 and 20 (see Table 8.1). The
starting points used were those reported in CUTEr. The stopping criterion consisted
of the mesh size parameter becoming lower than 10−5 or a maximum number of 10000
iterations being reached.

problem dimension

arwhead 10, 20
bdqrtic 10, 20
bdvalue 10, 20
biggs6 6
brownal 10, 20
broydn3d 10, 20
integreq 10, 20
penalty1 10, 20
penalty2 10, 20
powellsg 12, 20
srosenbr 10, 20
tridia 10, 20
vardim 10, 20
woods 10, 20

Table 8.1

Problem set used for numerical tests.

The simplex derivatives were computed based on Λ-poised sets Yk, where Λ = 100
and σ = 2. The values for the parameters smin, smax, and pmax are given in Tables 8.2
and 8.3. We started all runs with the mesh size parameter α0 = 1. The contraction

factor was set to τm
−

k = 0.5 and the expansion factor to τm
+

k = 2. In the mesh

strategy of Figure 7.2, we set γ1 and γ2 to 0.25 and 0.75, respectively.

size store-successful store-all

pmax 2(n + 1) 4(n + 1)
smin (n + 1)/2 n + 1
smax n + 1 n + 1

Table 8.2

Sizes of the list Xk and the set Yk for sgradient.

14

size store-successful store-all

pmax 4(n + 1) 8(n + 1)
smin n 2n + 1
smax 2n + 1 2n + 1

Table 8.3

Sizes of the list Xk and the set Yk for shessian.

The numerical results are reported in Tables 8.4 and 8.5 for the basis [−e I] and
in Tables 8.6 and 8.7 for the basis [−I I]. Our main conclusions are summarized
below.

1. 47 out of the 56 versions tried lead to an average decrease in the number of
iterations. In 9 of these 47 versions (marked with a ∗ in the tables) the algo-
rithm decreased (or maintained) the number of iterations for all the problems
in the test set.

2. In terms of the quality of the answer obtained, we observe that the sim-
plex derivatives versions performed generally better than the consecutive

polling & mesh-classical version to obtain final iterates distancing less
than 10−4 to the optimal objective value. In the n + 1 basis [−e I], the
simplex derivatives versions did not obtain so high accurate answers (opti-
mal gap under 10−7), although we see an improvement from sgradient to
shessian. In the 2n basis [−I I], the situation is different, where some
increase in function evaluations gave rise to higher accurate final iterates.

3. The effect of the poll ordering is more visible using the basis [−I I] due to
the larger number of polling vectors. In this case, the decrease in function
evaluations reached 12−13% in the sgradient case without any deterioration
of the quality of the final iterate.

4. The performance of the update of the mesh size parameter using sufficient
decrease (mesh) was a surprise to us. Even when applied individually lead
to a significant decrease in function evaluations for medium quality answers.
The best strategies over all included mesh.

5. The search strategy made a clear positive impact when using the smaller
basis [−e I], both in terms of cost and of quality. This effect was lost in the
larger basis [−I I], where the fine quality of the final iterates was already
quite good without any search step.

The most promissing strategy seems to be the one that combines order, mesh,
and search in the variants store-all and sgradient. The strategy mesh and the
strategy mesh and order also provided good overall results, especially when tried in
the sgradient mode.

We picked some of these problems and ran several versions for n = 40 and n = 80.
Our conclusions remain essentially the same. The ratios of improvement in the number
of function evaluations and the quality of the final iterates do not change significantly
with the increase of the dimension of the problem, but rather with the increase of the
number of polling vectors in the positive spanning set (as we have seen from [−e I]
to [−I I]).

9. Conclusions. We have proposed the use of simplex derivatives in pattern
search methods in three ways: ordering the polling vectors, updating the mesh size

15

number of optimal gap

strategy evaluations 10−7 10−4 10−1

consecutive polling & mesh-classical — 29.63% 44.44% 66.67%

order (store-successful) -3.22% 29.63% 44.44% 66.67%

mesh (store-successful) -35.50% 3.70% 40.74% 66.67%

order,mesh (store-successful) -49.79%* 7.41% 44.44% 66.67%

search (store-successful) -22.30% 33.33% 51.85% 74.07%

order,search (store-successful) -24.07% 33.33% 48.15% 70.37%

mesh,search (store-successful) -45.13% 14.81% 48.15% 74.07%

order,mesh,search (store-successful) -50.40%* 22.22% 48.15% 70.37%

order (store-all) 5.48% 29.63% 44.44% 66.67%

mesh (store-all) -49.21%* 22.22% 48.15% 66.67%

order,mesh (store-all) -55.43% 18.52% 48.15% 66.67%

search (store-all) -5.58% 33.33% 48.15% 74.07%

order,search (store-all) -24.32% 33.33% 55.56% 77.78%

mesh,search (store-all) -64.49% 18.52% 48.15% 77.78%

order,mesh,search (store-all) -67.94%* 18.52% 48.15% 77.78%

Table 8.4

Variation in the number of function evaluations by comparison to the basic pattern search
method (second column) and cumulative optimal gaps for final iterates (third to fifth columns).
Case sgradient and B = [−e I].

number of optimal gap

strategy evaluations 10−7 10−4 10−1

consecutive polling & mesh-classical — 29.63% 44.44% 66.67%

order (store-successful) -1.27% 29.63% 44.44% 66.67%

mesh (store-successful) -25.27%* 14.81% 44.44% 66.67%

order,mesh (store-successful) -32.25%* 11.11% 44.44% 66.67%

search (store-successful) -15.99% 33.33% 48.15% 66.67%

order,search (store-successful) -18.10% 33.33% 48.15% 66.67%

mesh,search (store-successful) -30.10%* 25.93% 48.15% 70.37%

order,mesh,search (store-successful) -32.32% 25.93% 48.15% 66.67%

order (store-all) 7.33% 29.63% 44.44% 66.67%

mesh (store-all) -15.29% 22.22% 44.44% 66.67%

order,mesh (store-all) -20.50% 18.52% 44.44% 66.67%

search (store-all) -1.91% 33.33% 44.44% 66.67%

order,search (store-all) 4.77% 29.63% 44.44% 66.67%

mesh,search (store-all) -3.61% 22.22% 48.15% 70.37%

order,mesh,search (store-all) -13.61% 18.52% 44.44% 66.67%

Table 8.5

Variation in the number of function evaluations by comparison to the basic pattern search
method (second column) and cumulative optimal gaps for final iterates (third to fifth columns).
Case shessian and B = [−e I].

parameter, and performing a search step. For the calculation of the simplex deriva-
tives, we considered sample sets constructed in two variants: storing only all recent
successful iterates, or storing all recent points where the objective function was eval-
uated. Finally, we studied two types of simplex derivatives: simplex gradients and

16

number of optimal gap

strategy evaluations 10−7 10−4 10−1

consecutive polling & mesh-classical — 44.44% 62.96% 81.48%

order (store-successful) -12.20% 44.44% 66.67% 77.78%

mesh (store-successful) -4.53%* 44.44% 70.37% 81.48%

order,mesh (store-successful) -15.20% 44.44% 70.37% 77.78%

search (store-successful) 12.67% 37.04% 66.67% 81.48%

order,search (store-successful) -13.67% 44.44% 70.37% 81.48%

mesh,search (store-successful) 16.93% 37.04% 66.67% 81.48%

order,mesh,search (store-successful) -5.98% 44.44% 70.37% 77.78%

order (store-all) -13.10% 44.44% 66.67% 77.78%

mesh (store-all) -28.28% 29.63% 70.37% 81.48%

order,mesh (store-all) -48.45% 29.63% 66.67% 88.89%

search (store-all) 22.36% 37.04% 70.37% 81.48%

order,search (store-all) 26.20% 33.33% 70.37% 85.19%

mesh,search (store-all) -18.85% 33.33% 70.37% 85.19%

order,mesh,search (store-all) -34.25% 33.33% 70.37% 88.89%

Table 8.6

Variation in the number of function evaluations by comparison to the basic pattern search
method (second column) and cumulative optimal gaps for final iterates (third to fifth columns).
Case sgradient and B = [−I I].

number of optimal gap

strategy evaluations 10
−7

10
−4

10
−1

consecutive polling & mesh-classical — 44.44% 62.96% 81.48%

order (store-successful) -8.78% 44.44% 66.67% 81.48%

mesh (store-successful) -1.11% 44.44% 70.37% 81.48%

order,mesh (store-successful) -10.98% 44.44% 66.67% 81.48%

search (store-successful) -3.64% 44.44% 66.67% 81.48%

order,search (store-successful) -9.96% 44.44% 66.67% 77.78%

mesh,search (store-successful) -5.46% 44.44% 70.37% 81.48%

order,mesh,search (store-successful) -11.29% 44.44% 66.67% 77.78%

order (store-all) -10.48% 44.44% 66.67% 77.78%

mesh (store-all) -16.28% 33.33% 70.37% 77.78%

order,mesh (store-all) -44.00%* 37.04% 66.67% 85.19%

search (store-all) 45.09% 37.04% 66.67% 81.48%

order,search (store-all) 19.48% 40.74% 66.67% 88.89%

mesh,search (store-all) -7.89% 37.04% 70.37% 81.48%

order,mesh,search (store-all) -30.43% 33.33% 66.67% 88.89%

Table 8.7

Variation in the number of function evaluations by comparison to the basic pattern search
method (second column) and cumulative optimal gaps for final iterates (third to fifth columns).
Case shessian and B = [−I I].

diagonal simplex Hessians. It is important to remark that the incorporation of these
strategies in pattern search is done at no further expense in function evaluations
(except when a search step is tried).

The introduction of simplex derivatives in pattern search methods can lead to an

17

improvement in the quality of the final iterates and, more importantly, a significant
reduction in the number of function evaluations.

The impact of the ordering of the polling vectors according to a descent indicator
is more visible, as expected, when the number of polling vectors is higher.

As a descent indicator, we recommend the use of the simplex gradient, in detri-
ment of the simplex Newton direction, especially when used in the store-all variant.
In fact, most of the iterations of a pattern search run are performed for small values
of the mesh size parameter. In such cases, the negative gradient is better than the
Newton direction as an indicator for descent, and the same argument applies to their
simplex counterparts.

A mesh update based on a sufficient decrease condition could be considered if the
main goal is the decrease of the number of functions evaluations, as long as medium
quality final iterates are acceptable. When the number of polling vectors is small, the
use of a search step is a suitable strategy, both in terms of the quality of the final
iterate and in terms of the number of function evaluations.

Although we focused on unconstrained optimization, most of the extension of
the use of these strategies to constrained optimization when constraint derivatives
are known is straightforward. Whatever the technique used to compute positive gen-
erators to the tangent cones is chosen, one can always order them according to a
descent indicator for the objective function (a simplex gradient or an approximated
simplex Newton step). The update of the mesh size parameter at successful iterates
is also possible using simplex derivatives. The search step, however, might have to
be redefined to accommodate the presence of the constraints. In the case where the
constraint derivatives are absent our strategies could be of use, for instance, in the
mesh adaptive direct search methods developed recently in [4].

REFERENCES

[1] M. A. Abramson, C. Audet, and J. E. Dennis, Generalized pattern searches with derivative
information, Math. Program., 100 (2004), pp. 3–25.

[2] P. Alberto, F. Nogueira, H. Rocha, and L. N. Vicente, Pattern search methods for user-
provided points: Application to molecular geometry problems, SIAM J. Optim., 14 (2004),
pp. 1216–1236.

[3] C. Audet and J. E. Dennis, Analysis of generalized pattern searches, SIAM J. Optim., 13
(2003), pp. 889–903.

[4] , Mesh adaptive direct search algorithms for constrained optimization, Tech. Report
CAAM TR04-02, Dept. of Computational and Applied Mathematics, Rice University, 2004.

[5] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy optimization problems, in
Computational Methods in Optimal Design and Control, Progress in Systems and Control
Theory, edited by J. T. Borggaard, J. Burns, E. Cliff, and S. Schreck, vol. 24, Birkhäuser,
Boston, 1998, pp. 77–90.

[6] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of sample sets in derivative free
optimization. Part II: under and over determined models. In preparation.

[7] , Geometry of sample sets in derivative free optimization. Part I: polynomial inter-
polation, Tech. Report 03-09, Departamento de Matemática, Universidade de Coimbra,
Portugal, 2003. Revised September 2004.

[8] C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733–746.
[9] E. D. Dolan, R. M. Lewis, and V. Torczon, On the local convergence of pattern search,

SIAM J. Optim., 14 (2003), pp. 567–583.
[10] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr, a Constrained and Unconstrained

Testing Environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–394.
[11] P. Hough, T. G. Kolda, and V. Torczon, Asynchronous parallel pattern search for nonlinear

optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.
[12] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.

18

[13] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[14] , Stationarity results for generating set search for linearly constrained optimization, Tech.
Report SAND 2003–8550, Sandia National Laboratories, 2003.

[15] C. Price and Ph. L. Toint, Exploiting problem structure in pattern-search methods for un-
constrained optimization, Tech. Report 04/01, Dept. of Mathematics, FUNDP, 2004.

[16] C. J. Price and I. D. Coope, Frames and grids in unconstrained and linearly constrained
optimization: a non-smooth approach, SIAM J. Optim., 14 (2003), pp. 415–438.

[17] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

19

