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Abstract

A steady longitudinal current in the nearshore can, in some conditions, support

oscillations known as vorticity waves or shear waves. We consider in this paper a

family of nonlinear evolution equations derived by Shrira and Voronovitch to de-

scribe the dynamics of vorticity waves near the coastal line and make the study of

the dispersion and smoothing properties of the associated nonlocal free problems.

More precisely, after establishing long and short time uniform estimates for a certain

class of oscillatory integrals, we derive “Lp − L
q” and Strichartz-type estimates for

the solutions of the linearized equations.
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1 Introduction

In [5], by a multi-scale analysis, Shrira and Voronovich derive a dispersive nonlinear evolu-
tion equation ruling the dynamics of vorticity waves near the coastal zone, in the presence
of a mean steady current. We begin this introduction by shortly describing their method.
In a coordinate system with axes (0x) and (0y) pointing respectively offshore and along-
shore, let us denote by V (x) the mean steady current. The total velocity field u∗ is then
given by

u∗(x, y, t) = {u(x, y, t), V (x) + v(x, y, t)},

where {u, v} represents the perturbed velocity field.

The standard shallow-water equations read



ut + V uy = −gζx − (uux + vuy)
vt + V uy + uVx = −gζy − (uvx + vvy)
ζt + V ζy + [(ζ + h)u]x + [(ζ + h)v]y = 0,

(1)
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where ζ is the free-surface elevation, g the gravity acceleration, and the depth h(x) is
assumed to be uniform along the shore.
Rescaling (1) leads to the system (written in non-dimensional units)





ut + V uy = −ε2ζx − (uux + vuy) (a)
vt + V uy + uVx = −ζy − (uvx + vvy) (b)
(hu)x + (hv)y = 0, (c)

(2)

ε =
d

L
denoting the ratio of the cross and alonshore spatial scales, respectively d and L.

Note that equation (2c) allows one to define a stream function ψ, such that

ψx = hv and ψy = −hu.

Then, from (2-a,2-b), one easily gets the nonlinear vorticity equation

[∂t + V ∂y]((
ψx
h

)x + ε2
ψyy
h

) − (
V ′

h
)′ = ∂x(−

ψx
h

ψxy
h

+
ψy
h

(
ψx
h

)x)

+ ε2∂y(
ψy
h

(
ψy
h

)x −
ψx
h

ψyy
h

). (3)

Finally, for a coastline profile x = xo(y), the following boundary conditions
are considered :





ψy + (hV + ψx)∂yxo = 0 at x = xo(y) (no mass flux through the coastline)

lim
x→∞

ψy = 0. (no mass flux at infinity)
(4)

In order to derive a weakly dispersive nonlinear evolution equation ruling the dynamics
of vorticity waves, Shrira and Voronovitch make use of a classical multi-scale analysis.
Considering motions with alongshore scale L much larger than the mean-current cross-
shore scale d, (i.e. ε << 1), two different scales appear naturally in the evolution problem.
It is then straightforward to introduce the new “fast” variables

ξ = x , Y = y − ct

corresponding to a frame moving in the (Oy) direction, with the celerity c of the vorticity
wave (to be determined later), as well as the “slow” variables

X = εx and T = εt.

The depht profile is then assumed to depend on both fast and slow variables :

h(ξ,X) = H(ξ)D(X).
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In terms of the new variables, and considering a straight coastline, the boundary conditions
(4) read

lim
X→∞

ψY (ξ,X, Y, T ) = 0 , ψY (0, X, Y, T ) = 0 , and lim
ξ→∞

ψY ξ(ξ, 0, Y, T ) = 0. (5)

The asymptotic derivation now follows the usual proceeding :
Inserting the ansatz

ψ(ξ,X, Y, T ) =

+∞∑

n=1

εnψn(ξ,X, Y, T )

into equations (3),(5) and equating the coefficients of εn to zero leads to partial equations
and boundary conditions binding the functions ψn. For instance, at first order n = 1, from
(3), one gets an integrable differential equation in ψ1, with a unique solution compatible
with the boundary conditions.The function ψ1 has the form

ψ1(ξ,X, Y, T ) = (V (ξ) − c)(ρ(X, Y ) ∗Y A(T, Y )),

where the functions A(Y, T ) and ρ(X, Y ) have been introduced to separate the temporal
and slow dependences of ψ1.
Moreover, from (5), one gets the condition c = 0 and the constraint

lim
X→∞

ρ(X, Y ) = 0.

Considering the second order n = 2, Schrira and Voronovitch get the nonlinear evolution
equation governing the dynamics of weakly dispersive vorticity waves (physical constants
have been put equal to the unity)

AT − L[A] + AAY = 0, (6)

where the nonlocal linear operator L is given by its Fourier symbol

L̂[A](η) = +iφ(η)Â(η)

φ(η) = η
∂Xρ(X, η)

ρ(X, η)
|X=0

and ρ̂, the Fourier transform of ρ in y, is the solution to the boundary problem




∂X(
∂Xρ(X, η)

D(X)
) − η2ρ(X, η)

D(X)
= 0

lim
X→∞

ρ(X, η) = 0.

(7)

By choosing some specific profiles for the depht function D, the boundary problem (7)
can be solved explicitely.
Namely, for an exponential profile

D(X) = eqX , q > 0,
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one gets

φ(η) = φS(η) := η
∂Xφ(X, η)

φ(X, η)
|X=0 = η

1

2
(q −

√
q2 + 4η2), (8)

which corresponds to the symbol of the Smith operator.

Also, considering a power-law profile

D(X) = (1 +X)2m , m > 0,

one gets

φ(η) = φm(η) := η
∂Xφ(X, η)

φ(X, η)
|X=0 = iη|η|θm(η) (9)

where θm is given in terms of the modified second-order Bessel funcions (McDonald func-
tions) Kµ, by

θm(η) =
Km− 1

2
(|η|)

Km+ 1
2
(|η|)

.

The authors noted that in the limit case m = 1
2
, one gets in the small-η limit,

φm(η) ∼ φL(η) := −η3 log(η), (10)

which is the well-known Leibovitch operator.

Our aim here is to make the study of the dispersion and smoothing properties for the free
evolution problems associated to the non-local operators with symbols φS, φm (m > 0)
and φL, and consequently fully justify that equation (6) is indeed a dispersive model. For
instance, in the case of an exponential profile D(X) = eX , as remarked in [5], we obtain
in the long (respectively short) wave limit

{
φS(η) '

η→∞
− |η|η

φS(η) '
η→0

− η3 (11)

wich correponds to the well-known BO(respectively KdV) equation. Yet, in order for
∂t−φS(D) to be a dispersive operator, one must garantee that for the intermediate values
of η some misbehaviour of φS and its derivatives will not give rise to a stationnary phase
phenomena and consequently provoke a “lack of dispersion”.
The rest of this paper is organized as follows :
In the second section, after establishing sharp uniform in time estimates for oscillatory
integrals of the type

Iα(y, t) =

∫
|η|αei(tφ(η)+yη)dt,

we derive “Lp − Lq” estimates for the above-mentionned operators.
In the third section, we establish the associated Strichartz-type estimates.
Finally, in the Appendix, we prove a few useful technical lemmas concerning the function
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φm.

We end this introduction with a few notations : for all p ∈ [1; +∞] and s ∈ R, we
introduce the usual Lp(R) and Sobolev Hs(R) spaces given by

Lp(R) = {f / ‖f‖p = (

∫
|f |p)

1
p < +∞}

and
Hs(R) = {f /‖f‖Hs = {f / ‖f̂(η)(1 + |η|2)

s
2 ‖2 < +∞}.

Also, for p ≥ 1, q ≥ 1 and T > 0 we define the mixed-space

Lq(0, T ;Lp) = {f / ‖f‖Lq(0,T ;Lp) = (

∫ T

0

(‖f(., τ)‖p)
qdτ)

1
q < +∞}.

Finally, we introduce the Riesz potential |D|s, s ∈ R, given by

|̂D|sf(η) = |η|sf̂(s)

for all tempered distribution f ∈ D′(R),

2 Dispersion properties

In this section, we will be concerned with the free evolution problem
{
At − L[A] = 0
A(0, y) = fo(y)

(12)

for some initial data fo to be chosen in an adequate space, and where the operator L is
given by its Fourier symbol iφ(η).
Here φ denotes generically one of the functions defined in (8), (9) and (10).

2.1 Oscillatory integrals

For t > 0, we introduce the kernel

K(y, t) =

∫

R

ei(tφ(η)+yη)dη, (13)

defined as the Fourier cotransform of the tempered distribution eitφ(.) ∈ L∞(R), or, which
is the same, as an oscillatory integral.

Solutions for the I.V.P. (12) are generated by the family of operators W (t) = eitφ(D)

given by

W (t)[fo](y) :=
1

2π
[K(., t) ∗ fo(.)](y).
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It is clear that {W (t)}t∈R is a unitary one-parameter group acting in Hs(R), for all s ∈ R.
In order to derive “Lp − Lq” and Strichartz-type estimates for this family of non-local
operators, one must first get uniform in time estimates for K(y, t).

Let us consider a real odd function φ satisfying the following conditions :





φ ∈ C2(R) ∩ C3(R/{0}) , lim inf
η→0

|φ′′′(η)| > 0. (a)

φ′′ vanishes at most in a unique η̃ 6= 0. In that case, φ′′′(η̃) 6= 0 (b)

For some A > 0, ηo > 0 and p ∈ [0; 1], (c)
∀η > ηo , |φ′′(η)| ≥ A|η|p

(14)

Note that conditions (14-a) and (14-b) hold for φL, φS and φm for all m > 0.
Furthermore, (14-c) holds for φS and φm (m > 0) with p = 0 and for φL with p = 1 (see
the Appendix).

Following the ideas in [1], which covers the case where φ is a polynomial (φ(D) is a
local operator), we prove :

Theorem 2.1 Long time estimate.
Let T > 0. Let φ a real odd function satisfying conditions (14-a), (14-b) and (14-c) for
some p ∈ [0; 1].
For α ∈ [0; p

2
], we set

Iα(y, t) =

∫

R

|η|αeit(φ(η)+ηy)dη.

Then

∀t ∈ [T ; +∞[ , sup
y∈R

|Iα(y, t)| ≤
C

t
1
3

(15)

holds for all α ∈ [0; p
2
], for some C > 0 depending exclusively on T and α.

The main ingredient for the proof of Theorem 2.1 is the following lemma :

Lemma 2.2 (Van Corput)
Let k ≥ 1. If ψ ∈ Ck([a; b]) and ψ(k) does not vanish over [a; b], then for all α ≥ 0,

|

∫ b

a

|η|αeiψ(η)dη| ≤
C(|a|α + |b|α)

min
η∈[a;b]

(|ψ(k)(η)|)
1
k

where C > 0 depends only on α and k.
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For a proof of this lemma, see for instance [7].

Proof of Theorem 2.1 :
Let φ a real odd function satisfying conditions (14-a), (14-b) and (14-c) for some p ∈ [0; 1].
Let t ≥ T > 0, y ∈ R and α ∈ [0; p

2
].

In what follows, we will denote by C > 0 various constants depending only on α and T .
Let δ > 0 such that

m1 = Inf{|φ′′′(η)| / η ∈]0; δ[} > 0. (16)

Then, for all ε ∈]0; δ[, the Van Corput lemma reads :

|

∫ δ

ε

ηαeit(φ(η)+yη)dη| ≤ C
εα + δα

(tm1)
1
3

.

Plainly,

|

∫ δ

0

ηαeit(φ(η)+yη)dη| ≤ C
1 + δα

t
1
3

. (17)

Let ηo > δ such that for η ≥ ηo, |φ
′′(η)| ≥ A|η|p.

If φ′′ does not vanish on [δ; ηo], setting m2 = Inf{|φ′′(η)| , η ∈ [δ; ηo]} > 0, one obtains
by the Van Corput lemma

|

∫ ηo

δ

ηαeit(φ(η)+yη)dη| ≤ C
δα + ηαo

(tm2)
1
2

≤ C
δα + ηαo

t
1
2

≤ C
ηαo

t
1
3

. (18)

If φ′′(η̃) = 0 for some η̃ ∈ [δ; ηo], let ε > 0 such that for η ∈ [η̃ − ε; η̃ + ε], φ′′′(η) 6= 0.
Putting m3 = Inf{|φ′′′(η)| , η ∈ [η̃ − ε; η̃ + ε]} > 0 and
m4 = Inf{|φ′′(η)| , η ∈ [δ; ηo]\[η̃ − ε; η̃ + ε]} > 0

|

∫ ηo

δ

ηαeit(φ(η)+yη)dη| ≤ |

∫

[δ;ηo]\[η̃−ε;η̃+ε]

|η|αeit(φ(η)+yη)dη| + |

∫

[η̃−ε;η̃+ε]

|η|αeit(φ(η)+yη)dη|

≤ C
4|ηo|

α

(m4t)
1
2

+
2|ηo|

α

(m3t)
1
3

≤ C
ηαo

t
1
3

.

We now consider the integral over ]ηo; +∞[. In this set, we assume for example that
φ′′ > 0, namely

∀η > ηo , φ′′(η) ≥ A|η|p (19)

holds. Our main concern here are the critical points η such that

∂

∂η
(φ(η) + yη) = φ′(η) + y = 0, (20)

since they may give rise to the stationnary phase phenomena.
In view of (19), there exists at most one solution ηy ∈]ηo; +∞[ to equation (20), since φ′

is strictly non-decreasing. Let B =]ηo; +∞[∩[1
2
ηy; 2ηy]. By the Van Corput Lemma,

|

∫

B

ηαeit(φ(η)+yη)dη| ≤ C
|ηy|

α

min
η∈B

(|tφ′′(η))
1
2

≤ C
ηy
α

A(1
2
ηy)

p
2 t

1
2

≤
C

t
1
2

η
α− p

2
y ≤

C

t
1
2

η
α− p

2
o . (21)
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Let B′ = [ηo; +∞[−B.
Note that, for η ∈ B ′,

|φ′(η) + y| = |φ′(η) − φ′(ηo)| = |

∫ η

ηo

φ′′(η)dη| ≥
A

p+ 1
(ηp+1 − ηp+1

y ) ≥ Cηp+1.

Furthermore,

|

∫

B′

ηαeit(φ(η)+yη)dη| = |
1

it

∫

B′

ηα
d

dη
(eit(φ(η)+yη))

dη

φ′(η) + y
|

≤
C

t
|[

ηα

|φ′(η) + y|
]∂B′ +

∫

B′

d

dη
(

ηα

φ′(η) + y
)eit(φ(η)+yη)dη|

≤
C

t
(sup

η∈B′
{

ηα

|φ′(η) − φ′(ηo)|
} +

∫

B′

αηα−1

|φ′(η) − φ′(ηo)|
+

ηαφ′′(η)

(φ′(η) − φ′(ηo))2
dη)

≤
C

t
(sup

η∈B′
{

ηα

|φ′(η) − φ′(ηy)|
} +

∫

B′

αηα−p−2dη +

∫

B′

ηαφ′′(η)

(φ′(η) − φ′(ηy))2
dη).

Plainly,

sup
η∈B′

{
ηα

|φ′(η) − φ′(ηy)|
} ≤ C sup

η∈B′
{ηα−p−1} ≤ Cη−1

o and

∫

B′

αηα−p−2dη ≤ Cη−1
o .

Moreover,
∫

B′

ηαφ′′(η)

(φ′(η) − φ′(ηy))2
dη = −

∫

B′

ηα
d

dη
(

1

φ′(η) − φ′(ηy)
)dη

= −[
ηα

φ′(η) − φ′(ηy)
]∂B′ +

∫

B′

αηα−1

φ′(η) − φ′(ηy)
dη

≤ sup
η∈B′

{
ηα

|φ′(η) − φ′(ηy)|
} +

∫

B′

αηα−p−2dη

≤ Cη−1
o

Finally,

|

∫

B′

ηαeit(φ(η)+yη)dη| ≤
C

t
. (22)

Since t ≥ T > 0 and φ is an odd function, putting together (17), (18), (21) and (22), we
obtain the announced uniform estimate (15). �

In order to establish short-time estimates for Iα(y, t), we prove the following lemma :

Lemma 2.3 Let T > 0.
Let φ a real odd function satisfying conditions (14-a), (14-b) and (14-c) for some p ∈ [0; 1].
For λ ≥ 1, we put

φλ(ξ) =
1

λ2
φ(λη) and Iα(y, t, λ) =

∫ +∞

−∞

|η|αeit(φλ(η)+yη)dη.
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Then

∀t ∈]0;T ] , sup
λ≥1

sup
η∈R

|Iα(y, t, λ)| ≤
C

t
1
3

(23)

holds for all α ∈ [0; p
2
], for some C > 0 depending exclusively on T and α.

Proof of Lemma 2.3:
We begin by noticing that conditions (14-a), (14-b) and (14-c) hold for φλ.
The choice of ηo > 0 is clearly independent of λ ≥ 1 :

For η ≥ ηo , φ′′
λ(η) = φ′′(λη) ≥ Aηp since λη ≥ ηo.

We remark that all the estimates made in the proof of Theorem 2.1 can be done indepen-
dently of λ.
Indeed, for δ > 0 defined by (16),

|

∫ δ
λ

0

ηαeit(φλ(η)+yη)dη| ≤ C
1 + ( δ

λ
)α

(tλ)
1
3

≤
C

t
1
3

,

where C > 0 does not depend on λ.

Also, if
m2 = Inf{|φ′′(η)| , η ∈ [δ; ηo]} > 0,

then for all η ∈] δ
λ
; ηo[, |φ

′′
λ(η)| ≥ min{m2, A(ληo)

p} ≥ min{m2, Aη
p
o}, and

|

∫ ηo

δ
λ

ηαeit(φλ(η)+yη)dη| ≤ C
ηαo + ( δ

λ
)α

(tmin{m2, Aη
p
o})

1
2

≤
C

t
1
2

,

where once again C > 0 is independent of λ.

In the case where φ′′(η̃) = 0 for some η̃ ∈]δ; ηo[, setting as before

m3 = Inf{|φ′′′(η)| , η ∈ [η̃ − ε; η̃ + ε]} > 0,

m4 = Inf{|φ′′(η)| , η ∈ [δ; ηo]\[η̃ − ε; η̃ + ε]} > 0

for some ε > 0, and putting

M = inf{φ′′(η)\η ∈ [δ;ληo]−]η̃ − ε; η̃ + ε[} ≥ inf{m4;A(ληo)
p} ≥ inf{m4;Aη

p
o},

we get

|

∫ ηo

δ
λ

ηαeit(φλ(η)+yη)dη| ≤ |

∫

[ δ
λ
;ηo]\[ η̃−ε

λ
; η̃+ε

λ
]

ηαeit(φλ(η)+yη)dη|

+|

∫

[ η̃−ε
λ

; η̃+ε
λ

]

ηαeit(φλ(η)+yη)dη|

≤
4ηαo

(tM)
1
2

+
(2 η̃+ε

λ
)α

(tλm3)
1
3

≤
C

t
1
3
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where C > 0 depends only on α and T .
Finally, since for all η ≥ ηo, λη ≥ ηo and |φ′′

λ(η)| = |φ′′(λη)| ≥ A(λη)p ≥ Aηp, we easily
get the following estimate, uniform in λ :

|

∫ +∞

ηo

ηαeit(φλ(η)+yη)dη| ≤
C

t
.

�

From Lemma 2.3 we establish the following short-time estimates for Iα(y, t) :

Theorem 2.4 Short-time estimate
Let T > 0.
Let Iα be defined as in Theorem 2.1.
Then

∀t ∈]0;T [ , sup
y∈R

|Iα(y, t)| ≤
C

t
α+1

2

(24)

holds for all α ∈ [0; p
2
], for some C > 0 depending exclusively on T and α.

We now derive the associated “Lp − Lq” estimates.

We set, for t ∈ R, W (t) = eitφ(D). For K the associated kernel defined in (13),

|D|αW (t)fo(y) = |D|α(
1

2π
K(., t) ∗ fo(.)[y]) =

1

2π
(|D|αK(., t)) ∗ fo =

1

2π
Iα(

.

t
, t) ∗ fo(.)[y],

for all tempered distribution fo, α ∈ [0; p
2
].

In view of Theorem 2.4 one gets for all T > 0 the existence of C > 0 such that, for all
f ∈ L1(R), and for all t ∈]0;T ]

‖|D|αW (t)fo‖∞ ≤
C

t
α+1

2

‖fo‖1. (25)

Moreover, since for fo ∈ L2(R),

|W (t)fo‖2 = ‖fo‖2, (26)

we claim

Lemma 2.5 ”Lp − Lq” estimates
Let φ a real odd function satisfying conditions (14-a),(14-b) and (14-c) for some p ≥ 0.

Let W (t) = eitφ(D), T > 0 and α ∈ [0; p
2
].

Then there exists C > 0 such that for all θ ∈ [0; 1] and fo ∈ L
2

(1+θ) (R),

∀t ∈]0;T ] , ‖|D|θαW (t)fo(y)‖ 2
(1−θ)

≤
C

t
θ(α+1)

2

‖fo‖ 2
(1+θ)

.
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Following equation (25), the proof of this lemma is standard :
Let α ∈ [0; p

2
]. We introduce the analytic family of operators

Wa+ib(t) = |D|αa+ibW (t) , a ∈ [0; 1] , b ∈ R.

For all fo ∈ L2(R), β ∈ R, ‖W0+ibfo‖2 = ‖|D|ibfo‖2 = ‖fo‖2.
Also, a slight modification in the proof of Theorem 2.4 yields for fo ∈ L1(R),

‖W1+ibfo‖∞ ≤ (1 + |b|)‖|Dα|W (t)fo‖∞ ≤
C(1 + |b|)

t
α+1

2

‖fo‖1.

Finally by the complex interpolation theorem (see [6]), we get the announced result.

3 Strichartz estimates

As remarked before, the functions φS and φm (m > 0) defined respectively in (9), (8)
satisfy conditions (a), (b) and (c) with p = 0. Therefore, the dispersion estimate in
Lemma 2.5 holds for the operators eitφS(D) and eitφm(D) with α = 0. As in the case of the
free Schrödinger operator eit∆,it is known (see [2]) that this estimate implies the following
Strichartz-type estimates :

Corollary 3.1 Let φ = φm, m > 0 or φ = φS, defined in (9,8) and W (t) = eiφ.
Let T > 0. Then there exists C > 0 depending exclusively on T such that for all fo ∈
L2(R), and for all (p, q) = ( 2

1−θ
, 4
θ
), θ ∈ [0; 1],

‖W (t)fo‖Lq(0,T ;Lp(R)) ≤ C‖fo‖L2(R) , t ∈]0;T ] (27)

and, for all g ∈ Lq
′

(0, T ;Lp
′

(R)),

‖

∫ t

0

W (t− τ)g(., τ)dτ‖Lq(0,T ;Lp(R)) ≤ C‖g‖Lq′(0,T ;Lp′(R)) , t ∈]0;T ] (28)

where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.

Furthermore, φL defined in (10) satisfies conditions (a), (b), (c) for p = 1. This will allow
us to derive Strichartz-type estimates with smoothing for the operator eitφL . We claim :

Corollary 3.2 Let W (t) = eiφL , φL defined in (10).
Let T > 0.
Then there exists C > 0 depending exclusively on T such that for all fo ∈ L2(R), and for
all (p, q) = ( 2

1−θ
, 8

3θ
), θ ∈ [0; 1],

‖ |D|
θ
4W (t)fo‖Lq(0,T ;Lp(R)) ≤ C‖fo‖L2(R) , t ∈]0;T ] (29)

and, for all g ∈ Lq
′

(0, T ;Lp
′

(R)),

‖

∫ t

0

|D|
θ
2W (t− τ)g(., τ)dτ‖Lq(0,T ;Lp(R)) ≤ C‖g‖Lq′(0,T ;Lp′ (R)) , t ∈]0;T ] (30)

where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.

11



Proof:
We prove (30), the standard Tomas duality argument ([8]) will then yield the homoge-
neous estimate (29).

From Lemma 2.5 with α = 1
2

we get the existence of C > 0 such that

∀t ∈]0;T ] , ‖D
θ
2W (t)fo(y)‖ 2

(1−θ)
≤

C

t
3θ
4

‖fo‖ 2
(1+θ)

.

Hence,

‖

∫ t

0

|D|
θ
2W (t− τ)g(., τ)dτ‖Lq(0,T ;Lp(R)) ≤ ‖

∫ T

0

‖ |D|
θ
2W (t− τ)g(., τ)‖pdτ‖Lq(0,T )

≤ C‖

∫ T

0

1

|t− τ |
3θ
4

‖g(., τ)‖p′dτ‖Lq(0,T ).

Moreover, by the classical results on fractional integration,

‖

∫ T

0

1

|t− τ |
3θ
4

‖g(., τ)‖p′dτ‖Lq(0,T ) ≤ ‖g‖Lq′(0,T ;Lp′(R))

provided that
1

q
=

1

q′
− (1 −

3θ

4
), which is the case. �

4 Appendix

For η > 0, and m > 0, we put θm(η) =
Km− 1

2
(η)

Km+ 1
2
(η)

, where, for ν ∈ R,

Kν(η) =

∫ +∞

0

e−ηcosh(x)cosh(νx)dx

are the McDonald’s functions.
Finally, let

∀η ∈ R , φm(η) = η|η|θm(|η|).

The aim of this appendix is to prove the following lemma :

Lemma 4.1 For all η > 0 , φ′′
m(η) > 0 and for all m > 0 there exists ηo > 0 and M > 0

such that
φ′′
m(η) ≥M for |η| ≥ |ηo|.

We begin by stating some well-known facts :

12



Lemma 4.2 For all ν ∈ R and η > 0,

ηK ′
ν(η) = −νKν(η) − ηKν−1(η). (31)

Furthermore, the next asymptotic expansions holds :

Kν(η) =

√
π

2η
e−η(1 +

4ν2 − 1

8η
+

(4ν2 − 1)(4ν2 − 9)

2(8η)2
+

1

η2
ε(η)) , lim

η→∞
ε(η) = 0, (32)





if ν > 0 , Kν(η) '
η→0

1
21−ν Γ(ν)η−ν

and Ko(η) '
η→0

− log(η).
(33)

For a proof, see for instance [4].
From Lemma 4.2, by some elementary computations, one obtains :

Lemma 4.3 For all m > 0 and η > 0,

θ′m(η) =
2m

η
θm(η) − 1 + θ2

m(η). (34)

Moreover,

θm(η) = 1 −
m

η
+
m(m + 1)

2η2
+

1

η2
ε(η) , lim

η→∞
ε(η) = 0, (35)

and, near the origin,




if m >
1

2
, θm(η) '

η→0

η

2m+1
,

if m <
1

2
, θm(η) '

η→0
C(m)η2mfor some C(m) > 0

and θ 1
2
(η) '

η→0
− η log(η).

(36)

We now claim

Lemma 4.4 For all m > 0 and η > 0,

θ′m(η) > 0. (37)

Proof : Assume that for some ηo > 0, θ′m(ηo) = 0. Then,

θ′′m(ηo) = −
2m

η2
o

θm(ηo) + θ′m(ηo)(2θ(ηo) +
2m

ηo
) = −

2m

η2
o

θm(ηo) < 0.

Yet ηo is a local maximum, which is of course absurd since

0 ≤ θm < 1 , θm(0) = 0 and lim
η→∞

θm(η) = 1 �.
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This result allows us to prove that φ′′
m(η) does not vanish for η > 0 in the case where

m < 1. Indeed, note that for η > 0, by (34),

φ′′
m(η) = 2(1 −m)θm(η) + 2η2θ′m(η)θm(η) + (2m+ 4)ηθm(η) ≥ 2(1 −m)θm(η) > 0.

In order to extend this result for m ≥ 1, sharper estimates are needed :

Lemma 4.5 Let m ≥ 1. Then, for all η > 0,

ηθ′m(η) < θm(η) (38)

and
θm(η)

η
≤

1

2m− 1
. (39)

Proof :
Let f(η) = ηθ′m(η) − θ(η).
Assume that for some ηo > 0, f(ηo) = 0. Then

f ′(ηo) = ηoθ
′′
m(ηo) = ηo[2θm(ηo)θ

′
m(ηo) +

2m

ηo
θ′m(ηo) −

2m

η2
o

θm(ηo)] = 2ηoθm(ηo)θ
′
m(ηo) > 0

which is absurd, since, from Lemma 4.2, one gets

f(0) = 0 and f(η) = −1 +
2m

η
+

1

η
ε(η) , lim

η→+∞
ε(η) = 0.

The proof of (39) is then straightforward :

Putting g(η) =
θm(η)

η
, g′(η) =

f(η)

η2
< 0, and for all η > 0, g(η) ≤ lim

η→0

θm(η)

η
=

1

2m− 1
.

�

Finally, we end the proof of Lemma 4.1 :
For all η > 0,

φ′′
m(η) = 2θm(η)+4ηθ′m(η)+η2θ′′m(η) = 2(1−m)θm(η)+2η2θ′m(η)θm(η)+2(m+2)ηθ′m(η).

From Lemma 4.3, one gets

φ′′
m(0) = 0 and φ′′

m(η) = 2 −
m(m + 1)

η

2

+ ε(η)
1

η2
, lim
η→∞

ε(η) = 0. (40)

As before, assume that for some η > 0, φ′′
m(ηo) = 0, i.e.

2(m+ 2)ηθ′m(ηo) = 2(m− 1) − 2η2
oθ

′
m(ηo)θm(ηo). (41)

Then,

φ′′′
m(ηo) = 2(1 −m)θ′m(ηo) + 2η2

oθ
′2
m(ηo) + 4ηoθ

′
m(ηo)θm(ηo)

+(2m+ 4)θ′m(ηo) + θ′′m(ηo)((2m+ 4)ηo + 2η2
oθm(ηo)).

14



Therefore,

θm(ηo)φ
′′′
m(ηo) = θ′m(ηo)[2(m+ 2)θm(ηo) + 4ηoθ

2
m(ηo) + 2(1 −m)θm(ηo) + 2η2

oθ
′
m(ηo)θm(ηo)]

+θ′′m(ηo)[(2m+ 4)ηo + 2η2
oθm(ηo)].

By (41), and since θ′′m(ηo) ≤ 0,

θm(ηo)φ
′′′
m(ηo) ≤ 2θ′m(ηo)[(m+ 2)(θm(ηo) − ηo) + 2ηθ2

m(ηo)]

≤ 2θ′m(ηo)[2ηo(θ
2
m(ηo) − 1) −mηo + (m + 2)θm(ηo)]

≤ 2θ′m(ηo)[2ηo(θ
′
m(ηo) −

2m

ηo
θm(ηo) −mηo + (m+ 2)θm(ηo)] by (34)

≤ 2θ′m(ηo)[2θm(ηo) − 4mθo(η) −mηo + (m+ 2)θm(ηo)] by by (39)

≤ 2θ′m(ηo)[(4 − 3m)θm(ηo) −mηo].

If m ≤ 4
3
, then φ′′′

m(ηo) < 0. If m > 4
3

:

θm(ηo)φ
′′′
m(ηo) ≤ 2θ′m(ηo)ηo[(4m−3)

θm(ηo)

ηo
−m] ≤ 2θ′m(ηo)ηo

−2m2 − 2m+ 4

2m− 1
< 0 by (39)

Therefore, if φ′′
m vanishes at some point, it is a local maximum, which contradicts (40).

The second part of Lemma 4.1 clearly follows from the asymptotic expansion of φ′′
m.
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