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Abstract

In this paper, an algorithm is introduced to find an optimal solution for an optimization
problem that arises in total least squares with inequality constraints, and in the correction of
infeasible linear systems of inequalities. The stated problem is a nonconvex program with a
special structure that allows the use of a reformulation–linearization–convexification technique
for its solution. A branch–and–bound method for finding a global optimum for this problem
is introduced based on this technique. Some computational experiments are included to
highlight the efficacy of the proposed methodology.

1 Introduction

The problem we address in this paper arises in the context of correcting infeasible linear systems
of inequalities, such as Ax ≤ b, x ∈ Rn, where A ∈ Rm×n, b ∈ Rm.

In linear programming and in constraint satisfaction, one is often confronted with an empty
set of solutions due to many causes such as the lack of communication between different decision
makers, update of old models, or integration of partial models. In post-infeasibility analysis,
several attempts are made in order to retrieve valuable information regarding the inconsistency
of a given model [11],[19],[15],[16],[18] such as the identification of conflicting sets of constraints
[10], [12], [14], [1], [2] and irreducible inconsistent sets (IIS) of constraints, for both continuous
[13],[17],[29],[22] and mixed-integer [20] problems. This information can be used to reformulate the
model, either by removing constraints or slightly changing the coefficients of the constraints. In
[21], the authors proposed a method based on an hierarchical classification of constraints to remove
constraints in order to obtain a feasible set. This procedure is, however, completely inadequate
in cases where the physical situation that the constraints seek to prevent cannot be ignored, or
when we are working with only approximate data. In the context of Linear Programming, some
theoretical results regarding the distance to infeasibility of a linear system are presented in [23]
and [24], and techniques for deciding about the existence of solutions for approximate data are
explored in [26].

Although the problem of inconsistency in linear models has attracted some attention, not much
has been done concerning the development of exact algorithms for finding minimal corrections
(according to some criteria) of the coefficients of an infeasible linear system of inequalities. The
perturbation of the vector b alone is a less difficult problem and has been considered in [25]. The
correction of both A and b is a more challenging task due to the introduction of nonlinearity, but
is more adequate and advisable in practice.
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These considerations have lead to a general formulation that seeks the optimal correction p
and H, respectively, of the vector b and the matrix A of the linear system of inequalities Ax ≤ b.
This results in the following optimization problem:

Minimize ϕ(H, p) (1)
subject to (A + H)x ≤ b + p (2)

x ∈ X,H ∈ Rm×n, p ∈ Rm, (3)

where X ⊆ Rn is a convex set and ϕ is an appropriate matrix norm. For ϕ = ‖ ·‖l1 and ϕ = ‖ ·‖l∞
(the generalization for matrices of the respective norms l1 and l∞), Vatolin [28] proved that it is
possible to find an optimal correction by solving a set of linear programming problems. Later in
[3] it was shown that this approach is also applicable for ϕ = ‖ · ‖∞ and that the number of linear
programming problems to be solved is 2n + 1 for the l1 and ∞ norms, and 2n for the l∞ norm.
Furthermore, it was stated that an optimal correction consisted of changes in only one column of
(A, b) in the case of norms l1 or ∞, while for the norm l∞, the perturbation of the coefficients
of every row would only differ in sign. This introduced a fixed pattern for the correction matrix,
which turns out to be quite unnatural in practical situations where a free pattern is more suitable.
These conclusions have motivated us to study the case of finding an optimal correction with respect
to the Frobenius norm ‖ · ‖F , that is, to consider the following optimization problem:

(P ) Minimize ‖[H, p]‖2F
subject to (A + H)x ≤ b + p

H ∈ Rm×n, p ∈ Rm, x ∈ X.
(4)

It is interesting to note that for X = Rn this problem may fail to have a solution and a local
minimizer exists iff the correction corresponds to an application of the total least squares (TLS)
method to the set of active constraints [6]. Some algorithms for finding such a local minimizer
are discussed in [4]. In [7], a tree search procedure based on the enumeration of the active set of
constraints was proposed, where some reduction tests were implemented in order to reduce the tree
search. Although problems of small size have been efficiently solved, the overall effort required
for finding a global minimum is usually too high for medium-scale problems. In practice, it is
important to define the set X such that the existence of an optimal solution is guaranteed, and
the solution of the corrected system is in a certain domain of interest. The most general choice
for X corresponds to

X ⊆ {x ∈ Rn : l ≤ x ≤ u}, (5)

where l and u are fixed vectors. Then, X is compact and the optimization problem (P ) has a
global minimum. This is the choice we adopt in this paper.

This paper is organized as follows. In the next section, we present some important results
that lead to the development of the main algorithm to be introduced in Section 3. Section 4
includes the report of some experiments with the algorithm for a number of test instances. Some
conclusions and recommendations for future research are included in the last section of the paper.

2 Preliminary results

In [6] it was shown that for X = Rn, the problem (4) is equivalent to the unconstrained nonlinear
and nonconvex problem:

(P ) min
x∈X

‖(Ax− b)+‖2
1 + ‖x‖2 , (6)

where (·)+ denotes max{0, ·} and ‖ · ‖ represents the Euclidian norm. This equivalence still holds
for

X ⊆ {x : l ≤ x ≤ u}.
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Once problem (6) is solved, we can directly obtain the correction matrix [H, p] for Problem (4) by

[H, p] = −λ∗[x∗T , 1], (7)

where x∗ is the optimal solution found for Problem (6) and

λ∗ =
1

1 + ‖x∗‖2 (Ax∗ − b)+. (8)

The proof can be found in [6]. The next theorem presents another formulation for the original
problem (4) that is exploited in this paper.

Theorem 2.1. The formulation (6) is equivalent to:

(P1) : Minimize
β

1 + ‖x‖2 (9)

subject to β ≥ ‖v‖2 (10)
v ≥ Ax− b (11)
v ≥ 0 (12)
x ∈ X. (13)

Proof: It is sufficient to show that for any feasible solution to one problem, there exists a feasible
solution to the other problem having at least as good an objective value.
Given x feasible to (P ), it is easy to see that there exists (x, v, β) feasible to (P1) with the same
objective value. In fact for v = (Ax− b)+ and β = ‖v‖2,

β

1 + ‖x‖2 =
‖(Ax− b)+‖2

1 + ‖x‖2 .

Now, for (x, v, β) feasible to (P1), let v = (Ax − b)+ and β = ‖v‖2. Then (x, v, β) is feasible to
(P1) and

β

1 + ‖x‖2 =
‖v‖2

1 + ‖x‖2 =
‖(Ax− b)+‖2

1 + ‖x‖2 (14)

≤ ‖v‖2
1 + ‖x‖2 ≤

β

1 + ‖x‖2 .

In fact, Ax − b ≤ v and v ≥ 0 imply that 0 ≤ (Ax − b)+ ≤ v and so, ‖(Ax − b)+‖2 ≤ ‖v‖2.
Obviously x is feasible to (P ) and the second inequality in (14) shows that it has at least as good
an objective value as (x, v, β) does in (9)-(13). This completes the proof. ¤

In (P1), upon the substitution

‖x‖2 = α,

and considering that X j {0 ≤ l ≤ x ≤ u}, we immediately obtain the following result.

Corollary 2.1. If

αl = ‖l‖2 and αu = ‖u‖2, (15)

then the problem

(P2) Minimize
β

1 + α
(16)

subject to β ≥ ‖v‖2 (17)
v ≥ Ax− b (18)
‖x‖2 = α (19)
x ∈ X j {x : 0 ≤ l ≤ x ≤ u} (20)
v ≥ 0 (21)
αl ≤ α ≤ αu, (22)
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is equivalent to (P1) and, consequently, to Problem (4).

Now, consider the nonlinear relaxation:

(RP2) Minimize
β

1 + α
(23)

subject to β ≥ ‖v‖2 (24)
v ≥ Ax− b (25)
‖x‖2 ≤ α (26)
x ∈ X j {x : 0 ≤ l ≤ x ≤ u} (27)
v ≥ 0 (28)
αl ≤ α ≤ αu. (29)

Then the feasible set of (RP2) is convex and the objective function is pseudoconvex over this set
[9]. Therefore, any stationary point of the objective function in this feasible set is also a global
minimum of (RP2). Furthermore, any such solution is a global minimum of the problem (P2)
if and only if ‖x‖2 = α. It might therefore seem that there could exist some cases where the
solution of (P2) simply reduces to finding a global minimum for (RP2). Unfortunately, this is
not usually the case, as the inequality ‖x‖2 ≤ α is often inactive at such global minimum. This is
quite understandable as α tends to increase as much as possible in order to minimize the objective
function of (RP2). So (P2) needs to be processed by a global optimization algorithm. In this
paper we propose a branch-and-bound algorithm for (P2) that is based on the idea of partitioning
the set

Ω = {x : 0 ≤ l ≤ x ≤ u}.

At every node k of the enumeration tree, we consider the proper subset of Ω:

Ωk = {x : lki ≤ xi ≤ uk
i , for i = 1, . . . , n}, (30)

along with the following associated problem:

(P2k) Minimize
β

1 + α

subject to β ≥ ‖v‖2
v ≥ Ax− b

‖x‖2 = α (31)
x ∈ Ωk

v ≥ 0
αk

l ≤ α ≤ αk
u.

At every node, instead of solving (P2k) directly, we obtain a lower bound for the optimal
value of (P2k) by solving a special convex problem. To construct such a program, we can sim-
ply replace the equality ‖x‖2 = α by the inequality constraint (26). This nonlinear relaxation is
denoted by (RP2k) and is obtained from (RP2) by forcing x to belong to the set Ωk and by con-
straining α accordingly. Alternatively, we can exploit the so–called Reformulation–Linearization–
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Convexification Technique (RLT), as described in [27] and consider the following relaxation

LB(P2k) : Minimize
β

1 + α
(32)

subject to β ≥ ‖v‖2 (33)
v ≥ Ax− b (34)

n∑

i=1

yi = α (35)

x2
i ≤ yi,∀i = 1, . . . , n (36)[
(xi − lki )(uk

i − xi)
]
L
≥ 0, ∀i = 1, . . . , n (37)

x ∈ X (38)
x ∈ Ωk (39)
αk

l ≤ α ≤ αk
u, (40)

where [·]L denotes the linearization of the product term [·] under the substitution

yi = x2
i , ∀i = 1, . . . , n. (41)

Note that in (37),
[
(xi − lki )(uk

i − xi)
]
L

=
[
xiu

k
i − lki uk

i + lki xi − x2
i

]
L

= xiu
k
i − lki uk

i + lki xi − yi.

Problem LB(P2k) is a convex nonlinear program with a very special structure that can be ef-
ficiently solved by a nonlinear programming algorithm. It should be added that the constraint
α = ‖x‖2 has been convexified by introducing new variables yi and additional constraints (35) and
(36). Moreover, instead of imposing yi = x2

i , we have introduced the relaxed linear bound-factor
constraints (37), where, again, x2

i is replaced by yi, ∀i = 1, . . . , n. The following result holds in
regard to LB(P2k).

Proposition 2.1. If (x, v, β, α, y) solves Problem LB(P2k) with objective value ν(LB(P2k)), then
ν(LB(P2k)) is a lower bound for the optimal value of (P2k). Moreover, if xi = lki or xi = uk

i , for
each i = 1, . . . , n, then yi = x2

i , ∀i = 1, . . . , n.

Proof: Follows from Sherali and Tuncbilek [27]. ¤

It is also important to add that the relaxation LB(P2k) provides tighter lower bounds than
the previous one (RP2k). In fact, since x2

i ≤ yi for all i = 1, . . . , n, then

‖x‖2 =
n∑

i=1

x2
i ≤

n∑

i=1

yi = α.

Therefore the feasible region of the problem LB(P2k) projected onto the (x, v, β, α)-space is
included in that for (P2k). For this reason, in this paper, we use the relaxation LB(P2k) instead
of (RP2k).

3 Overall algorithm

At every node of the proposed branch-and-bound procedure, starting with Ω0 = Ω, the problem
LB(P2k) is solved to derive a lower bound on the node subproblem. Let (x, v, β, α, y) be the
optimal solution obtained and let ν(LB(P2k)) be its optimal value. If

ν(LB(P2k)) ≥ UB(1− ε),
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for some tolerance ε ≥ 0, we fathom this node. Otherwise, we partition this node into subproblems
(P2k+1) and (P2k+2), based on the corresponding partition of Ωk into Ωk+1 and Ωk+2 as follows:

Ωk+1 = {x : lk+1
i ≤ xi ≤ uk+1

i , for i = 1, . . . , n}

and

Ωk+2 = {x : lk+2
i ≤ xi ≤ uk+2

i , for i = 1, . . . , n},

where the bounds describing Ωk+1 and Ωk+2 are discussed next, within the following branching
strategy.

3.1 Branching variable selection scheme

Let

p ∈ arg max
i=1,...,n

{θi} where θi = yi − x2
i , for i = 1, . . . , n. (42)

If θp > 0, then

Ωk+1 = {x : lki ≤ xi ≤ uk
i , i = 1, . . . , n, i 6= p, lkp ≤ xp ≤ xp}, (43)

Ωk+2 = {x : lki ≤ xi ≤ uk
i , i = 1, . . . , n, i 6= p, xp ≤ xp ≤ uk

p}. (44)

If max
i=1,...,n

{θi} = 0, then by Proposition 2.1, (x, v, β, α, y) is a feasible solution for (P2k), whose

value, v(LB(P2k)), is a lower bound that is achieved, and hence, is the optimal value of (P2k).
Therefore, we update the incumbent solution (along with UB), if necessary, and fathom the node
in this case.

3.2 Computing Upper Bounds

Given the solution x to LB(P2k), we compute an upper bound UB by setting

UB ← min{UB, f(x), φ(x, β, v)} (45)

where

f(x) =
‖(Ax− b)+‖2

1 + ‖x‖2 ,

and

φ(x, β, v) =
β̂

1 + ‖x̂‖2 ,

where (x̂, β̂, v̂) is a stationary point to P1 that is obtained by starting at the initial point (x, β, v)
and applying a nonlinear programming algorithm.

3.3 Computing an initial feasible solution

In order to induce a faster convergence toward optimality for each subproblem LB(P2k), it is
important to start with an initial point, (x̂, v̂, β̂, α̂, ŷ), that is feasible for LB(P2k). To do this,
we solve the following program:

x̂ = arg min
x∈X

T{x:lk≤x≤uk}
‖x− x∗‖l1 (46)
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where x∗ is the current best known solution. Note that for X polyhedral (including X = Rn),
(46) can be solved via the LP:

Minimize

{
n∑

i=1

zi : zi ≥ xi − x∗i , zi ≥ x∗i − xi, ∀i = 1, . . . , n, x ∈ X, lk ≤ x ≤ uk

}
. (47)

After obtaining x̂, we then compute the remainder of the initial solution as

v̂ = max{0, Ax̂− b},
β̂ = ‖v̂‖2,
ŷi = x̂2

i , ∀i = 1, . . . , n,
α̂ = ‖x̂‖2.

(48)

The following result holds.

Proposition 3.1. The solution (x̂, v̂, β̂, α̂, ŷ) as given by (46-48) is feasible to LB(P2k).

Proof Feasibility to (33),(34),(35),(36),(38),(39), and (40) is evident by the construction of the
solution (46)-(48) and the bounds derived based on lk ≤ x ≤ uk. Moreover, feasibility to the RLT
constraints (37) follows by construction, since the product relationship in (41) are satisfied via
(48). This completes the proof. ¤

3.4 Algorithm and Convergence Theorem

In this subsection, we describe the main steps of the algorithm. To do this, we start by describing
the following parameters:

k- index for the current lower bounding problem under analysis;

UB- best known upper bound;

xinc- incumbent solution;

L- queue of indices of subproblems created but not expanded;

LB(P2k)- lower bounding problem as described by (32)-(40);

(xk, vk, yk, βk, αk)- optimal solution obtained for LB(P2k);

Ωk- as defined in (30);

ε- optimality tolerance;

ν(.)- optimal value of problem (.).

Algorithm RLT-BB

0-(Initialization) Let k = 0, L = ∅, UB=∞, and ε = 0.001. Solve Problem LB(P2k). Update
UB through (45) and set xinc = xk.

1-(Pick next node) If L = ∅ then stop; otherwise, find k ∈ arg min{ν(LB(P2t)) : t ∈ L}.
2-(Dequeue) Set L ← L− {k}.
3-(Branching rule) Find a branching index p via (42). If θp > 0, go to Step 4. Otherwise,

update UB and xinc using the solution to LB(P2k), remove any indices t from L for which
ν(LB(P2t)) ≥ UB(1− ε), and go to Step 1.

4-(Solve,Update, and Queue) Set i = 1.
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4.1 Define Ωk+i according to (43) and (44). Solve Problem LB(P2k+i).

4.2 If ν(LB(P2k+i)) < UB(1− ε) then go to Step 4.3; otherwise, go to Step 4.5.

4.3 Update UB according to (45). If UB was updated remove all indices t ∈ L for which
ν(LB(P2t)) ≥ UB(1− ε) and put xinc = xk+i.

4.4 Set L ← L ∪ {k + i}.
4.5 If i = 2 go to Step 1; otherwise, let i = 2 and go to Step 4.1.

To complete this section we present the convergence theorem for this algorithm.

Proposition 3.2. The algorithm RLT-BB either terminates finitely with a global optimum to the
problem (when ε ≡ 0), or else, an infinite branch-and-bound tree is generated, which is such that
any accumulation point of the relaxation lower-bounding problem solution along any infinite branch
of the enumeration tree is a global optimum for problem (P2).

Proof The case of finite convergence is obvious from the validity of the bounds derived by the
algorithm. Now, suppose that an infinite branch-and-bound tree is generated. Then there exists
a branching index p that is selected infinitely often. Let K be an infinite sequence of nodes
generated by a sequence of branchings over p and let LB(P2k) and (xk, vk, βk, αk, yk) for k ∈ K
be the corresponding lower bounding problems and optimal solutions, respectively. Over some
convergent subsequence (k ∈ K1 ⊆ K) suppose that

(xk, vk, βk, αk, yk, lk, uk) −→ (x∗, v∗, β∗, α∗, y∗, l∗, u∗).
k ∈ K1

Then, using the proof in [27], we see that in the limit x∗p = l∗p or x∗p = u∗p. Moreover, by Proposition
2.1, this yields θp = 0, in the limit, where θi is defined in (42). Furthermore, again by (42), this
gives θi = 0, ∀i = 1, . . . , n, in the limit. Hence, since the limiting solution (x∗, v∗, β∗, α∗, y∗) is
feasible with objective value V ∗, we get

V ∗ ≥ ν(P2). (49)

However, the least lower bound node selection criteria ensures that ν(LB(P2k)) ≤ ν(P2), ∀k ∈ K1.
In the limit, this yields V ∗ ≤ ν(P2). This, together with (49), yields V ∗ = ν(P2) and so, x∗ solves
Problem P2. This completes the proof. ¤

3.5 An example

Consider the following inconsistent system of inequalities, illustrated in Figure (1):



−x1 − x2 ≤ −7

x2 ≤ 3
2x1 − x2 ≤ −2.

Suppose that we seek an optimal correction on the domain X defined by

1 ≤ xi ≤ 5 for i = 1, 2.

To apply the algorithm, we have:

l = [1, 1] and u = [5, 5] .

Hence,

Ω0 = {x : 1 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 5},

α0
l = 2.0000 , α0

u = 50.0000.
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Figure 1: Inconsistent system for the illustrative example.

The solution to LB(P20) is as follows:

x0 = (1.6079, 4.6618) y0 = (4.6473, 22.9709)
α0 = 27.6182 β0 = 3.6018
v0 = (0.7303, 1.6618, 0.5539),

and the lower bound is given by

v(LB(P20)) = 0.1259.

The upper bound can be updated to 0.1423 according to (45), and the corresponding incumbent
solution is xinc = x0. In order to apply the branching rule to partition Ω0 we get:

θ1 = y1 − x2
1 = 2.0620,

θ2 = y2 − x2
2 = 1.2385,

max
i=1,2

{θi} = 2.0620 and p = arg max
i=1,2

{θi} = 1.

We thus obtain Ω1 and Ω2 based on the partition of [l1, u1] = [1, 5] into [l11, u
1
1] = [1, 1.6079] and

[l21, u
2
1] = [1.6079, 5]:

Ω1 = {x : 1 ≤ x1 ≤ 1.6079, 1 ≤ x2 ≤ 5},
Ω2 = {x : 1.6079 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 5}.

Now, solving LB(P21), we get:

x1 = (1.5668, 4.6576) y1 = (2.4782, 22.9457)
α1 = 25.4239 β1 = 3.5758
v1 = (0.7756, 1.6576, 0.4760) v(LB(P21)) = 0.1353

and the upper bound UB is updated to 0.1422, with xinc = x1.

Likewise, LB(P22) leads to the following solution:

x2 = (1.6249, 4.6790) y2 = (2.6979, 23.0738)
α2 = 25.7718 β2 = 3.6294
v2 = (0.6961, 1.6790, 0.5709) v(LB(P21)) = 0.1356.

The Upper Bound is updated to 0.1421, with xinc = x2. Now, L = {1, 2} and since

k ∈ argmin{v(LB(P2t)) : t ∈ L} = 1,
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the first subproblem is chosen to apply the branching rule and to partition the corresponding
hyperrectangle Ω1. This yields:

max
i=1,2

{θi} = 1.2523 and p = arg max
i=1,2

{θi} = 2.

Accordingly, Ω3 and Ω4 are constructed based on the partition of [l12, u
1
2] = [1, 5] into [l32, u

3
2] =

[1, 4.6576] and [l42, u
4
2] = [4.6576, 5], respectively:

Ω3 = {x : 1 ≤ x1 ≤ 1.6079, 1 ≤ x2 ≤ 4.6576},

Ω4 = {x : 1 ≤ x1 ≤ 1.6079, 4.6576 ≤ x2 ≤ 5}.
The solution to LB(P23) is as follows:

x3 = (1.5686, 4.6575) y3 = (2.4830, 21.6929)
α1 = 24.1759 β1 = 3.5764
v3 = (0.7738, 1.6575, 0.4797) v(LB(P23)) = 0.1421 = UB.

Consequently, the node corresponding to subproblem LB(P23) is fathomed. Hence, L is updated
to {2} and LB(P24) is solved, producing the following solution:

x4 = (1.5880, 4.7563) y4 = (2.5335, 22.6460)
α4 = 25.1795 β4 = 3.6906
v4 = (0.6557, 1.7563, 0.4198) v(LB(P24)) = 0.1410.

The upper bound is updated to 0.1412 with xinc = x4. Thus, L = {2, 4} and LB(P22) is the next
subproblem that is selected to continue the search, because

v(LB(P22)) = min{v(LB(P22)), v(LB(P24))}
= min{0.1356, 0.1410}
= 0.1356.

Now, max{θi} = 1.1810 and p = 2, and proceeding as above, the partition of Ω2 results in

Ω5 = {x : 1.6079 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 4.6790},

Ω6 = {x : 1.6079 ≤ x1 ≤ 5, 4.6790 ≤ x2 ≤ 5}.
Since v(LB(P25)) = 0.1418 is greater than the upper bound, this node is fathomed. The optimal
value to LB(P26) is v(LB(P26)) = 0.1408. Hence, L is updated to L = {4, 6}. The next
subproblem to be picked for branching is LB(P26). Now max{θi} = 0.1356, p = 1 and from the
partition of Ω6, we obtain:

Ω7 = {x : 1.6079 ≤ x1 ≤ 1.6483, 4.6790 ≤ x2 ≤ 5},

Ω8 = {x : 1.6483 ≤ x1 ≤ 5, 4.6790 ≤ x2 ≤ 5}.
The optimal values of v(LB(P27)) and v(LB(P28)) are respectively 0.1411 and 0.1415. Since this
last value is greater than the upper bound, we only include node 7 in L, which yields L = {4, 7}.
This process continues until a global minimum is found. The search tree in Figure 2 indicates
how the algorithm has performed in order to find such a global minimum. For each node, the
optimal value of the lower bound problem (LB), the upper bound (UB), when it is updated in
that node, and the optimal solution x = (x1, x2) of the corresponding relaxation are shown. In
the right-upper corner of each box (node), we indicate the order in which each node is selected
from the queue L. The number appearing at the top of each box shows the order in which each
node is inspected. The value of θ is given presented on the right of each box.

The search inspects 16 nodes, but only 7 are introduced in the queue L for branching. The
variable that induced the partition of Ωk for each branch is also depicted in Figure 2. The optimal
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Figure 2: Graphical representation for the solution of the illustrative example.

solution obtained is the incumbent solution corresponding to the last update of the upper bound
(0.1412), which is given by x4 = (1.5880, 4.7563). The optimal correction of the matrix [A,−b],
as given by (7) and (8), is

[H, p] = − 1
26.1441




0.0251
0.0672
0.0161


 [

1.5880 4.75633 1
]

=



−0.03983 −0.1193 0.0251
−0.1067 −0.3195 0.0672
−0.0255 −0.0764 0.0161


 .

Thus, the corrected linear system is



−1.0398 x1 − 1.1193 x2 ≤ −6.9749
−0.1067 x1 + 0.6805 x2 ≤ 3.0672

1.9745 x1 − 1.0764 x2 ≤ −1.9839.

As expected, upon the substitution of (x1, x2) = (1.5880, 4.7563) the inequalities are verified to
be satisfied as equalities.

4 Computational experience

In order to test the performance of the algorithm we report some computational results for a set of
infeasible linear systems of the type {x ∈ Rn : Ax ≤ b, l ≤ x ≤ u}, where A and b are respectively
a matrix having m rows and n columns and a vector of size m, both with real coefficients that
were randomly generated. Column “total-vars” represents the actual number of variables in the
subproblem at each iteration. Table 1 summarizes the main characteristics of the test problems.
All the tests have been performed on a Pentium(R) 4, CPU 2.60 Ghz, 512 Mb RAM computer.
The optimization toolbox of Matlab was used to find the lower bounds. The tolerance parameter
ε defined in subsection 3.4 was set to 10−5.

Table 2 reports the following information for each test problem:

Optimum: the optimal value;
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Problems n m total-vars li ui

Pro4 to Pro5 5 10 22 1 5
Pro6 to Pro10 10 20 42 1 5
Pro11 to Pro15 15 30 62 1 5
Pro16 to Pro20 20 40 82 1 5

Table 1: Dimension of test problems.

Best− iter: iteration at which the optimal value was obtained;

Max− queue: the maximal size of queue L;

Nodes: the total number of problems analyzed;

Time: the total CPU time in seconds.

Problem Optimum Best-iter Max-queue Nodes Time

Pro4 157.6815 7 2 7 27.1023
Pro5 262.8295 8 3 8 48.1560
Pro6 315.1673 8 2 8 116.4530
Pro7 214.8733 35 8 36 749.8290
Pro8 2.1870e+003 1 1 1 12.7500
Pro9 149.3485 24 5 24 267.2040
Pro10 250.8688 20 5 21 438.7810
Pro11 396.0443 21 6 21 596.1250
Pro12 1.1305e+003 6 2 6 292.6710
Pro13 679.4864 15 5 15 1237.9010
Pro14 756.9513 11 4 11 792.0940
Pro15 364.4506 358 87 358 4.0702e+004
Pro16 1.1215e+003 40 17 40 8.4770e+003
Pro17 1.0930e+003 45 18 45 6.0519e+003
Pro18 1.7509e+003 15 5 15 3.0759e+003
Pro19 1.1046e+003 34 13 34 5.3618e+003
Pro20 944.7827 249 80 249 4.3561e+003

Table 2: Computational results.

The analysis of the results shows that we have been able to solve problems of medium size with
a reasonable computational effort. Although we address in this paper a problem different from the
one solved in [5], as no lower and upper limits were included in the set X in [5], we can still make
some comparisons with the enumerative procedure discussed there. The algorithm introduced in
this paper is far better in terms of computational effort to find a global optimum.

5 Conclusions and future work

In this paper, we have proposed a method for obtaining an optimal solution for a nonlinear
nonconvex program that arises in a total least squares approach for finding a correction of an
infeasible linear system of inequalities. Using its KKT conditions, we have obtained an equivalent
formulation that was processed by a new global optimization branch-and-bound algorithm. This
procedure exploits the Reformulation–Linearization Convexification Technique (RLT) to convexify
a relaxation for deriving lower bounds on the optimal value of the original problem. Together with
a framework to obtain upper bounds, we developed a tree search procedure based on a partitioning
of the domain of the original variables. Computational experience showed that the approach was
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successful for handling medium-scale problems. This is not too restrictive, especially considering
the application of this theory in the context of infeasible problem corrections. In many of these
cases, we are required to maintain some constraints unchanged, and so, the nonlinear problem we
formulate is defined only over the remaining constraints. Also, this formulation could be applied
to Irreducible Inconsistent Systems (IIS) as identified in postoptimality analyses [8], where each
IIS might involve only a relatively small subset of the original LP constraints.

We would like to point out the importance of finding global optimal corrections, for instance,
in the framework of Constraint Satisfaction Techniques, as in other contexts. When dealing with
real models, it is essential to make as small changes as possible, in order to mitigate the risk of
invalidating the corrected model.

The solution of problems of this type with other definitions for the compact set X is a useful
topic for future investigation. We also recommend considering a partitioning of the constraints
into two groups, namely, soft and hard constraints, where the set of hard constraints is assumed
to be invariant and cannot be corrected. This situation is typical in the analysis of problems that
arise in real-life applications.
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