
The joint characterization of discrete and

continuous ’waiting times’ through their

reciprocal relationships

Carlos A. Coelho 1,∗

aThe New University of Lisbon – Faculty of Sciences and Technology –
Mathematics Department (cmac@fct.unl.pt)

Abstract
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events in the group that not C, given that we waited for a length y, waiting for r1
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the observation unit, or the case in which it may be rather common in the group
and easy to identify.
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1 Introduction

Let us suppose that we know that a given disease or a given defect occurs
with a probability p among other diseases or defects which form a well defined
’group’, which we are interested in. The questions we raise are: will we be
able, under just very mild assumptions on the distribution of such diseases
or defects, to compute the waiting times for a given number of events in the
whole group, given that we expect a given number r of occurrences of disease
or defect C, and the probabilities of the number of overall occurrences of the
diseases or defects in that ’group’ by just observing the waiting times for a
few occurrences of the disease or defect C? Situations where the event C is
taken to be the easiest one to spot or correctly identify or otherwise situations
where it is one of the rarest in the group, or occurs hidden, or is just not easy
to identify or yet its occurrence a given number of times kills or disables the
observation unit are studied.

An interpretation of the distributions of the waiting times is given in terms of
mixtures for several cases.

As a side result, the Negative Binomial distribution arises as a mixing of gen-
eralized Gamma mixtures of discrete confluent hypergeometric distributions.

In Appendix B is settled down the notation used for the distributions in the
paper and there is also a brief summary of some of their interrelationships.

2 The main results

2.1 The Negative Binomial mixture of generalized Gammas and the Negative
Binomial as a mixing of confluent hypergeometric distributions

Hereon we will call the occurrence of the event C a ’success’. The r.v. X will
represent the number of failures till the r-th success, that is the r-th event C,
and the r.v. Y will represent the waiting time till the r1-th event of the group
of events we are interested in, given that we expect r events C.

Theorem 1 Let X be the number of failures till the r-th success, being p the
probability of success in the population, that is, let

X ∼ NB(r, p) .

Then, if Y given X =x has the distribution of the power 1/β (β∈IR\{0}) of
the ’waiting time’ for the (r1+x)-th event (r1 > 0) from a Poisson distribution
with rate λ, that is, if

(Y |X = x) ∼ G (r1 + x, λ, β) ,
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then the marginal distribution of Y is a Negative Binomial mixture of gener-
alized Gammas, which has p.d.f. (probability density function)

fY (y) =
|β|λr1

Γ(r1)
e−λyβ

yβr1−1 pr1
1F1

(
r, r1; λyβ(1− p)

)
,

which for r1 > r is the p.d.f of the power 1/β of the sum of two independent
r.v.s Z1 and Z2, where Z1 has the distribution of the ’waiting time’ for the (r1−
r)-th event from a Poisson distribution with rate λ and Z2 has the distribution
of the ’waiting time’ for the r-th event from a Poisson distribution with rate
λp, that is, where

Z1 ∼ G(r1 − r, λ) and Z2 ∼ G(r, λp) .

Moreover, X given Y = y has a discrete Kummer confluent hypergeometric
distribution.

Proof: If

X ∼ NB(r, p) and (Y |X = x) ∼ G(r1 + x, λ) ,

with 0 < p < 1, λ > 0, r1, r ∈ IN and x = 0, 1 . . ., then

fX,Y (x, y) = fY |X=x(y) fX(x)

=
|β|λr1+x

Γ(r1 + x)
e−λyβ

yβ(r1+x)−1
(
r + x− 1

x

)
pr (1− p)x ,

(1)

where we should notice that it is required that r1 > 0, since x = 0, 1, . . ., and
the shape parameter of the conditional Gamma distribution of Y |X = x has
to be positive. But then the marginal p.d.f. of Y is obtained, by summing over
x = 0, 1, . . ., giving rise to what we may call a Negative Binomial mixture
of generalized Gammas, that is, a mixture of G(r1 + x, λ, β) distributions
(x = 0, 1, . . .), with Negative Binomial weights,

fY (y) = pr e−λyβ
∞∑

x=0

|β|λr1+x

Γ(r1 + x)
yβ(r1+x)−1 Γ(r + x)

Γ(r) x!
(1− p)x

=
pr |β|λr1 e−λyβ

yβr1−1

Γ(r1)

Γ(r1)

Γ(r)

∞∑

x=0

Γ(r + x)

Γ(r1 + x)

(λyβ(1− p))x

x!
︸ ︷︷ ︸

1F1

(
r,r1;λyβ(1−p)

)

=
|β|λr1

Γ(r1)
e−λyβ

yβr1−1 pr
1F1

(
r, r1; λyβ(1− p)

)

(2)
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which for r1 > r, when compared with the p.d.f. in (B.1) in Appendix B, may
be seen as the p.d.f. of the power 1/β of the sum of two independent Gamma
r.v.s, say Z1 and Z2, with

Z1 ∼ G(r1 − r, λ) , Z2 ∼ G(r, λp) .

Then it is easy to obtain the conditional p.m.f. (probability mass function) of
X given Y = y, as

fX|Y =y(x) =
fX,Y (x, y)

fY (y)
=

|β|λr1+x

Γ(r1+x)
e−λyβ

yβ(r1+x)−1

(
r+x−1

x

)
pr (1− p)x

|β| λr1

Γ(r1)
pr e−λyβ yβr1−1

1F1

(
r, r1; λyβ(1− p)

)

=

Γ(r+x)
Γ(r)

Γ(r1)
Γ(r1+x)

(
λyβ(1−p)

)x

x!

1F1

(
r, r1; λyβ(1− p)

) , (0 < p < 1,
λ, y>0; r1, r∈IN
x = 0, 1, . . . )

(3)

that is a Kummer confluent hypergeometric distribution (see Definition 11 in
Appendix B).

We may note that in all the above, mainly if we write
(

r1+x−1

x

)
as Γ(r1+x)

Γ(r1) x!
it is

indeed not required neither r1 nor r to be integers, but only positive reals. 2

Results concerning the marginal moments of Y and the conditional moments
of X, given Y = y, may be analyzed in Appendix A.

We may note that for r1 > r with r1, r ∈ IN the distribution of Y is also a
particular Generalized Integer Gamma distribution (Coelho, 1998) of depth 2
whose p.d.f., using finite sums, may be written as

fY (y) = K

[
e−λy

r1−r∑

k=1

c1,ky
k−1 + e−λpy

r∑

k=1

c2,ky
k−1

]

and whose c.d.f. (cumulative distribution function) may be written as

FY (y) = 1−K


e−λy

r1−r∑

k=1

c1,k(k − 1)!
k−1∑

j=0

yj

j!λk−j

+ e−λpy
r∑

k=1

c2,k(k − 1)!
k−1∑

j=0

yj

j!(λp)k−j



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with
K = λr1−r(λp)r = λr1pr ,

and

ci,r∗i =
1

Γ(r∗i )
(λ3−i − λi) , i = 1, 2

and, for k = 1, . . . , r∗i − 1,

ci,r∗i−k =
1

k

k∑

j=1

(r∗i − k − 1 + j)!

(r∗i − k − 1)!
r∗3−i (λi − λ3−i)

−j ci,r∗i−(k−j) , i = 1, 2

with
r∗1 = r1 − r , r∗2 = r , λ1 = λ , λ2 = λp .

Taking the reverse result, that is, assuming as known the conditional distri-
bution of X given Y = y, given by (3) above, and the marginal distribution
of Y , given by (2) above, we may obtain the Negative Binomial distribution
as a mixing of confluent hypergeometric distributions. For β = 1 the result
is similar to the one from Bhattacharya (1966) and for β = 1 and r1 = r it
yields the well known result from Greenwood and Yule (1920) on obtaining the
Negative Binomial distribution as a Gamma mixing of Poisson distributions,
so that we may see this result as extending both of the above results.

Corollary 2 If

fX|Y =y(x) =
Γ(r + x) Γ(r1)

Γ(r) Γ(r1 + x)

(
λyβ(1− p)

)x

x!

1

1F1

(
r, r1; λyβ(1− p)

)

and Y is (marginally) a Negative Binomial mixture of G(r1 + x, λ, β) distri-
butions, or more precisely, if Y is a mixture of G(r1 + x, λ, β) (x = 0, 1, . . .),
distributions with weights given by a Negative Binomial distribution with pa-
rameters r ∈ IN and p, then X has a (marginal) Negative Binomial distribu-
tion with parameters r and p.

In particular, if r1 = r, in which case (see Corollary 3 in subsection 2.2)

(X|Y = y) ∼ P (λyβ(1− p)) and Y ∼ Γ(r1, λp, β) ,

we still have
X ∼ NB(r, p) ,

what for β = 1 is Greenwood and Yule (1920) result on obtaining the Negative
Binomial distribution as a Gamma mixing of Poissons.

Proof: The proof is very easy since in this case we have the joint p.d.f. of X
and Y given by

fX,Y (x, y) = fX|Y =y(x) fY (y)
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that is (1) in the proof of Theorem 1, so that

fX(x) =

∞∫

0

|β|λr1+x

Γ(r1 + x)
e−λyβ

yβ(r1+x)−1 dy

︸ ︷︷ ︸
=1

(
r + x− 1

x

)
pr(1− p)x . 2

This result where, as it may be seen in the next subsection, the distribution of
Y may be regarded as a mixture of generalized Gamma distributions extends
the results of Bhattacharya (1966), which is similar to the result above for
β = 1, and the results of Chukwu and Gupta (1989) who obtained a Negative
Binomial distribution through a generalized Gamma mixing of generalized
Poissons, where the definitions of such distributions are slightly different from
the ones used here.

2.2 Particular cases and interpretation of the distribution of Y in terms of
mixtures

Particular cases of interest are:

i) If r1 > r, as we saw in the proof of Theorem 1, the marginal distribution
of Y may be seen as the distribution of the power 1/β of the sum of two
independent Gamma r.v.s. But in this case, if r1, r ∈ IN , we may write

1F1(r, r1, θ) = (−1)r (r1 − 1)!

θr1−1

[
r1−r−1∑

k=0

θk

Γ(r) k!

Γ(r1 − 1− k)

Γ(r1 − r − k)

− eθ
r−1∑

k=0

(−θ)k

Γ(r − k) k!

Γ(r1 − 1− k)

Γ(r1 − r)

]
,

so that, after some small rearrangements, the p.d.f. of Y may be written
as

fY (y) =
r1−r∑

k=1

|β|λk

Γ(k)
e−λyβ

yβk−1

︸ ︷︷ ︸
p.d.f. of G(k,λ,β)

(−p)r

(1−p)r1−k

(
r1−k−1

r−1

)

+
r∑

k=1

|β|(λp)k

Γ(k)
e−λpyβ

yβk−1

︸ ︷︷ ︸
p.d.f. of G(k,λp,β)

(−p)r−k

(1−p)r1−k

(
r1−k−1
r1−r−1

)

that is the p.d.f. of a mixture of r1 generalized Gamma r.v.s, r1 − r of

which are G(k, λ, β) with weights (−p)r

(1−p)r1−k

(
r1−k−1

r−1

)
(k=1, . . . , r1−r) and
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r of them are G(k, λp, β) with weights (−p)r−k

(1−p)r1−k

(
r1−k−1
r1−r−1

)
(k = 1, . . . , r).

We should note that this is actually a mixture with improper weights
since although they add up to 1, some of them are always negative while
some or all of them may have an absolute value greater than 1, being a
noticeable fact that we may express the power 1/β of the sum of two inde-
pendent Gamma r.v.s as a mixture of generalized Gamma r.v.s. For k = 1
such distributions are indeed Weibull distributions, since then they are
the distribution of the power 1/β of Exponential r.v.s. For some examples
of weights we may look at Table 1.

Table 1. Examples of ’weights’ for the mixture yielding the
distribution of Y

r1 r p ’weights’

5 4 1/4 1/81; -4/81, 4/27, -4/9, 4/3

5 3 1/4 -4/27, -1/27; 16/27, -32/27, 16/9

5 4 1/2 1; -2, 2, -2, 2

5 3 1/2 -6, -1; 12, -8, 4

5 4 3/4 81; -108, 36, -12, 4

5 3 3/4 -324, -27; 432, -96, 16

ii) If r = 1, X has a Geometric marginal distribution with probability pa-
rameter 0 < p < 1 and X given Y = y has a hyper-Poisson distribution
(Bardwell and Crow, 1964), which, assuming r1 ∈ IN , is actually a Pois-
son distribution displaced by r1−1 (see Appendix B, right after Definition
11). In this case, according to i), the distribution of Y is a mixture of
r1−1 r.v.s G(k, λ, β) with improper weights −p

(1−p)r1−k (k = 1, . . . , r1−1)

and one G(1, λp, β) (that is a Weibull distribution) with weight 1
(1−p)r1−1 .

iii) If r1 ≤ r we cannot any longer interpret the distribution of Y as the
distribution of the sum of two independent Gamma random variables
but we may still see the distribution of Y as a mixture, since now, for
r1 ≤ r, with r1, r ∈ IN , we may write

1F1(r, r1; θ) = (r1 − 1)! eθ
r−r1∑

k=0

θk

(k+r1−1)!

(
r−r1

k

)
,

and thus the p.d.f. of Y may be written as

fY (y) =
r−r1∑

k=0

|β|λr1+k

Γ(r1 + k)
e−λpyβ

pr1+k yβ(r1+k)−1

︸ ︷︷ ︸
p.d.f. of G(r1+k,λp,β)

(
r−r1

k

)
pr−r1−k(1− p)k
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that is clearly a Binomial mixture of r − r1 + 1 G(r1 + k, λp, β) r.v.s

(k = 0, . . . , r−r1) with weights given by a Binomial distribution with
parameters r − r1 and p.

iv) If r1 = r, that is, if r + x is the number of events in the group we are
waiting for, given that x is the number of failures we know we have to
wait for till the r-th success, that is, if we wait for exactly r events C and
x non-C events, then the following Corollary is easy to establish.

Corollary 3 For r1 = r, Y has a generalized Gamma distribution with
shape parameter r, rate parameter λp and power parameter β and X given
Y = y has a Poisson distribution with parameter λyβ(1− p).

Proof: For r1 = r we have

1F1

(
r, r1; λyβ(1− p)

)
= eλyβ(1−p) (4)

so that the marginal p.d.f. of Y in (2) is, in this case,

fY (y) =
|β|λr

Γ(r)
pr e−λyβ

eλyβ(1−p) yr−1 =
|β|(λp)r

Γ(r)
e−λpyβ

yr−1

which is the p.d.f. of a r.v. with a G(r, λp, β) distribution. The conditional
distribution of X given Y = y is in this case a Poisson distribution with
parameter λyβ(1 − p), since, given (4) above and the equality of r1 and
r, we have the conditional p.m.f. of X, given Y = y, given by

fX|Y =y(x) =

(
λyβ(1− p)

)x

x!
e−λyβ(1−p) . 2

In this case it is as if the r.v. Z1 in Theorem 1 would vanish, remaining
only the r.v. Z2, what is also completely in agreement with the result
in iii) on the expression for the distribution of Y as a Binomial mix-
ture of Gamma r.v.s, since in this case the mixture would have just one
generalized Gamma r.v..

We should also note that in this case, taking the reciprocal result stated
in the above Corollary, the marginal Negative Binomial distribution of
X arises as a generalized Gamma mixing of Poissons with parameter
λY β(1 − p) where Y has a generalized Gamma distribution with shape
parameter r, rate parameter λp and power parameter β.

In Section 4 we will see under what conditions we get for Y a marginal
distribution that is a Poisson mixture of generalized Gamma distribu-
tions.

Anyway, we should note that in any of the 4 cases above, the marginal distri-
bution of Y is a Negative Binomial mixture of generalized Gamma r.v.s, being
remarkable the equivalence of this mixture to the mixtures that arise in each
one of the 4 cases above, namely the single generalized Gamma distribution
in case iv), where a Negative Binomial mixture with parameters r and p of
G(r + x, λ, β) (x = 0, 1, . . .) r.v.s yields a G(r, λp, β) r.v..
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3 Interpretation of the results through an example

Let C be a disease in a group of diseases we are interested in, and let p
(0 < p < 1) be the prevalence of disease C in that group, that is, the pro-
portion of occurrences of disease C among the occurrences of diseases in that
group. Let hereon G denote the set of events whose elements are occurrences
of diseases in our group of interest, C denote the set of events whose elements
are occurrences of disease C and let C denote the set of events whose elements
are occurrences of diseases in group G that are not cases of disease C. Then,

i) X ∼ NB(r, p) — X is the r.v. that represents the number of events in C,
this is, of diseases in the group, that not disease C (say ’failures’), that
occur till the r-th occurrence of disease C (X is sometimes called a ’discrete
waiting time’),

ii) (Y |X = x) ∼ Γ(r1 + x, λ, β) (r1 > 0) — given that X = x, that is, if we
know we have to wait for exactly x occurrences from other diseases that
not disease C till the r-th occurrence of disease C, (Y |X = x) is a r.v.
that represents the waiting time for the (r1 + x)-th occurrence of a disease
in the group of diseases we are interested in; we suppose that this waiting
time has the same distribution as the power 1/β of the waiting time for the
(r1 + x)-th event from a Poisson distribution with rate λ.

The marginal distribution of Y represents the distribution of the waiting time
for the r1-th occurrence of any disease in the group, given that we expect r
occurrences of disease C. Under the above assumptions,

if r1 > r,

iii) Y ∼ (G(r1−r, λ) + G(r, λp))1/β — ’in global terms’, that is, ’integrating’
over or considering all the possible values of x (which are 0, 1, . . .) and their
corresponding probabilities, the marginal distribution of the waiting time
for the r1-th occurrence of any disease in the group, given that we expect
r events C, is the same as the power 1/β of the sum of the waiting time
for the (r1 − r)-th event from a Poisson distribution with rate λ and the
waiting time for the r-th event from a Poisson distribution with rate λp.

but if r1 = r then

iv) Y ∼ (Γ(r, λp))1/β ≡ Γ(r, λp, β) — that is, in this case it is as if the ’first’
waiting time above would varnish and Y has just the distribution of the
power 1/β of the waiting time for the r-th event from a Poisson distribu-
tion with rate λp, that is a generalized Gamma distribution with shape
parameter r, rate parameter λp and power parameter β. In this situation
we wait exactly for r events of disease C. Accordingly, in this case the condi-
tional distribution of Y |X = x is exactly the waiting time for the (r +x)-th
event of disease in the group, where x is the number of occurrences of dis-
eases in the group that not disease C, till r-th occurrence of disease C, so
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that we waited exactly for r events of disease C to occur. All this is exactly
what ’common sense’ would tell us;

and if r1 < r,

v) then it is not too clear what ’common sense’ would tell us that the distri-
bution of Y will be in this case. Anyway, as shown in the previous section,
it is a mixture with Binomial weights with parameters r1 − r and p, of
G(r1 + k, λp, β) (k = 1, . . . , r1 − r) distributions. That is, in this case it is
as if the distribution of the waiting time for r1 < r events of disease in the
group was the distribution of the power 1/β of the waiting time for the r1-th
event from a Poisson distribution with rate λp, with probability pr1−r, plus
the power 1/β of the waiting time for the (r1 + 1)-th event from a Poisson
distribution with rate λp, with probability (r1 − r)pr1−r−1(1− p), plus, . . .,
plus the power 1/β of the waiting time for the r-th event from a Poisson
distribution with rate λp, with probability (1− p)r1−r.

We may note that in any of the above cases we always have, for β = 1,

E(Y ) = E [E(Y |X = x)|X ∼ NB(r, p)] = E
(

r1+x
λ

∣∣∣ X ∼ NB(r, p)
)

=
r1 + r(1+p)

p

λ
=

r1

λ
+

r(1− p)

λp
=

r1 − r

λ
+

r

λp
,

with
r1

λp
< E(Y ) < r

λp
if r1 < r and

max
(

r1

λ
, r

λp

)
< E(Y ) < r1

λp
if r1 > r .

The random variable (X|Y = y) is the number of events in C that we have
to wait for till the r-th event in C, given that we waited a ’length’ y for the
r1-th event in G. The conditional p.m.f. of X|Y = y gives the probability of
X assuming a given value x ∈ IN , given that we know that we had to wait a
’length’ y (of time) for the r1-th occurrence of a disease in the group, given
that we expected r occurrences of disease C.

Instead of the above example we may easily think of examples in industry: the
’success’ being to find a given type of defect (say C) on a copper wire, defect
that is known to occur with a probability p, among all types of defects, being
we interested in the distribution of Y , the length of wire till we find the r1-th
defect, or in the distribution of X|Y = y, that is the probabilities that, given
that we had to ’wait’ y length of wire for the r1-th defect of type C, what is
the probability that the overall number of defects that not of type C is x ∈ IN .
We may notice that once p is known or assumed as known, we may estimated
the probability of a given number of defects just by observing one given type
of defects, what is mostly useful in case the defect C is of a more noticeable
type or easier to observe or to detect with less error.
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The application of the results above to diseases in plants is straightforward,
as well as for example to waiting times say for buses, where we consider the
line of buses C, with a percentage p among all lines of buses, with the ’success’
being the passage at the point we are standing at of a bus from line C.

4 An interesting limit situation

An interesting limit situation occurs when we take p → 1 and r → ∞ with
r(1− p) = δ ∈ IR+ a constant. This would mean that, according to our main
example in section 3, we would be waiting for infinitely many buses from line
C to pass at our point and that such buses would tend to be the only ones in
circulation or that the disease we were interested in recording was far more
probable to occur then any other in its group of interest and that we were
waiting to record infinitely many of its occurrences.

It is well known that in this situation the marginal Negative Binomial distri-
bution of X tends in distribution to a Poisson distribution with parameter δ.
One would then expect that in this case the marginal distribution of Y would
tend to a Poisson mixture of generalized Gamma distributions. This is indeed
what happens. If we take into account that

lim
r→∞
p→1

r(1−p)=δ

pr
1F1

(
r, r1; λyβ(1− p)

)
= e−δ

0F1

(
r1, δλyβ

)

then, under this limit situation

lim
r→∞
p→1

r(1−p)=δ

fY (y) = lim
r→∞
p→1

r(1−p)=δ

|β|λr1

Γ(r1)
e−λyβ

yβr1−1 pr
1F1

(
r, r1; λyβ(1−p)

)

=
|β|λr1

Γ(r1)
e−λyβ

yβr1−1 e−δ
0F1

(
r, δλyβ

)

that is the p.d.f. of a non-central generalized Gamma distribution with non-
centrality parameter δ and shape parameter r, which is a Poisson mixture of
generalized Gamma distributions with shape parameters r + i (i = 0, 1, . . .),
rate parameter λ and power parameter β. Under this limit situation the con-
ditional p.m.f. of X given Y = y may be written as

lim
r→∞
p→1

r(1−p)=δ

fX|Y =y(x) = lim
r→∞
p→1

r(1−p)=δ

(
r + x− 1

x

)
pr(1− p)x Γ(r1)

Γ(r1+x)

(
λyβ

)x

pr
1F1 (r, r1; λyβ(1− p))

=
Γ(r1)

Γ(r1 + x)

(
λyβ

)x
δx

x!
e−δ

e−δ
0F1 (r, δλyβ)

=
Γ(r1)

Γ(r1 + x)

(
δλyβ

)x

x!

1

0F1 (r, δλyβ)
.
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We should note that these results are in complete accordance with the pre-
vious results, since for r > r1, we obtained, in subsection 2.2, the marginal
distribution of Y as a Binomial mixture of generalized Gamma distributions,
yielding under these limit conditions a Poisson mixture (with parameter δ) of
generalized Gamma distributions, that is the non-central generalized Gamma
distribution obtained as the limit distribution for Y .

If we further take δ → 0 then both the marginal and the conditional distri-
butions of X tend to degenerate distributions with all the probability con-
centrated at x = 0 and the marginal distribution of Y tends to a central gen-
eralized Gamma distribution with shape parameter r, rate parameter λ and
power parameter β, that was the same as the conditional distribution of Y
given X = x, that is, in this extreme limit situation, X would be no longer a
r.v. and everything would work as if the distribution of Y was the only rel-
evant one. This result makes perfect sense and is like a closure for all these
distributions.

5 Conclusions and final remarks

Estimation procedures for the parameters in the marginal distribution of Y
and the conditional distribution of X are to be developed and studied, both
when p is assumed known and not known.

A crude two step estimation procedure may however be easily designed. One
may use, for fixed r, the usual estimator p̂ = r

X+r
for p, based on a random

sample from the marginal Negative Binomial distribution for X, of the number
of events in C till the r-th event C. Then, in a second step one may estimate
through the method of moments the parameters r, λ and β from the waiting
times y, based on a sample of a given size, by setting r1 = 1, computing the
first three raw sample moments and equating them to the expressions for the
corresponding population moments of Y given in Appendix A. This procedure
seems to work rather well for r1 = 1 and this way, by just waiting for the first
event in the group, we will be able to estimate the parameters r, λ and β.
Then, with the estimate of r in hands we may think of re-estimating p. We
may this way by just observing r1 = 1 event in the group and measuring the
waiting time till it happens estimate r, that is, how many events C we were
expecting, what is mainly useful when the event C is rare in the group, it
happens in a hidden way or a given number of these events kills or disables
the observation unit, as it commonly happens with diseases in plants.

An interesting fact is that whatever is the relation between r1 and r, we always
have for β = 1, E(Y ) = r1−r

λ
+ r

λp
, a result that may be easily obtained from the

conditional expectation of Y given X = x or even directly from the expression
for E(Y h) in AppendixA, with some more calculation. We may then note that
for r1 < r it is as if the waiting time was right censored.

12



Appendices

A Expressions for the moments of Y and of X|Y = y

Given the marginal distribution of Y and the conditional distribution of X
given Y = y, in Theorem 1, after some little calculation the h-th raw moment
of Y may be written as

E
(
Y h

)
=

Γ
(
r1 + h

β

)

Γ (r1)

1

λh/β

︸ ︷︷ ︸
h-thmoment of G(r1,λ,β)

pr
2F1

(
r, r1 +

h

β
; r1; 1− p

)

where we may note that the first two terms define the h-th raw moment of a
generalized Gamma distribution with shape parameter r1, rate parameter λ
and power parameter β. For r, r1 ∈ IN we may use the fact that the distribution
of Y may be expressed as a mixture, and using the results in subsection 2.2
and the fact that the h-th raw moment of a G(r, λ, β) distribution is given by

Γ
(
r + h

β

)

Γ(r)
λ−h/β ,

to express the h-th raw moment of Y as

E
(
Y h

)
=

r1−r∑

k=1

(−p)r

(1−p)r1−k

(
r1−k−1

r−1

) Γ
(
k+ h

β

)

Γ(k)
λ−h/β

+
r∑

k=1

(−p)r−k

(1−p)r1−k

(
r1−k−1
r1−r−1

) Γ
(
k+ h

β

)

Γ(k)
(λp)−h/β , for r1 >r,

or as

E
(
Y h

)
=

r−r1∑

k=0

(
r−r1

k

)
pr−r1−k(1−p)k

Γ
(
r1+k+ h

β

)

Γ(r1+k)
(λp)−h/β , for r≥r1 .

On the other hand, after some calculations, it is possible to express the h-th
raw moment of X, given Y =y as

E
(
Xh|Y =y

)
=

1

1F1 (r, r1; λyβ(1−p))

h∑

k=1

th,k

(
λyβ(1−p)

)k Γ(r+k) Γ(r1)

Γ(r) Γ(r1+k)
1F1

(
r+k, r1+k; λyβ(1−p)

)

13



where, for h = 2, 3, . . . and k ∈ {1, . . . , h},

th,k = k th−1,k + th−1,k−1 with t1,1 = 1 and th,k = 0





k > h

h = 0 or k = 0

and where for r, r1 ∈ IN we may use the expressions for 1F1(·, ·; ·) in subsection
2.2. If one wants to get a look at the structure of the values of th,k, such values
are displayed in Table 2, for h = 1, . . . , 10. We may note that in fact for any
h ∈ IN , th,1 = t1,1 = 1.

Table 2. Values of th,k for h = 1, . . . , 10, with k ∈ {1, . . . , h} running from
the left to the right.

h

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

10 1 511 9330 34105 42525 22827 5880 750 45 1

B Definition of some distributions used in the paper

Since notation for some distributions may vary slightly, in this Appendix we
will establish some notation and a couple of results needed in the paper.

Definition 4 We will say that the discrete r.v. X has a Negative Binomial
distribution with parameters r ∈ IN and p ∈]0, 1[ if and only if the p.m.f.
(probability mass function) of X is

fX(x) = P (X = x) =
(
x + r − 1

x

)
pr (1− p)x , x = 0, 1, . . . .

We will denote this fact by

X ∼ NB(r, p) .

The r.v. X represents the number of failures till the r-th success in a sequence
of independent Bernoulli trials with probability of success p.

14



The above Negative Binomial distribution is sometimes called a discrete ’wait-
ing time’ distribution. We may also notice that in this distribution if we write

Γ(x+ r)/(Γ(r) Γ(x+ 1)) instead of
(

x + r − 1
x

)
, r is no longer required to be

an integer.

Definition 5 We will say that the discrete r.v. Y has a Poisson distribution
with parameter λ(> 0) if and only if the p.m.f. of Y is

fY (y) = P (Y = y) =
e−λ λy

y!
, y = 0, 1, . . . .

We will denote this fact by

Y ∼ P (λ) .

It is a well known fact that if X ∼ NB(r, p) and if r → ∞ and p → 1, such
that r(1− p) = δ ∈ IR+, then the distribution of X tends weakly to a Poisson
distribution with parameter δ.

Let us consider the event A and let Y be the number of events A in a given
interval of length t. Then, a well-known fact is that if Y ∼ P (λt) and X is the
’waiting time’ for the r-th event A, then X has a Gamma distribution with
shape parameter r and rate parameter λ.

Definition 6 We will say that the continuous r.v. X has a Gamma distri-
bution with shape parameter r and rate parameter λ if and only if the p.d.f.
(probability density function) of X is

fX(x) =
λr

Γ(r)
e−λx xr−1 , r, λ > 0; x > 0 .

We will denote this fact by

X ∼ G(r, λ) .

Lemma 7 If

X1 ∼ G(r1, λ1) and X2 ∼ G(r2, λ2)

are two independent r.v.s, where λ1 6= λ2, then

Z = X1 + X2
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has p.d.f.

fZ(z) =
λr1

1 λr2
2

Γ(r1 + r2)
e−λ1z zr1+r2−1

1F1 (r2, r1 + r2; (λ1 − λ2)z)

=
λr1

1 λr2
2

Γ(r1 + r2)
e−λ2z zr1+r2−1

1F1 (r1, r1 + r2; (λ2 − λ1)z)

(B.1)

where

1F1(a, b; x) =
Γ(b)

Γ(b− a) Γ(a)

1∫

0

ext ta−1(1− t)b−a−1 dt

=
Γ(b)

Γ(a)

∞∑

i=0

Γ(a + i)

Γ(b + i)

xi

i!

is the Kummer confluent hypergeometric function. Then Y = Z1/β, (β 6= 0),
has p.d.f.

fY (y)=
|β|λr1

1 λr2
2

Γ(r1) Γ(r2)
e−λ1yβ

yβ(r1+r2−1)
1F1

(
r2, r1 + r2; (λ1 − λ2)y

β
)

=
|β|λr1

1 λr2
2

Γ(r1) Γ(r2)
e−λ2yβ

yβ(r1+r2−1)
1F1

(
r1, r1 + r2; (λ2 − λ1)y

β
)

.

(B.2)

Proof: Given the independence of X1 and X2, their joint p.d.f. is simply

fX1,X2
(x1, x2) =

λr1
1 λr2

2

Γ(r1) Γ(r2)
e−λ1x1−λ2x2 xr1−1

1 xr2−1
2

and thus, if Z = X1 + X2,

fZ(z) =
λr1

1 λr2
2

Γ(r1) Γ(r2)
e−λ1z

z∫

0

e−(λ2−λ1)x2 xr2−1
2 (z − x2)

r1−1 dx2

where, using (2) and the change of variable y = x2/z,

z∫

0

e−(λ2−λ1)x2 xr2−1
2 (z − x2)

r1−1 dx2

=

1∫

0

e(λ1−λ2)zy zr2−1 yr2−1 (1− y)r1−1 zr1−1 z dy

= zr1+r2−1 Γ(r1) Γ(r2)

Γ(r1 + r2)
1F1

(
r2, r1 + r2; (λ1 − λ2)z

)

so that fZ(z) turns out given by the first expression in (1). Using the identity

1F1(a, b; kx) = ekx
1F1(b− a, b;−kx)
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we obtain the second expression in (1). Making in (1) the transformation of
variable y = z1/β ⇔ z = yβ, with d

dy
z = βzβ−1, we obtain the p.d.f.s in (2). 2

Definition 8 We will say that the continuous r.v. Y has a generalized Gamma
distribution with shape parameter r, rate parameter λ and power parameter β
if and only if the p.d.f. of Y is

fY (y) =
|β|λr

Γ(r)
e−λyβ

yβr−1 , β ∈ IR\{0} , r, λ > 0; y > 0

(that is, Y β has a G(r, λ) distribution).

We will denote this fact by

Y ∼ G(r, λ, β) .

We should note that if X ∼ G(r, λ), then Y = X1/β has a G(r, λ, β) distribu-
tion, or vice-versa, if Y ∼ G(r, λ, β) then Y β ∼ G(r, λ).

We should also note that we use a slightly different notation and nomenclature
from the one used by Stacy and Mihran (1965) and Lawless (1982).

Definition 9We will say that the continuous r.v. X has a non-central Gamma
distribution with shape parameter r, rate parameter λ and non-centrality pa-
rameter δ if and only if the p.d.f. of X is

fX(x) =
λr

Γ(r)
e−λx xr−1 e−δλ

0F1(r; δλ
2x)

where

0F1(a; x) =
∞∑

i=0

Γ(a)

Γ(a + i)

xi

i!
.

We will denote this fact by

X ∼ Γ(r, λ; δ) .

The p.d.f. of X may be seen either as a Poisson mixture of Gamma distribu-
tions or as the posterior distribution of X when

(X|Y = y) ∼ Γ(r + y, λ) and Y ∼ P (δλ) ,

since then we would have

fX,Y (x, y) = fX|Y =y(x) fY (y)

=
λr+y

Γ(r + y)
e−λx xr+y−1 e−δλ (δλ)y

y!
, λ, r > 0

y = 0, 1, . . .
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and thus

fX(x) =
∞∑

y=0

e−δλ (δλ)y

y!

λr+y

Γ(r + y)
e−λx xr+y−1

︸ ︷︷ ︸
p.d.f. of Γ(r+y,λ)

(B.3)

what is the p.d.f. of a mixture of distributions Γ(r+y, λ), (y = 0, 1, 2, . . .), with
Poisson weights given by a Poisson distribution with parameter δλ. Expression
(3) above may then be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 e−δλ

∞∑

y=0

Γ(r)

Γ(r + y)

(δλ2)y xy

y!
︸ ︷︷ ︸

=0F1(r;δλ2x)

.

If δ = 0, then X will have a central or usual Gamma distribution with shape
parameter r and rate parameter λ.

We will for short say that Y is a mixture of Xi (i = 1, 2, . . .) if and only if

fY (y) =
∞∑

i=0

fXi
(y)

where fY (·) is the p.d.f. or the p.m.f. of Y and fXi
(·) is correspondingly the

p.d.f. or p.m.f. of Xi (i = 0, 1, 2, . . .).

But then, if Z = Y 1/β and Wi = X
1/β
i ,

fZ(z) = fY

(
zβ

)
βzβ−1

= βzβ−1
∞∑

i=0

fXi

(
zβ

)
=

∞∑

i=0

fXi

(
zβ

)
βzβ−1 =

∞∑

i=0

fWi
(z)

that is, Z will be a mixture of Wi = Xβ
i , or in other words, the distribution

of the power of a mixture is the mixture of the powers.

Definition 10 We will say that the continuous r.v. Y has a non-central gen-
eralized Gamma distribution with shape parameter r, rate parameter λ, power
parameter β and non-centrality parameter δ if and only if the p.d.f. of Y is

fY (y) =
|β|λr

Γ(r)
e−λyβ

yβr−1 e−δλ
0F1(r; δλ

2yβ) .

We will denote this fact by

Y ∼ Γ(r, λ, β; δ) .
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According to the remark above, the distribution of Y may be seen either as
a Poisson mixture of generalized Gamma distributions Γ(r + i, λ, β), (i =
0, 1, 2, . . .), or as the p.d.f. of the the r.v. Y = X1/β where X ∼ Γ(r, λ; δ).

If δ = 0, then Y will have a central generalized Gamma distribution with shape
parameter r, rate parameter λ and power parameter β.

Definition 11 We will say that the discrete r.v. X has a Kummer confluent
hypergeometric distribution with parameters r, r1 and θ if and only if its c.d.f.
(cumulative distribution function) is

FX(x) = P [X ≤ x] =
1

1F1(r, r1; θ)

x∑

i=0

Γ(r + i)

Γ(r)

Γ(r1)

Γ(r1 + i)

θi

i!

x = 0, 1, . . .

r1, r, θ > 0,

its p.m.f. being

fX(x) = P [X = x] =
1

1F1(r, r1; θ)

Γ(r + x)

Γ(r)

Γ(r1)

Γ(r1 + x)

θx

x!
.

These distributions which are in fact particular cases of the wider Kemp fam-
ily of generalized hypergeometric probability distributions (Kemp, 1968a,b),
were first studied by Hall (1956) and Bhattacharya (1966) respectively in the
contexts of birth-and-death processes at equilibrium and accident proneness.
Particular cases of the confluent hypergeometric distribution are:

i) for r1 = r, the Poisson distribution with parameter θ, since then

1F1(r, r1; θ) = 1F1(r, r; θ) = eθ

and thus

fX(x) =
θx

x!
e−θ ;

ii) for r = 1, the hyper-Poisson distribution of Bardwell and Crow (1964)
with p.m.f.

fX(x) =
1

1F1(1, r1; θ)

Γ(r1)

Γ(r1 + x)
θx

which is a generalization of the Poisson distribution since for r1 = 1 it
gives, according to the stated in i) above, the Poisson distribution with
parameter θ, while for r1 ∈ IN it gives what is sometimes called a left
truncated Poisson distribution but should be rather called a right shifted
Poisson distribution, with a shift of r1 − 1, since for r1 ∈ IN ,

1F1(1, r1; θ) =
(r1 − 1)! eθ

θr1−1


1−

r1−2∑

j=0

θj e−θ

j!



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so that we have in this case

fX(x) =

θx+r1−1

(x + r1 − 1)!
e−θ

1−
r1−2∑

j=0

θj e−θ

j!

, x = 0, 1, . . .

(x + r1 − 1 = r1 − 1, r1, r1 + 1, . . .) .

References

Bardwell, G. E. and Crow, E. L., 1964. A two-parameter family of hyper-
Poisson distributions, Journal of the American Statistical Association, 59,
133-141.

Bhattacharya, S. K., 1966. Confluent hypergeometric distributions of discrete
type with applications to accident proneness, Bulletin of the Calcutta Sta-
tistical Association, 15, 20-31.

Chukwu, W. I. E. and Gupta, D., 1989. On mixing generalized Poisson with
generalized Gamma distribution, Metron, 47, 314-318.

Coelho, C. A., 1998. The generalized integer Gamma distribution – a basis for
distributions in Multivariate Analysis, Journal of Multivariate Statistics,
64, 86-102.

Greenwood, M. and Yule, G. U., 1920. An inquiry into the nature of frequency
distributions representative of multiple happenings with particular reference
to the occurrence of multiple attacks of disease or of repeated accidents,
Journal of the Royal Statistical Society, Series A, 83, 255-279.

Hall, W. J., 1956. Some hypergeometric series distributions occurring in
birth-and-death processes at equilibrium (abstract), Annals of Mathemati-
cal Statistics, 27, 221.

Johnson, N. L., Kotz, S. and Kemp, A. W., 1993. Univariate Discrete Distri-
butions. 2nd. ed., J. Wiley & Sons, Inc., New York.

Kemp, A. W., 1968a. Studies in Univariate Discrete Distribution Theory Based
on the Generalized Hypergeometric Function and Associated Differential
Equations, Ph.D. Thesis, The Queen’s University of Belfast, Belfast, 191pp.

Kemp, A. W., 1968b. A wide class of discrete distributions and the associated
differential equations, Sankhỹa, Series A, 30, 401-410.
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