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In this paper a measure of proximity of distributions, when moments are known, is
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vs. approximated). The measure may be applied to compare asymptotic and near-
exact approximations to distributions, in situations where although being known
the exact moments, the exact distribution is not known or the expression for its
probability density function is not known or too complicated to handle. In this
paper the measure is applied to compare newly proposed asymptotic and near-
exact approximations to the distribution of the Wilks Lambda statistic when both
groups of variables have an odd number of variables. This measure is also applied
to the study of several cases of telescopic near-exact approximations to the exact
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Integer Gamma distributions.
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1 Introduction

The Wilks Λ statistic is the well known statistic used to test the independence
between two sets of jointly normally distributed variables (Wilks, 1932, 1935).

Let x be a p ×1 vector of variables with a joint multivariate Normal distribu-
tion, split into two subvectors

x = [x′1, x
′
2]
′ ∼ Np

(
µ, Σ

)
,

with p = p1+p2, where pk is the number of variables in xk (k = 1, 2). Further,
let µ be the population mean vector

µ =
[
µ′

1
, µ′

2

]′
,

and Σ the population variance-covariance matrix, with

Σ =


 Σ11 Σ12

Σ21 Σ22


 .

The Wilks Λ statistic is then defined as

Λ =
|V |

|V11| |V22|

where V is either the MLE of Σ or the sample variance-covariance matrix of
x, and Vkk either the MLE of Σkk or the sample variance-covariance matrix of
xk (k = 1, 2). For a sample of size n, the Wilks Λ statistic is the (2/n)th power
of the likelihood ratio test statistic to test the null hypothesis of independence
of the two sets of variables, that is,

H0 : Σ = diag (Σ11, Σ22) . (1)

Under the null hypothesis (1) the Wilks Λ statistic has the same distribution
as

∏p1
j=1 Yj, where, for a sample of size n+1, with n ≥ p, Yj are p1 independent

Beta random variables with parameters (n+1−p2−j)/2 and p2/2 (Anderson,
1958, Theorem 9.3.3). Then, for a sample of size n + 1, we may write the h-th
moment of Λ, under (1), as

E
(
Λh

)
=

p1∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−p2−j

2
+ h

)

Γ
(

n+1−j
2

+ h
)

Γ
(

n+1−p2−j
2

) . (2)
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Considering the random variable W = − log Λ, for a sample of size n + 1, its
characteristic function is given by

φW (t) = E
(
eitW

)
= E

(
Λ−it

)
=

p1∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−p2−j

2
− it

)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−p2−j
2

) ,

where i =
√−1 and t ∈ IR.

Taking this characteristic function as a basis we propose several asymptotic
and near-exact distributions for W . We then show how their performance and
proximity to the exact distribution may be evaluated by using the measure of
proximity between distributions proposed in section 3.

2 Approximations based on moments

2.1 Asymptotic distributions

We will consider two different approaches to the problem of approximating
the exact characteristic function of W = − log Λ. In the first approach φW (t)
is taken as a whole, leading to asymptotic distributions. In this case, we will
approximate the whole φW (t) by φW ′(t), the characteristic function of the
random variable W ′, in such a way that their first g derivatives with respect
to t at t = 0, that is, the first moments of both random variables W and W ′, are
the same. If the distribution of W ′ depends on g parameters, say θ1, θ2, . . . , θg,
the approximation is made by solving the system of g non-linear equations of
the type

E[W i] = E[W
′i] (i = 1, . . . , g)

for θ1, θ2, . . . , θg.

The asymptotic distributions we propose for the Wilks Λ statistic (and corre-
sponding abbreviations used) are: a Gamma distribution (G), a Generalized
Gamma distribution (GG), a Mixture of 2 Gamma distributions with common
rate parameter λ (M2Gλ), a Mixture of 2 Generalized Gamma distributions
with common λ and common power parameter β (M2GGλβ), a Mixture of 2
Gamma distributions with common shape parameter r (M2Gr), a Mixture of
2 Generalized Gamma distributions with common r (M2GGr) and a Mixture
of 3 Gamma distributions with common λ (M3Gλ).

In addition to these distributions we will use, as a reference, the Anderson
(1958) and Rao (1948) asymptotic distributions described in subsection 2.3.
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In order to clarify the nomenclature used: we say that the random variable Y
has a Generalized Gamma distribution, Y ∼ G(r, λ, β), with shape parameter
r > 0, rate parameter λ > 0 and power parameter β ∈ IR\{0}, if its p.d.f. may
be written as

fY (y) =
| β |λr

Γ(r)
e−λ yβ

yβr−1 (y > 0) .

For β = 1 the random variable Y has a common Gamma distribution with
shape parameter r and rate parameter λ, denoted as Y ∼ G(r, λ).

2.2 Near-exact distributions

The second approach, which we call ’telescopic approach’ will lead to near-
exact distributions. In this case we will split the characteristic function cor-
responding to the situation where both p1 and p2 are odd in the following
way

φW (t) =
p1∏

j=1

Γ
(

n+1−j
2

)
Γ
(

n+1−p2−j
2

− it
)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−p2−j
2

)

=
Γ

(
n
2

)
Γ
(

n
2
− s

2
−it

)

Γ
(

n
2
− s

2

)
Γ
(

n
2
−it

)
Γ
(

n
2
− s

2

)
Γ
(

n−p2

2
−it

)

Γ
(

n
2
− s

2
−it

)
Γ
(

n−p2

2

)
p1−1∏

j=1

Γ
(

n−j
2

)
Γ

(
n−p2−j

2
− it

)

Γ
(

n−j
2
− it

)
Γ

(
n−p2−j

2

)

=
Γ

(
n
2

)
Γ

(
n
2
− s

2
− it

)

Γ
(

n
2
− s

2

)
Γ

(
n
2
− it

)
p2−s

2
−1∏

j=0

(
n−p2

2
+ j

) (
n−p2

2
+ j − it

)−1

p1+p2−3∏

j=1

(
n−p1−p2+j

2

)rj
(

n−p1−p2+j
2

− it
)−rj

=
Γ

(
n
2

)
Γ

(
n
2
− s

2
− it

)

Γ
(

n
2
− s

2

)
Γ

(
n
2
− it

)

︸ ︷︷ ︸
φ

W∗ (t)

p1+p2−3∏

j=1

(
n−p1−p2+j

2

)r∗j
(

n−p1−p2+j
2

− it
)−r∗j

(s = 1, 3, 5, . . . , p2) , (3)

where we used (6) and (21) in Coelho (2004), with

r∗j =





rj j = 1, . . . , p1 − 1 and

j = p1 + 2n + 1 (n = 0, . . . , (p2 − s− 4)/2)

rj + 1 j = p1 + 2n (n = 0, . . . , (p2 − s− 2)/2)

(4)
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with

rj =





hj j = 1, 2

rj−2 + hj j = 3, . . . , p1 + p2 − 3
(5)

where

hj =





1 j = 1, . . . , min(p1 − 1, p2)

0 j = 1 + min(p1 − 1, p2), . . . , max(p1 − 1, p2)

−1 j = 1 + max(p1 − 1, p2), . . . , p1 + p2 − 3

(6)

and then we will replace only φW ∗(t) by say φW ′′(t), while the remaining part
of φW (t) that corresponds to the characteristic function of a sum of p1 +
p2 − 3 independent Gamma random variables with integer shape parameters,
remains unchanged. Finally, we incorporate φW ′′(t) with the part of φW (t) that
was left unchanged. We call the resulting characteristic function a near-exact
characteristic function (see Coelho (2004)). The choice of φW ′′(t) is made with
two goals in mind:

- that the final characteristic function corresponds to a known and manage-
able c.d.f. (cumulative distribution function), so that the computation of
near-exact quantiles is possible;

- and that the approximation obtained is the best possible, in the sense that
the near-exact quantiles that it generates are the closest possible to the
exact ones.

Replacing φW ∗(t) by the characteristic function of a Gamma distribution that
matches the two first moments of W ∗ or by the characteristic function of a
mixture of two (or three) Gamma distributions with the same rate parameter
which matches the first four (or six) moments of W ∗, we obtain the following
near-exact distributions for W : a Generalized Near-Integer Gamma distribu-
tion (GNIG), a Mixture of 2 Generalized Near-Integer Gamma distributions
(M2GNIG), a Mixture of 3 Generalized Near-Integer Gamma distributions
(M3GNIG). See section 4 for an example.

In order to clarify the nomenclature used: we will say that the random variable
Z has a Generalized Integer Gamma distribution of depth g, with integer shape
parameters r1, . . . , rg and all different rate parameters λ1, . . . , λg ∈ IR+, with
p.d.f. and c.d.f. given in Coelho (1998) if its distribution is the distribution
of the sum of g independent Gamma random variables with integer shape
parameters and all different rate parameters; we will denote the fact that Z
has this distribution by Z ∼ GIG (r1, . . . , rg; λ1, . . . , λg) . We will say that
the random variable W has a Generalized Near-Integer Gamma distribution
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of depth g+1, with integer shape parameters r1, . . . , rg, r and rate parameters
λ1, . . . , λg, λ, with p.d.f. and c.d.f. given in Coelho (2004) if its distribution is
the distribution of the sum of two independent random variables, say

Z ∼ GIG (r1 , . . . , rg; λ1 , . . . , λg ) and X ∼ G(r, λ)

with λ 6= λj (j = 1, . . . , g).

2.3 Anderson and Rao Chi-square asymptotic distributions

Anderson (1958, Sec. 9.5) derived, under the null hypothesis of independence,
an asymptotic Chi-squared series distribution for the Wilks Λ statistic which
in the case of two groups with p1 and p2 variables may be expressed as

P (−m log Λ ≤ w) = P
(
χ2

f ≤ w
)

+

γ2

m2

[
P

(
χ2

f+4 ≤ w
)
− P

(
χ2

f ≤ w
)]

+ O
(
m−3

)
,
(7)

where χ2
f is a random variable with a Chi-squared distribution with f = p1p2

degrees of freedom,

γ2 =
p1p2

48

(
p2

1 + p2
2 − 5

)
, and m = n− p1 + p2 + 1

2
,

for a sample of size n + 1.

This result allows us to obtain

φ (t) =
(
1− γ2

m2

)
φχ2

f

(
t
m

)
+

γ2

m2
φχ2

f+4

(
t
m

)
,

where φχ2
f

is the characteristic function of a Chi-square random variable with f

degrees of freedom, as an approximate characteristic function for W = − log Λ.

Rao (1948) proposed for the Wilks Λ distribution the expansion

P (−m log Λ ≤ w) = P
(
χ2

f ≤ w
)

+ γ2

m2

[
P (χ2

f+4 ≤ w)− P (χ2
f ≤ w)

]

+ 1
m4

{
γ4

[
P

(
χ2

f+8 ≤ w
)
− P

(
χ2

f ≤ w
)]

−γ2
2

[
P

(
χ2

f+4 ≤ w
)
− P

(
χ2

f ≤ w
)]}

+ . . . ,

(8)
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where, again for a sample of size n + 1, f , γ2 and m are defined as above, and

γ4 =
γ2

2

2
+

p1p2

1920

[
3p4

1 + 3p4
2 + 10p2

1p
2
2 − 50

(
p2

1 + p2
2

)
+ 159

]
.

In fact this expansion is equivalent to the one in Anderson (1958, Sec. 8.6.2).
We may note that the expansion in (8) is actually the one in (7) with the
additional term in m−4.

Therefore, we may approximate the distribution of W = − log Λ by the dis-
tribution of a random variable with characteristic function

φ (t) =

(
1− γ2

m2
− γ4 + γ2

2

m4

)
φχ2

f

(
t
m

)

+

(
γ2

m2
− γ2

2

m4

)
φχ2

f+4

(
t
m

)
+

γ4

m4
φχ2

f+4

(
t
m

)
.

These two distributions, the Anderson asymptotic Chi-squared distribution
and Rao asymptotic Chi-squared distribution will be ahead denoted respec-
tively by ’And. Chi’ and ’Rao Chi’.

2.4 Exact distribution for p1 = 3 and odd p2

For p1 = 3 and odd p2, Alberto (1998) obtained the expressions for the exact
p.d.f. of Λ under the form

fΛ(x) = K x
n−p2−4

2




p2+1

2∑

j=1

c2j−1 Θ1(2j−1, x) xj− 1
2 +

p2−1

2∑

j=1

c2j Θ2(2j , x) x j




where

K =

∏p2
j=1 λj

B
(

n−p2−2
2

, p2

2

)

and

cj =
2p2−1

∏p2

i=1
i6=j

(i− j)
,

with

λj =
n− p2 − 2 + j

2
,
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and, for odd j,

Θ1(j, x) =
Γ

(
p2

2

)

Γ
(
p2

2
+ 1

) (1−x)
p2
2

x
j
2

+
Γ

(
p2

2

)

Γ
(
p2−j

2

)





p2−j−2

2∑

i=0

−
Γ

(
p2−j

2
− i

)

Γ
(
p2

2
+ 1− i

) (1−x)
p2
2
−i

x
j
2

+
2 (−1)

j+1
2

Γ
(

j
2

+ 1
)




j−1
2∑

i=0

(−1)i+1

1 + 2i

(1−x)
1
2
+i

x
1
2
−i

+ arcsin
√

1−x








and, for even j,

Θ2(j , x) =
Γ

(
p2

2

)

Γ
(

j
2

+ 1
)





j−2
2∑

i=0

(−1)i+2
Γ

(
j
2
− i

)

Γ
(

p2

2
− i

) x−
j
2

+ i(1−x)
p2−2

2
− i

+
2 (−1)

j+2
2

Γ
(

p2−j
2

)




p2−j−3

2∑

i=0

1

1+2i
(1−x)

1
2

+ i − arctanh
√

1−x








.

The c.d.f. has the form

FΛ(x) = 1 + 2 K

p2+1

2∑

j=1

c2j−1

n−p2+2j−3
x

n−p2+2j−3

2 Θ1 ( 2j − 1 , x)

+2 K

p2−1

2∑

j=1

c2j

n− p2 + 2j − 2
x

n−p2+2j−2

2 Θ2 (2j, x)− Θ3,4 (n, x)

Θ3,4(n, 0)
,

with

Θ3,4 (n, x) =





Θ3 (n, x) , n odd

Θ4 (n, x) , n even

where

Θ3 (n, x) = −2

n−p2−4

2∑

i=0

(−1)i

p2 + 2 i


(n−p2−4)/2

i


 (1− x)

p2
2

+i
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and

Θ4 (n, x) =
Γ

(
p2

2

)

Γ
(

n−2
2

)





p2−3

2∑

i=0

Γ
(

n−4
2
− i

)

Γ
(

p2

2
− i

) x
n−p2−2

2 (1− x)
p2−2

2
− i

−
Γ

(
n−p2−2

2

)

Γ
(

3
2

)




n−p2−3
2∑

i=1

(i− 1)!

2 Γ
(
i + 1

2

) xi− 1
2 (1− x)

1
2

+
1

Γ
(

1
2

) arcsin
√

1− x






 .

3 The measure of agreement or proximity between distributions

A measure of closeness or agreement between two distributions, developed
under the assumption of existence of both moment generating functions, is
used to access the quality of several approximations to the exact distribution.
Smaller values of this measure will be associated with better approximations
or smaller differences among quantiles (exact vs. approximated).

This measure is particularly useful when the moments are the only available
information on the exact distribution, in the sense that the p.d.f. and c.d.f.
expressions are not known or available.

We will take

MX(t) =
∞∑

i=0

M
(i)
X (0)

(t− 0)i

i!

as the exact m.g.f. of the random variable X and

NX(t) =
∞∑

i=0

N
(i)
X (0)

(t− 0)i

i!

as the approximate m.g.f. of X where M
(i)
X (0) and N

(i)
X (0) are respectively the

exact and approximate moments of order i of X.
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Then

1∫

−1

|MX(t)−NX(t) | dt =

1∫

−1

∣∣∣∣∣
∞∑

i=0

(
M

(i)
X (0)−N

(i)
X (0)

) (t− 0)i

i!

∣∣∣∣∣ dt

≤
1∫

−1

∞∑

i=0

∣∣∣∣∣
(
M

(i)
X (0)−N

(i)
X (0)

) (t− 0)i

i!

∣∣∣∣∣ dt

=
∞∑

i=0

∣∣∣ M (i)
X (0)−N

(i)
X (0)

∣∣∣
i!

1∫

−1

| t |i dt

︸ ︷︷ ︸
= 2

i+1

= 2
∞∑

i=0

∣∣∣ M (i)
X (0)−N

(i)
X (0)

∣∣∣
(i + 1)!

so that the measure of proximity between the two distributions corresponding
to the moment generating functions MX(t) and NX(t) we propose is

CM,N = 2
12∑

i=1

∣∣∣ M (i)
X (0)−N

(i)
X (0)

∣∣∣
(i + 1)!

.

The use of the value 12, as upper limit in the summation, is somewhat ar-
bitrary, but it seems to work rather well with most distributions. Moreover,
this value has to be larger than the highest moment order used in any of the
approximation processes (that is, larger than the highest moment order that
is set equal in both the exact and the approximate distributions), while on
the other hand this value has also to be kept at manageable levels. Also, even
somehow large deviations in the value of higher moments, for two distribu-
tions that match the previous moments, have little weight in characterizing
the difference between the two distributions as it is a fact that in the series
expansion of the moment generating function itself, the moments are weighted
by the inverse of the factorial of their order.

One could then think that since there are distributions that although being far
different have all moments equal, this measure may be not adequate. However,
in those situations at least one of the moment generating functions does not
exist, while the above measure was developed to be used only in situations
where both moment generating functions exist. We may note that these are
also the situations where we use it in this paper.
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4 The telescopic approach – an example

Let us considerer the particular case of two groups of variables, both with
an odd number of variables, say p1 = 3, p2 = 5, for a sample size n + 1 = 20.
Then from (3) we may write

φW (t) =
Γ

(
19
2

)
Γ

(
19
2
− s

2
− it

)

Γ
(

19
2
− s

2

)
Γ

(
19
2
− it

)

︸ ︷︷ ︸
φW1

(t)

5∏

j=1

(
11+j

2

)r∗j
(

11+j
2
− it

)−r∗j

︸ ︷︷ ︸
φW2

(t)

(s=1, 3, 5)

where W1 and W2 are independent random variables, W1 with a Logbeta
distribution and W2 with a Generalized Integer Gamma distribution.

Now, for example, setting s = 1, we approximate the distribution of W1 by a
mixture of three Gamma distributions with common rate parameter. For this
purpose we take the random variable X

fX(x) = π1 fX1(x) + π2 fX2(x) + π3 fX3(x),

0 < π1, π2, π3 < 1; π1 + π2 + π3 = 1

where Xi ∼ G ( ri , λ), (i = 1, 2, 3).

The characteristic function of X is then

φX(t) = π1 φX1(t) + π2 φX2(t) + π3 φX3(t),

where φXi
(t) = λri (λ− it)−ri , (i = 1, 2, 3).

The approximation process involves the numerical solution of the non-linear
system of equations

{
E

[
W i

1

]
= E

[
X i

]}
, i = 1, . . . , 6

where

E(Xh) = π1
Γ(r1+h)

Γ(r1)
λ−h + π2

Γ(r2+h)

Γ(r2)
λ−h + (1−π1−π2)

Γ(r3+h)

Γ(r3)
λ−h

11



and

E [W1] = 0.0570963984 E
[
W 4

1

]
= 0.0011123085

E
[
W 2

1

]
= 0.0097747249 E

[
W 5

1

]
= 0.0005703606

E
[
W 3

1

]
= 0.0027875098 E

[
W 6

1

]
= 0.0003572704 ,

in order to the variables r1, r2, r3, λ, π1 and π2. We found the solution

r1 = 0.5000007019 λ = 9.1226850665
r2 = 1.5003310118 π1 = 0.9795627920
r3 = 2.5151190734 π2 = 0.0004215669 .

From (4) through (6), the parameters for the distribution of W2 are [r∗1, r
∗
2, r

∗
3,

r∗4, r
∗
5] = [1, 1, 2, 1, 2] and [λ1, λ2, λ3, λ4, λ5] =

[
6, 13

2
, 7, 15

2
, 8

]
.

Finally, the distribution of W may be approximated by the distribution of W ′′,
which is a mixture of three Generalized Near-Integer Gamma distributions on
the above parameters

fW ′′ (w) = π1fW ′′
1

(w) + π2fW ′′
2

(w) + (1−π1−π2)fW ′′
3

(w)

where,

W ′′
i ∼ GNIG ( r∗1, r

∗
2, r

∗
3, r

∗
4, r

∗
5, ri ; λ1, λ2, λ3, λ4, λ5, λ) (i = 1, 2, 3) .

The first 12 moments of W and W ′ are given in Table 1

Table 1
First 12 moments of W and W ′′

h W W ′′

1 1.046656838007779 1.046656838007779
2 1.243295783912797 1.243295783912797
3 1.652949218731703 1.652949218731703
4 2.432329963684224 2.432329963684224
5 3.925619475588833 3.925619475588833
6 6.896395675726477 6.896395675726477
7 13.103213672642548 13.103213672643382
8 26.778571336764475 26.778571336772210
9 58.584411153518648 58.584411153556672

10 136.631861993942157 136.631861994045039
11 338.454697223175999 338.454697223039265
12 887.582559644207445 887.582559640090829

and therefore the calculated value of the proposed measure is

CW,W ′′ = 3.08× 10−7 .
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5 Analysis of the quality of several approximations

We will start with a few cases where the exact distribution is known in order
to assess the adequability of the proposed measure. These cases correspond
to situations where either at most one of the two groups of variables has an
odd number of variables, in which case the exact distribution is known to be
a Generalized Integer Gamma distribution (Coelho, 1998), or both groups of
variables have an odd number of variables, one of them with three variables,
situation where the exact p.d.f. and c.d.f. were given in subsection 2.4.

On Tables 3 through 8 are shown the results for cases where the exact distri-
bution is known to be a Generalized Integer Gamma distribution. In all these
cases the proposed measure of closeness between the exact and each of the
asymptotic distributions studied shows a very much adequate behaviour, with
smaller values corresponding to situations where the asymptotic quantiles lay
closer to the exact ones. Also, as expected, for a given number of variables,
higher values for the sample size, which is taken to be n + 1, correspond to
situations where the asymptotic approximations behave remarkably better,
with the proposed measure exhibiting remarkably lower values.

Thus, the proposed measure seems to be much adequate to evaluate and study
the closeness between two distributions, namely the exact and some approxi-
mate distribution.

The number of first moments that are equal between the exact and each
asymptotic distribution, varies among the asymptotic distributions used. These
numbers may be analyzed on Table 2.

Table 2
Number of moments equated for each asymptotic distribution

Distribution And.Chi Rao Chi G GG M2Gλ M2Gλβ M2GGλ M2Gr M2GGr M3Gλ

Mom.s equated 0 0 2 3 4 5 6 4 6 6

We should also notice that the measure penalizes a bit unfairly approxima-
tions that, like Rao’s asymptotic approximation, although having a very good
behaviour in terms of quantiles do not exactly match the first few moments.
However, since our main aim is to use the measure in situations where the
first moments of the two distributions (exact and approximate) match the
first moments, this is seen as a minor drawback.

On Tables 3 through 12, a practical measure of quantile comparison, defined as
∆ = − log10 |exact−approx.| is used to assess the closeness between the exact
q-quantile and a given approximate q-quantile giving an accurate measure of
the ’number’ of decimal places of agreement between them.

We may notice that the new proposed asymptotic approximations based on
mixtures perform much better than all the other ones.
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Table 3
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ, for n + 1=20, p1=3, p2=4.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 1.41496041 — 1.76677002 —
And. Chi 2.4E-04 1.41458589 3.4 1.76592575 3.1
Rao Chi 5.2E-06 1.41495369 5.2 1.76674565 4.6
G 4.9E-05 1.41477648 3.7 1.76523729 2.8
GG 1.5E-06 1.41505223 4.0 1.76675254 4.8
M2Gλ 3.1E-08 1.41496102 6.2 1.76678996 4.7
M2Gλβ 1.3E-09 1.41495826 5.7 1.76677059 6.2
M2GGλ 2.6E-11 1.41496046 7.3 1.76677050 6.3
M2Gr 1.2E-08 1.41496033 7.1 1.76677758 5.1
M2GGr 9.9E-11 1.41496056 6.8 1.76677174 5.8
M3Gλ 1.6E-11 1.41496048 7.2 1.76676977 6.6

Table 4
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ, for n + 1=100, p1=3, p2=4.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 0.2213782024775 — 0.2760413132696 —
And. Chi 1.0E-08 0.2213781662983 7.4 0.2760412303738 7.1
Rao Chi 4.4E-12 0.2213782024616 10.8 0.2760413132107 10.2
G 2.0E-09 0.2213774878849 6.1 0.2760354835173 5.2
GG 8.5E-12 0.2213785451225 6.5 0.2760412390316 7.1
M2Gλ 6.8E-16 0.2213782025958 9.9 0.2760413154297 8.7
M2Gλβ 6.0E-18 0.2213782021284 9.5 0.2760413134324 9.8
M2GGλ 8.3E-21 0.2213782024785 12.0 0.2760413132332 10.4
M2Gr 2.3E-16 0.2213782024766 12.0 0.2760413139894 9.1
M2GGr 2.6E-18 0.2213781971718 8.3 0.2760413073619 8.2
M3Gλ 1.5E-22 0.2213782024777 12.7 0.2760413132690 12.2

Table 5
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ, for n + 1=20, p1=3, p2=6.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 2.10668334 — 2.54662794 —
And. Chi 3.4E-03 2.10347794 2.5 2.54010972 2.2
Rao Chi 1.9E-04 2.10653010 3.8 2.54613372 3.3
G 3.6E-04 2.10599489 3.2 2.54252922 2.4
GG 1.3E-05 2.10686938 3.7 2.54652686 4.0
M2Gλ 7.3E-07 2.10669749 4.8 2.54672620 4.0
M2Gλβ 2.8E-08 2.10667626 5.1 2.54663326 5.3
M2GGλ 9.4E-10 2.10668421 6.1 2.54662938 5.8
M2Gr 3.3E-07 2.10668858 5.3 2.54667185 4.4
M2GGr 2.3E-09 2.10668513 5.7 2.54663153 5.4
M3Gλ 1.3E-09 2.10668359 6.6 2.54662492 5.5

Table 6
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ,for n + 1=100, p1=3, p2=6.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 0.3072618781222 — 0.3704607746731 —
And. Chi 6.6E-08 0.3072616498004 6.6 0.3704602899400 6.3
Rao Chi 6.2E-11 0.3072618778900 9.6 0.3704607738824 9.1
G 6.6E-09 0.3072597179070 5.7 0.3704482545381 4.9
GG 2.9E-11 0.3072624240150 6.3 0.3704604452252 6.5
M2Gλ 6.1E-15 0.3072618797337 8.8 0.3704607830926 8.1
M2Gλβ 5.1E-17 0.3072618771297 9.0 0.3704607758032 8.9
M2GGλ 3.5E-20 0.3072618781110 11.0 0.3704607747650 10.0
M2Gr 2.0E-15 0.3072618785338 9.4 0.3704607775950 8.5
M2GGr 8.9E-18 0.3072618714363 8.2 0.3704607711509 8.5
M3Gλ 3.4E-21 0.3072618781224 12.7 0.3704607746682 11.3
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Table 7
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ,for n + 1=30, p1=11, p2=10.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 8.07206786 — 8.81819450 —
And. Chi 2.8E+01 7.86932203 0.7 8.53716372 0.6
Rao Chi 8.5E+00 8.00534943 1.2 8.69901630 0.9
G 5.8E-01 8.06760389 2.4 8.80247348 1.8
GG 2.3E-02 8.07235216 3.5 8.81759167 3.2
M2Gλ 5.7E-03 8.07235326 3.5 8.81869267 3.3
M2Gλβ 1.3E-04 8.07205853 5.0 8.81823290 4.4
M2GGλ 4.3E-06 8.07206531 5.6 8.81819372 6.1
M2Gr 4.0E-03 8.07226426 3.7 8.81853797 3.5
M2GGr 2.9E-06 8.07206621 5.8 8.81819354 6.0
M3Gλ 3.4E-05 8.07204730 4.7 8.81817507 4.7

Table 8
Exact and asymptotic 0.95 and 0.99 quantiles for the negative
logarithm of the Wilks Λ,for n + 1=110, p1=11, p2=10.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 1.38532752850 — 1.50750956254 —
And. Chi 4.9E-05 1.38528205652 4.3 1.50743489965 4.1
Rao Chi 1.6E-07 1.38532709301 6.4 1.50750844529 6.0
G 3.9E-07 1.38530918563 4.7 1.50744823089 4.2
GG 1.7E-09 1.38532819342 6.2 1.50750775333 5.7
M2Gλ 6.4E-12 1.38532759861 7.2 1.50750964966 7.1
M2Gλβ 3.3E-14 1.38532752779 9.2 1.50750957412 7.9
M2GGλ 1.2E-16 1.38532752884 9.5 1.50750956235 9.7
M2Gr 2.7E-12 1.38532755750 7.5 1.50750960055 7.4
M2GGr 3.4E-16 1.38532752944 9.0 1.50750956208 9.3
M3Gλ 7.2E-17 1.38532752830 9.7 1.50750956251 10.5

Cases where both groups of variables have an odd number of variables are
shown on Tables 9 through 14. On Tables 9 through 12 we have p1 = 3, sit-
uation in which the exact distribution of the Wilks Λ statistic is known (see
subsection 2.4), being thus possible to compute the exact quantiles.

For all the cases it was also computed an estimate and a 0.95 confidence
interval for the true value of the quantile, by simulation, based on sample
sizes of 40000. For the computation of the confidence intervals we took as
references the works from David (1981) and Juritz, Juritz and Stephens (1983).
Let X(i) denote the ith order statistic or the ith smallest observation drawn
from a random sample of size n of a continuous random variable X. Then the
usual estimator of the pth quantile of X is given by X(k), with k = bnpc+ 1,
where b·c denotes the largest integer less than or equal to the argument. A
confidence interval for the pth quantile of X at level 1 − α may then be
given by

[
X(r), X(s)

]
, with r = −wz1−α/2 + np + 1/2 and s = wz1−α/2 + np +

1/2, where w = (np(1−p))1/2 and z1−α/2 denotes the 1 − α/2 quantile of the
standard Normal distribution. Simulations were carried out using programs in
Fortran language while in all cases quantile calculations were performed with
the software Mathematica.

On tables 9 through 14 we consider, besides the asymptotic distributions we
considered before, also the three near-exact distributions proposed, that is,
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the GNIG, M2GNIG and M3GNIG distributions, which match respectively
the first 2, 4 and 6 exact moments. We may see that for the same number of
moments equated, the near-exact distributions perform better than the new
proposed asymptotic distributions. This behaviour is even better for smaller
samples sizes. Also, as expected, better results are obtained for smaller values
of s, since in these cases more Exponential distibutions are considered in the
exact part of the characteristic function (see expression (3)).

Table 9
Exact and approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles
for the negative logarithm of the Wilks Λ, for n + 1=10, p1=3, p2=5.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 6.7089911416542 — 8.4582644671729 —
simulated —— 6.705 — 8.445 —
C.I. (95%) —— [6.656,6.755] — [8.355,8.593] —

And. Chi 4.8E+01 6.2085637108532 0.3 7.5638792765798 0.0
Rao Chi 3.4E+01 6.5162914259520 0.7 8.0018418051190 0.3
G 1.8E+01 6.6909840655388 1.7 8.3038721176926 0.8
GG 2.4E+00 6.7165234516414 2.1 8.4556415145674 2.6
M2Gλ 3.6E+00 6.7070878517524 2.7 8.4828207141137 1.6
M2Gλβ 3.5E-01 6.7078120677218 2.9 8.4580613998845 3.7
M2GGλ 1.3E-01 6.7095621212345 3.2 8.4593013306554 3.0
M2Gr 2.3E+00 6.7081883014781 3.1 8.4713370382770 1.9
M2GGr 1.3E-01 6.7095729822655 3.2 8.4592934009315 3.0

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 3.6E-01 6.7111294136457 2.7 8.4538438386052 2.4

GNIG s 1 9.9E-04 6.7090003202983 5.0 8.4582812314883 4.8
GNIG s 3 1.2E-02 6.7088917346415 4.0 8.4580649599037 3.7
GNIG s 5 3.2E-01 6.7070737420589 2.7 8.4533444311154 2.3
M2GNIG s 1 8.3E-07 6.7089911318020 8.0 8.4582644742046 8.2
M2GNIG s 3 1.0E-05 6.7089912746708 6.9 8.4582644553209 7.9
M2GNIG s 5 5.6E-03 6.7090472886933 4.3 8.4582975581782 4.5
M3GNIG s 1 8.0E-10 6.7089911416537 12.3 8.4582644672155 10.4
M3GNIG s 3 4.3E-09 6.7089911414853 9.8 8.4582644673813 9.7

←
−–

n
ea

r-
ex

a
ct

–−
→

M3GNIG s 5 6.1E-05 6.7089890549665 5.7 8.4582648088488 6.5

Table 10
Exact and approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles
for the negative logarithm of the Wilks Λ, for n + 1=100, p1=3, p2=5.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 0.264594184683306 — 0.323698431562899 —
simulated —— 0.264 — 0.323 —
C.I. (95%) —— (0.263, 0.266) — (0.320, 0.326) —

And. Chi 2.8E-08 0.264594087044116 7.0 0.323698217427613 6.7
Rao Chi 1.9E-11 0.264594184614804 10.2 0.323698431322362 9.6
G 3.8E-09 0.264592850646964 5.9 0.323689629446951 5.1
GG 1.6E-11 0.264594624278909 6.4 0.323698243894043 6.7
M2Gλ 2.2E-15 0.264594185277205 9.2 0.323698436071916 8.3
M2Gλβ 2.3E-17 0.264594184523652 9.8 0.323698429226675 8.6
M2GGλ 7.5E-19 0.264594183960291 9.1 0.323698430462757 9.0
M2Gr 7.4E-16 0.264594184805260 9.9 0.323698433101771 8.8
M2GGr 3.6E-19 0.264594184496738 9.7 0.323698430856647 9.2

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 8.1E-22 0.264594184683557 12.6 0.323698431560969 11.7

GNIG s 1 2.2E-11 0.264594193358092 8.1 0.323698483353111 7.3
GNIG s 3 1.2E-10 0.264594140389784 7.4 0.323698158746323 6.6
GNIG s 5 8.7E-10 0.264593868497863 6.5 0.323696417963287 5.7
M2GNIG s 1 2.0E-17 0.264594184672349 11.0 0.323698431526710 10.4
M2GNIG s 3 1.2E-18 0.264594184683695 12.4 0.323698431565334 11.6
M2GNIG s 5 1.6E-16 0.264594184730511 10.3 0.323698431885880 9.5
M3GNIG s 1 1.3E-23 0.264594184683314 14.1 0.323698431562926 13.6
M3GNIG s 3 1.3E-25 0.264594184683311 14.3 0.323698431562853 13.3

←
−–

n
ea

r-
ex

a
ct

–−
→

M3GNIG s 5 1.9E-23 0.264594184683311 14.3 0.323698431562853 13.3
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Table 11
Exact and approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles
for the negative logarithm of the Wilks Λ, for n + 1=12, p1=3, p2=7.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 7.5563906371236 — 9.3209508307624 —
simulated —— 7.552 — 9.350 —
C.I. (95%) —— [7.512,7.598] — [9.269,9.471] —

And. Chi 1.2E+02 6.6969820614062 0.1 7.9149418104934 -0.1
Rao Chi 9.1E+01 7.1201213804645 0.4 8.4457891880740 0.1
G 3.7E+01 7.5282553706282 1.6 9.1282511671657 0.7
GG 4.7E+00 7.5643363938111 2.1 9.3167705797482 2.4
M2Gλ 7.9E+00 7.5559428347287 3.3 9.3568933666326 1.4
M2Gλβ 6.5E-01 7.5549645992545 2.8 9.3210779012135 3.9
M2GGλ 2.4E-01 7.5571869553321 3.1 9.3219971962984 3.0
M2Gr 5.4E+00 7.5565165709236 3.9 9.3419788564664 1.7
M2GGr 2.4E-01 7.5571905650425 3.1 9.3219937240073 3.0

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 8.2E-01 7.5595393947748 2.5 9.3124081029349 2.1

GNIG s 1 5.3E-04 7.5563933232183 5.6 9.3209555200579 5.3
GNIG s 3 5.1E-03 7.5563660209249 4.6 9.3209058907006 4.3
GNIG s 5 8.6E-02 7.5560173936531 3.4 9.3202081381260 3.1
GNIG s 7 9.5E-01 7.5532577822142 2.5 9.3131519511081 2.1
M2GNIG s 1 2.5E-07 7.5563906357339 8.9 9.3209508321093 8.9
M2GNIG s 3 1.1E-06 7.5563906446707 8.1 9.3209508270416 8.4
M2GNIG s 5 3.6E-04 7.5563931709283 5.6 9.3209502991137 6.3
M2GNIG s 7 2.2E-02 7.5565188004597 3.9 9.3209502991137 6.3
M3GNIG s 1 7.5E-11 7.5563906371242 12.2 9.3209508307644 11.7
M3GNIG s 3 2.9E-10 7.5563906371214 11.7 9.3209508307715 11.0
M3GNIG s 5 9.3E-07 7.5563906183723 7.7 9.3209508577397 7.6←

− —
—

n
ea

r-
ex

a
ct

—
—
−→

M3GNIG s 7 3.3E-04 7.5563833772081 5.1 9.3209536184152 5.6

Table 12
Exact and approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles
for the negative logarithm of the Wilks Λ, for n + 1=100, p1=3, p2=7.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— 0.34963177881533837 — 0.41667044442505882 —
simulated —— 0.349 — 0.417 —
C.I. (95%) —— (0.347, 0.351) — (0.413, 0.422) —

And. Chi 1.4E-07 0.34963129839497500 6.3 0.41666945052869902 6.0
Rao Chi 1.8E-10 0.34963177814536319 9.2 0.41667044219064030 8.7
G 1.1E-08 0.34962856829230487 5.5 0.41665342543524892 4.8
GG 4.7E-11 0.34963243933719237 6.2 0.41666994444668912 6.3
M2Gλ 1.5E-14 0.34963178229615840 8.5 0.41667045889982562 7.8
M2Gλβ 1.2E-16 0.34963177734022679 8.8 0.41667044653196839 8.7
M2GGλ 3.9E-15 0.34963389197517162 5.7 0.41667183585979366 5.9
M2Gr 5.0E-15 0.34963177978962683 9.0 0.41667044952245305 8.3
M2GGr 3.0E-19 0.34963177873110812 10.1 0.41667044423447363 9.7

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 1.2E-20 0.34963177881472260 12.2 0.41667044441412605 11.0

GNIG s 1 2.4E-11 0.34963178643439657 8.1 0.41667048125110169 7.4
GNIG s 3 1.2E-10 0.34963173946375277 7.4 0.41667025015084576 6.7
GNIG s 5 9.2E-10 0.34963149436601338 6.5 0.41666900823776035 5.8
GNIG s 7 2.9E-09 0.34963089801992367 6.1 0.41666588983813641 5.3
M2GNIG s 1 2.1E-17 0.34963177880795905 11.1 0.41667044440804687 10.8
M2GNIG s 3 1.3E-18 0.34963177881568070 12.4 0.41667044442625868 11.9
M2GNIG s 5 1.7E-16 0.34963177885880965 10.4 0.41667044458536435 9.8
M2GNIG s 7 1.5E-15 0.34963177919159566 9.4 0.41667044589328374 8.8
M3GNIG s 1 1.1E-25 0.34963177881533839 16.7 0.41667044442505892 16.0
M3GNIG s 3 1.4E-25 0.34963177881533836 17.0 0.41667044442505870 15.9
M3GNIG s 5 2.0E-23 0.34963177881533659 14.7 0.41667044442504109 13.8←
− —

—
n
ea

r-
ex

a
ct

—
—
−→

M3GNIG s 7 5.4E-22 0.34963177881530098 13.4 0.41667044442458288 12.3

Tables 13 and 14, relating to cases where the exact distribution is not available
in a manageable form, adequate to the expedit computation of quantiles, the
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exact value of the quantile, in the original definition of ∆, was replaced by the
most accurate available value for the quantile, that is the one from M3GNIG
with s = 1.

Table 13
Approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles for the
negative logarithm of the Wilks Λ, for n + 1=14, p1=7, p2=5.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— —— — —— —
simulated —— 9.675 — 11.439 —
C.I. (95%) —— [9.624,9.717] — [11.350,11.561] —

And. Chi 6.8E+02 8.4890336141875 -0.1 9.6921679433633 -0.3
Rao Chi 5.4E+02 8.9768080433686 0.2 10.2573461507777 -0.1
G 1.8E+02 9.6342770548545 1.4 11.2711555566127 0.7
GG 2.7E+01 9.6825992578045 2.0 11.4817255832348 2.2
M2Gλ 3.1E+01 9.6748133460895 2.6 11.5282852965651 1.4
M2Gλβ 2.8E+00 9.6703072675472 2.7 11.4887470412264 3.3
M2GGλ 1.1E-01 9.6720706945677 4.1 11.4879235086357 3.5
M2Gr 2.3E+01 9.6741328553340 2.7 11.5141768190870 1.6
M2GGr 5.6E-02 9.6721075790828 4.3 11.4880345293060 3.7

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 2.6E+00 9.6746726200182 2.6 11.4776927059223 2.0

GNIG s 1 8.6E-04 9.6721566375964 6.1 11.4882245589705 5.8
GNIG s 3 7.2E-03 9.6721487101512 5.2 11.4882098297589 4.9
GNIG s 5 9.7E-02 9.6720657949987 4.0 11.4880480769284 3.8
GNIG s 7 6.8E-01 9.6715752197697 3.2 11.4870003775728 2.9
M2GNIG s 1 2.1E-07 9.6721557721294 9.6 11.4882229888862 9.6
M2GNIG s 3 4.9E-07 9.6721557730395 9.2 11.4882229882286 9.4
M2GNIG s 5 1.2E-04 9.6721559469302 6.8 11.4882229087306 7.1
M2GNIG s 7 3.7E-03 9.6721612360931 5.3 11.4882221081721 6.1
M3GNIG s 1 1.8E-11 9.6721557723783 – 11.4882229886465 –
M3GNIG s 3 6.3E-11 9.6721557723782 13.0 11.4882229886469 12.4
M3GNIG s 5 8.7E-08 9.6721557721712 9.7 11.4882229893294 9.2←

− —
—

n
ea

r-
ex

a
ct

—
—
−→

M3GNIG s 7 1.3E-05 9.6721557147671 7.2 11.4882230804218 7.0

Table 14
Approximate (asymptotic and near-exact) 0.95 and 0.99 quantiles for the
negative logarithm of the Wilks Λ, for n + 1=100, p1=7, p2=5.

Distribution measure quant. 0.95 ∆ quant. 0.99 ∆

exact —— —— — —— —
simulated —— 0.538 — 0.624 —
C.I. (95%) —— (0.536, 0.541) — (0.619, 0.628) —

And. Chi 5.5E-07 0.538821905041529 5.8 0.620443393194623 5.5
Rao Chi 1.1E-09 0.538823517515221 8.4 0.620446420192520 7.9
G 2.8E-08 0.538818092966970 5.3 0.620423154273619 4.6
GG 1.3E-10 0.538824133065512 6.2 0.620445638656719 6.1
M2Gλ 7.9E-14 0.538823530494207 8.0 0.620446454153050 7.7
M2Gλβ 6.1E-16 0.538823520143052 8.9 0.620446435582440 8.4
M2GGλ 8.0E-18 0.538823520703127 9.1 0.620446431772011 10.1
M2Gr 2.8E-14 0.538823524453608 8.5 0.620446440157979 8.1
M2GGr 1.8E-17 0.538823519664298 8.7 0.620446432472145 9.2

←
− —

a
sy

m
p
to

ti
c

—
−→

M3Gλ 1.3E-19 0.538823521501927 11.1 0.620446431828845 10.7

GNIG s 1 2.7E-11 0.538823526980504 8.3 0.620446453633724 7.7
GNIG s 3 1.4E-10 0.538823493002319 7.5 0.620446316804102 6.9
GNIG s 5 1.0E-09 0.538823313489890 6.7 0.620445580426555 6.1
GNIG s 7 3.3E-09 0.538822870754379 6.2 0.620443728370592 5.6
M2GNIG s 1 2.4E-17 0.538823521506041 11.5 0.620446431842974 11.3
M2GNIG s 3 1.4E-18 0.538823521509501 12.7 0.620446431848493 12.4
M2GNIG s 5 1.9E-16 0.538823521532625 10.6 0.620446431899325 10.3
M2GNIG s 7 1.7E-15 0.538823521716441 9.7 0.620446432320557 9.3
M3GNIG s 1 1.3E-25 0.538823521509323 – 0.620446431848112 –
M3GNIG s 3 1.6E-25 0.538823521509312 14.0 0.620446431848208 13.0
M3GNIG s 5 2.3E-23 0.538823521509318 14.3 0.620446431848110 14.7←

− —
—

n
ea

r-
ex

a
ct

—
—
−→

M3GNIG s 7 6.2E-22 0.538823521509279 13.4 0.620446431848028 13.1
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6 Conclusions and Final Remarks

We have to stress the outstanding performance of the near-exact distributions
for small values of n, or should we rather say, for small values of n− p1 − p2,
namely for larger values of p1 + p2. Also, for smaller values of n− p1− p2, the
proposed asymptotic distributions based on mixtures perform better than any
of the other asymptotic distributions, while for large values of n the extraor-
dinary performance of the Rao asymptotic distribution is only supperated by
the near-exact distributions based on mixtures.

Considering asymptotic and near-exact distributions that equate a given num-
ber of exact moments, the near-exact distributions always have a much better
performance than the asymptotic distributions.

All the near-exact distributions perform better for smaller values of s, what
was really expected, given the methodology that supports the building of the
near-exact distributions.

We may also notice that in the near-exact approximations, φW ∗(t) in (3) does
not depend on the values of either p1 or p2, but only on the values of n, that
is, the sample size. This way, all the parameters of the near-exact distribution
corresponding to this part of the characteristic function, computed for a given
value of n, are valid for any combination of values of p1 and p2 such that
n > p1 + p2.

As already stated in the previous section, a minor drawback of the proposed
measure is that it penalizes a bit unfairly approximations that, like the An-
derson and Rao asymptotic distributions, do not equate moments. Anyway,
this is seen as a minor undesirable or objectionable feature since not only
this penalization seems to be rather moderate but also because we intend to
use this measure mainly in situations where the approximate (asymptotic or
near-exact) distributions equate a few of the first exact moments.

As an overall conclusion we may say that:

i) the newly proposed asymptotic and near-exact distributions, namely the
ones based on mixtures, are particularly adequate and useful for cases where
n− p1 − p2 is rather small;

ii) the proposed measure of closeness or agreement between two distributions
shows a good performance, generally with smaller values corresponding
to better approximations between the quantile values (exact vs. approxi-
mated); this way, in situations where the exact distribution is not known
(or the expressions for its p.d.f. or c.d.f. are not known, or being known
are too complicated for practical use), under the assumption of existence
of both the exact and approximate moment generating functions, this mea-
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sure may be a useful tool for evaluating the performance of asymptotic and
near-exact distributions.
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