
A Mixture of Generalized Integer Gamma

distributions as the exact distribution of the

product of an odd number of independent

Beta random variables. Applications

Carlos A. Coelho a,1,∗ Rui P. Alberto b,1 Lúıs M. Grilo c,1
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1 Introduction

Obtaining the exact distribution of the product of an odd number of indepen-
dent random variables with Beta distributions which have the first parameter
evolving by 1/2 and the same second parameter is an interesting and long-
standing problem. Besides, its solution would be useful since it would allow us
to obtain the exact distribution of a number of statistics, namely some of the
likelihood ratio statistics used in Multivariate Statistics (under the normality
assumptions). In this paper we will show how, starting from the expression of
the p.d.f. (probability density function) of a Logbeta random variable, that
is, a random variable whose exponential has a Beta distribution, we may ex-
press both the distribution of such random variable and the distribution of the
product of independent random variables with Beta distributions as mixtures
of GIG (Generalized Integer Gamma) distributions. The GIG distribution was
introduced by Coelho (1998).

In order to achieve this purpose we need to establish some notation and a
preliminary result.

2 A Preliminary Result

Let X have a Beta distribution with parameters a, b ∈ IR+ and let

Y = − log X .

We will say that the random variable Y has a Logbeta distribution with pa-
rameters a and b. The p.d.f. of Y is

fY (y) =
1

B(a, b)
e−ay

(
1− e−y

)b−1
.

We will next show how for non-integer b the distribution of Y may be expressed
as a mixture of Exponential or GIG distributions, which for b > 1 has improper
weights, that is, some of which are negative and/or greater than 1 in absolute
value, although always adding up to 1.

Hereon we will use the notation

X ∼ G(r, λ)

to denote the fact that the random variable X has a Gamma distribution with
shape parameter r and rate parameter λ, that is, that the p.d.f. of X is

fX(x) =
λr

Γ(r)
e−λx xr−1 ,
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and the notation

Z ∼ MG (pi; ri, λi; i = lb, . . . , ub)

to denote the fact that the distribution of the random variable Z is a mixture
with weights pi of Gamma distributions with shape parameters ri and rate
parameters λi for i = lb, . . . , ub, where if ub is ommitted it means that the
mixture is infinite, being then usually used the notation i = lb, lb + s, . . .,
where s is the step in i. Accordingly, we will also use the notation

W ∼ MGIG (pi; r1i, . . . , rgi; λ1i, . . . , λgi; i = lb, . . . , ub)

to denote the fact that the distribution of the random variable W is a mixture
with weights pi of GIG distributions of depth g, the i-th one of which has shape
parameters r1i, . . . , rgi and rate parameters λ1i, . . . , λgi, for i = lb, . . . , ub,
where once again, if ub is ommitted means that the mixture is infinite.

Theorem 1 Let

Y ∼ Logbeta(a, b) .

Then if b ∈ IN , the distribution of Y is a particular Generalized Integer
Gamma distribution of depth b with shape parameters all equal to 1 and rate
parameters a, a + 1, . . . , a + b− 1, that is

Y ∼ GIG
(

1, 1, . . . , 1︸ ︷︷ ︸
b

; a, a + 1, . . . , a + b− 1︸ ︷︷ ︸
b

)
,

and if b ∈ IR+\IN , with r = bbc and r∗ = b− r (where b·c denotes the floor of
the argument, that is, the largest integer that does not exceed the argument),
the distribution of Y is either an infinite mixture of Exponential distributions
or an infinite mixture of Generalized Integer Gamma distributions of depth
r + 1, more precisely, in this case we may write,

Y∼MG
(

Γ(1−b+j)

B(a, b) Γ(1−b) j! (a+j)
; 1, a+j; j =0, 1, . . .

)

≡MGIG
(

Γ(1−r∗+j)

B(a, r∗) Γ(1−r∗) j! (a+j)
; 1, . . . , 1︸ ︷︷ ︸

r+1

; a+r∗, . . . , a+b−1, a+j︸ ︷︷ ︸
r+1

;

j =0, 1, . . .
)

≡MGIG
(

Γ(1−r∗+j)

B(a+r, r∗) Γ(1−r∗) j! (a+r+j)
; 1, . . . , 1︸ ︷︷ ︸

r+1

; a, . . . , a+r−1, a+r+j︸ ︷︷ ︸
r+1

;

j =0, 1, . . .
)
.
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For b > 1 the first of these mixtures has improper weights, some of which are
negative and/or have absolute value greater than one, although always adding
up to 1, and some of which may have enormously large absolute values when
a is large.

Proof: Since for a, b ∈ IR+, if

X ∼ Beta(a, b)

then

E
(
Xh

)
=

Γ(a + b) Γ(a + h)

Γ(a) Γ(a + b + h)
,

the characteristic function of Y = − log X, for b ∈ IN , using i = (−1)1/2 and
the fact that for any complex a and integer n,

Γ(a + n)

Γ(a)
=

n−1∏

j=0

(a + j) , (1)

may be written as

ΦY (t) = E
[
eitY

]
= E

[
e−it log X

]

= E
[
X−it

]
=

Γ(a + b) Γ(a− it)

Γ(a) Γ(a + b− it)

=
b−1∏

j=0

(a + j) (a + j − it)−1

that is the characteristic function of a sum of b independent random variables
with Exponential distributions with parameters a + j (j = 0, . . . , b− 1). This
distribution is a GIG distribution of depth b with shape parameters all equal
to 1 and rate parameters a, a + 1, . . . , a + b− 1. This result had already been
obtained in Coelho (1998) but it is shown here for completeness so that we
may have in one only Theorem the results for b ∈ IN and b ∈ IR+\IN .

For b ∈ IR+\IN , since we know that for |x| < 1,

1F0(c; x) =
∞∑

j=0

Γ(c + j)

Γ(c)

xj

j!
= (1− x)−c ,

we may write, for y > 0,

(
1− e−y

)b−1
= 1F0

(
1− b; e−y

)
=

∞∑

j=0

Γ(1− b + j)

Γ(1− b)

(e−y)
j

j!
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so that the p.d.f. of Y may be written as

fY (y) =
1

B(a, b)
e−ay

∞∑

j=0

Γ(1− b + j)

Γ(1− b)

e−jy

j!

=
1

B(a, b)

1

Γ(1−b)

∞∑

j=0

Γ(1−b+j)

j!(a+j)
(a+j) e−(a+j)y

︸ ︷︷ ︸
p.d.f. of G(1,a+j)

=
∞∑

j=0

pj (a+j) e−(a+j)y

that is the p.d.f. of a mixture of G(1, a + j) (j = 0, 1, . . .) distributions, with
weights

pj =
1

B(a, b)

Γ(1− b + j)

Γ(1− b) j! (a + j)
(j = 0, 1, . . .) . (2)

That these weights add up to 1 it may be shown through the known relation
for the Gauss hypergeometric function

2F1(a, b; c; 1) =
∞∑

i=0

Γ(a + i) Γ(b + i) Γ(c)

Γ(a) Γ(b) Γ(c + i)

1

i!
=

Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)

so that

∞∑

i=0

Γ(1− b + i)

Γ(1− b)

1

i! (a + i)
=

∞∑

i=0

Γ(1− b + i)

Γ(1− b)

Γ(a + i)

Γ(a + i + 1)

1

i!

=
1

a

∞∑

i=0

Γ(1− b + i)

Γ(1− b)

Γ(a + i)

Γ(a)

Γ(a + 1)

Γ(a + 1 + i)

1

i!

=
1

a
2F1(1− b, a; a + 1; 1) =

1

a

Γ(a + 1) Γ(b)

Γ(a + b)

= B(a, b)

and thus

∞∑

j=0

1

B(a, b)

Γ(1− b + j)

Γ(1− b) j! (a + j)
= 1 .

We should note that for 0 < b < 1 all the weights are proper weights, that is,
they have values between 0 and 1, while for b > 1 some of them are negative
and/or greater than one in absolute value. In fact since

Γ(b) Γ(1− b) =
π

sin(πb)

the weights pj in (2) may be written as

pj =
sin(πb)

π

Γ(a + b)

Γ(a)

Γ(1− b + j)

j! (a + j)
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so that since for 0 < b < 1 we have 1−b+j > 0 (j = 0, 1, . . .) and sin(πb) > 0,
all the weights are positive and since they add up to 1, in this case

0 < pj < 1 , ∀j ∈ {0, 1, . . .} ,

while for b > 1, 1− b + j has some values negative so that both Γ(1− b + j)
and sin(πb) may either have positive or negative values, making some of the
weights pj positive and other negative, and since they add up to 1, some of
them will also have absolute values larger than 1.

Indeed even in the cases where b > 1 we may work through the character-
istic function of Y in order to obtain its distribution as a mixture of GIG
distributions with proper weights. In fact, let us first, for b ∈ IR+\IN , as a
consequence of the result above write the characteristic function of Y as a
mixture of characteristic functions of Gamma random variables, that is

ΦY (t) = E
[
eitY

]
=

Γ(a + b)

Γ(a)

Γ(a− it)

Γ(a + b− it)

=
1

B(a, b)

1

Γ(1− b)

∞∑

j=0

Γ(1− b + j)

j!(a + j)
(a + j) (a + j − it)−1 .

(3)

Let then Y be a random variable with a Logbeta distribution with parameters
a and b, where b > 1 and let r = bbc. Let further r∗ = b−r, so that b = r+r∗.
Then, using (1) and (3), we may write the characteristic function of Y as

ΦY (t)=E
[
eitY

]
=

Γ(a + b) Γ(a− it)

Γ(a) Γ(a + b− it)

=
Γ(a + r + r∗)

Γ(a + r∗)
Γ(a + r∗)

Γ(a)

Γ(a− it)

Γ(a + r∗ − it)

Γ(a + r∗ − it)

Γ(a + r + r∗ − it)

=
Γ(a + r∗)

Γ(a)

Γ(a− it)

Γ(a + r∗ − it)

r−1∏

k=0

(a + r∗ + k) (a + r∗ + k − it)−1

=
1

B(a, r∗)
1

Γ(1− r∗)

∞∑

j=0

Γ(1− r∗ + j)

j! (a + j)
(a + j)(a + j − it)−1

r−1∏

k=0

(a + r∗ + k) (a + r∗ + k − it)−1

that is the characteristic function of an infinite mixture of GIG distributions of
depth r+1 with all shape parameters equal to 1 and rate parameters a+r∗+k
(k = 0, . . . , r− 1) and the (r +1)-th equal to a+ j (j = 0, 1, . . .), with weights

1
B(a,r∗)

1
Γ(1−r∗)

Γ(1−r∗+j)
j! (a+j)

(j = 0, 1, . . .).
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Yet another way of decomposing the characteristic function of Y would be

ΦY (t)=E
[
eitY

]
=

Γ(a + b) Γ(a− it)

Γ(a) Γ(a + b− it)

=
Γ(a + r + r∗)

Γ(a + r)

Γ(a + r)

Γ(a)

Γ(a− it)

Γ(a + r − it)

Γ(a + r − it)

Γ(a + r + r∗ − it)

=
Γ(a + r + r∗)

Γ(a + r)

Γ(a + r − it)

Γ(a + r + r∗ − it)

r−1∏

k=0

(a + k) (a + k − it)−1

=
1

B(a + r, r∗)
1

Γ(1−r∗)

∞∑

j=0

Γ(1−r∗ + j)

j! (a+r+j)
(a+r+j)(a+r+j−it)−1

r−1∏

k=0

(a+k) (a+k−it)−1

yielding the characteristic function of an infinite mixture of GIG distributions
of depth r +1 with all shape parameters equal to 1 and rate parameters a+ k
(k = 0, . . . , r − 1) and the (r + 1)-th equal to a + r + j (j = 0, 1, . . .), with

weights 1
B(a+r,r∗)

1
Γ(1−r∗)

Γ(1−r∗+j)
j! (a+r+j)

(j = 0, 1, . . .). 2

Actually for the mixtures with proper weights, the sum of the first weights
declines as the value of the first parameter of the Logbeta whose character-
istic function is expressed as a sum grows large, while for the mixtures with
improper weights the absolute value of some of the weights grows enormously
as the value of that parameter also grows large. For both reasons it seems we
should try to express as a mixture Logbeta random variables with the first
parameter as small as possible and the second parameter with a value between
0 and 1.

3 The exact distribution of the product of an odd number of in-
dependent Beta random variables

We will use the notation

W ∼ MGIG (pi; r1i, . . . , rgi|r∗1i, . . . , r
∗
hi; λ1i, . . . , λgi|λ∗1i, . . . , λ

∗
hi;

i = lb1, . . . , ub1|i = lb2, . . . , ub2)

to denote that the distribution of W is a mixture, with weights pi, of GI
Gamma distributions of depth g, for i = lb1, . . . , ub1, and depth h, for i =
lb2, . . . , ub2, where if ub2 is missing it is taken as infinity.
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Theorem 2 Let p be an odd integer and let

Yj ∼ Beta

(
aj,

f

2

)
j = 1, . . . , p

be independent random variables with Beta distributions, where f is also an
odd positive integer and aj = c− j/2 (j = 1, . . . , p), with c = a + p/2, a ∈ IR+.
Further let

W ′
1 =

p∏

j=1

Yj and W1 = − log W ′
1 = −

p∑

j=1

log Yj .

Let also

Y ∗
j ∼ Beta

(
a∗j ,

p

2

)
j = 1, . . . , f

be independent random variables with Beta distributions, where a∗j = c∗−j/2
(j = 1, . . . , f), with c∗ = a + f/2, a ∈ IR+. Let then

W ′
2 =

f∏

j=1

Y ∗
j and W2 = − log W ′

2 = −
f∑

j=1

log Y ∗
j .

Then the exact distribution of W1 is a mixture of GIG distributions, the first
p+f

2
− 2 of which are of depth p + f − 3 and the remaining of depth p + f − 2,

what we will denote as

W1 ∼ MGIG

(
1

B(a, 1
2)
√

π

Γ(k+ 1
2)

k! (a+k)
; r∗∗1 , . . . , r∗∗p+f−3

∣∣∣ 1, r∗1, . . . , r∗p+f−3;

a + 1
2
, . . . , a + p+f−3

2︸ ︷︷ ︸
p+f−3

∣∣∣ a + k, a + 1
2
, . . . , a + p+f−3

2︸ ︷︷ ︸
p+f−2

;

k = 1, . . . , p+f
2
− 2

∣∣∣ k = 0, k ≥ p+f
2
− 1

)

where for j = 1, . . . , p + f − 3, (for k = 1, 2, . . . , p+f
2
− 2)

r∗∗j =





rj j = 2n
(
n = 1, . . . , f−3

2

)
, j 6= 2k

j = f − 1, . . . , f + p− 3

rj + 1 j = 1 + 2n
(
n = 0, . . . , f−3

2

)

rj + 2 j = 2k

(4)
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and (for k = 0 and k ≥ p+f
2
− 1)

r∗j =





rj j = 2n
(
n = 1, . . . , f−3

2

)

j = f − 1, . . . , f + p− 3

rj + 1 j = 1 + 2n
(
n = 0, . . . , f−3

2

)
(5)

with

rj =





hj j = 1, 2

rj−2 + hj j = 3, . . . , p + f − 3
(6)

where

hj =





1 j = 1, . . . , min(p− 1, f)

0 j = 1 + min(p− 1, f), . . . , max(p− 1, f)

−1 j = 1 + max(p− 1, f), . . . , p + f − 3

(7)

or equivalently,

hj = (number of elements of {p− 1, f} greater or equal to j)− 1 . (8)

The distribution of W2 is the same as the distribution of W1 and also the
distribution of W ′

2 is the same as the distribution of W ′
1.

Proof: In order to obtain a mixture with all proper weights vanishing as fast
as possible we will leave for decomposition, under the form of a series, the char-
acteristic function of a Logbeta random variable with the second parameter
equal to 1/2 and first parameter as small as possible.

Indeed, given the independence of the p random variables Yj and the fact that
the h-th moment of Yj is given by

E
(
Y h

j

)
=

Γ
(
aj + f

2

)
Γ(aj + h)

Γ(aj) Γ
(
aj + f

2
+ h

) ,

using (3) and a by-product of the proof of Theorem 2 in Coelho (1998), which
for even p states that for aj = a + p

2
− j

2
,
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p∏

j=1

Γ
(
aj + f

2

)

Γ (aj)
=

p∏

j=1

Γ
(
a + p

2
− j

2
+ f

2

)

Γ
(
a + p

2
− j

2

) =
p+f−2∏

j=1

(
a +

j

2
− 1

2

)rj

where

rj =





hj j = 1, 2

rj−2 + hj j = 3, . . . , p + f − 2

with

hj = (number of elements of {p, f} greater or equal to j)− 1 ,

what for odd p yields

p−1∏

j=1

Γ
(
aj + f

2

)

Γ(aj)
=

p−1∏

j=1

Γ
(
a + 1

2
+ p−1

2
− j

2
+ f

2

)

Γ
(
a + 1

2
+ p−1

2
− j

2

) =
p+f−3∏

j=1

(
a +

j

2

)rj

,

with rj defined as above, with p replaced by p − 1, using r = bf/2c = f−1
2

,
the characteristic function of W1 may be written as

ΦW1
(t) = E

(
eitW1

)
= E

(
e−it log W ′

1

)
= E

(
W ′−it

1

)
= E




p∏

j=1

Y −it
j




=
p∏

j=1

E
(
Y −it

j

)
=

p∏

j=1

Γ
(
aj + f

2

)
Γ(aj − it)

Γ(aj) Γ
(
aj + f

2
− it

)

=
Γ

(
ap + f

2

)
Γ(ap − it)

Γ(ap) Γ
(
ap + f

2
− it

)
p−1∏

j=1

Γ
(
aj + f

2

)
Γ(aj − it)

Γ(aj) Γ
(
aj + f

2
− it

)

=
1

B
(
ap,

1
2

)
Γ(1/2)

∞∑

k=0

Γ
(
k + 1

2

)

k! (ap + k)
(ap + k) (ap + k − it)−1

r−1∏

l=0

(
ap+

1

2
+l

) (
ap+

1

2
+l−it

)−1 p+f−3∏

j=1

(
a+

j

2

)rj (
a+

j

2
−it

)−rj

=
1

B
(
a, 1

2

)√
π




p+f
2
−2∑

k=1

Γ
(
k+ 1

2

)

k! (a+k)

p+f−3∏

j=1

(
a+

j

2

)r∗∗j
(
a+

j

2
−it

)−r∗∗j

+
∞∑

k=0, p+f
2
−1

Γ
(
k+ 1

2

)

k! (a+k)
(a + k) (a + k − it)−1

p+f−3∏

j=1

(
a+

j

2

)r∗j (
a+

j

2
−it

)−r∗j



(9)
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with rj given by (6) through (8), r∗j given by (5) through (8) and r∗∗j (j =
1, . . . , p + f − 3) given by (4) and (6) through (8).

That the characteristic function of W2 is the same as the characteristic function
of W1 is most easily shown using, for positive integer p and f , the relation

p∏

j=1

Γ
(
a + p

2
− j

2
+ f

2

)

Γ
(
a + p

2
− j

2

) =
f∏

j=1

Γ
(
a + f

2
− j

2
+ p

2

)

Γ
(
a + f

2
− j

2

) (10)

that comes out of the proof of Theorem 2 in Coelho (1998) and the results in
Coelho (1999). Then, a direct application of (10) to the characteristic function
of W2 leads us immediately to the characteristic function of W1, since

E
(
eitW2

)
=

f∏

j=1

Γ(a∗j − it) Γ(a∗j + p/2)

Γ(a∗j + p/2− it) Γ(a∗j)

=
p∏

j=1

Γ
(
a + p

2
− j

2
− it

)
Γ

(
a + f

2
+ p

2
− j

2

)

Γ
(
a + f

2
+ p

2
− j

2
− it

)
Γ

(
a + p

2
− j

2

) ,

so that the distributions of W2 and W1 are the same and so are the distribu-
tions of W ′

2 and W ′
1. 2

The application of the result in this Theorem and the results in Coelho (1998)
on the GIG distribution will enable us to easily obtain the p.d.f. and c.d.f.
(cumulative distribution function) for both W1 and W2 and thus also for W ′

1

and W ′
2.

4 An application of the results obtained

The generalized Wilks Λ statistic is the well known statistic used to test
the fit of the Generalized Canonical Analysis model (Coelho, 1992) or the
independence among m sets of jointly normally distributed variables. Let us
assume that

X = [X ′
1, . . . , X

′
k, . . . , X

′
m]
′ ∼ Np

(
µ, Σ

)
,

where

µ =
[
µ′

1
, . . . , µ′

k
, . . . , µ′

m

]′
, Σ =




Σ11 . . . Σ1k . . . Σ1m

Σ21 . . . Σ2k . . . Σ2m...
...

...
Σk1 . . . Σkk . . . Σkm...

...
...

Σm1 . . . Σmk . . . Σmm




(11)
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and

p =
m∑

k=1

pk

is the overall number of variables, being pk the number of variables in Xk, the
k-th set.

The generalized Wilks Λ statistic (Wilks, 1932, 1935, 1946; Anderson, 1984;
Coelho, 1992)

Λ =
|V |∏m

k=1 |Vkk|
where | · | stands for the determinant and V is either the MLE of Σ or the
sample variance-covariance matrix of X, split in a manner similar to Σ in
(11) (being thus Vkk either the MLE of Σkk or the sample variance-covariance
matrix of Xk) is, for a sample of size n+1, the (2/(n + 1))th power of the
likelihood ratio test statistic to test the null hypothesis of independence of the
m sets of variables,

H0 : Σ = diag (Σ11, . . . , Σkk, . . . , Σmm) . (12)

It may be shown that the generalized Wilks Λ statistic may be written as

Λ =
m−1∏

k=1

Λk(k+1,...,m) (13)

where Λk(k+1,...,m) denotes the Wilks Λ statistic used to test the independence
between the k-th set and the set formed by joining sets k + 1 through m. In
other words, for k = 1, . . . ,m− 1, Λk(k+1,...,m) is the Wilks Λ statistic used to
test the null hypothesis

H
(k)
0 : [Σk,k+1 . . . Σkm] = 0pk×(pk+1+...+pm) (k = 1, . . . , m− 1) .

Under the null hypothesis (12) the m−1 Λ statistics on the right hand side of
(13) are independent (Anderson, 1984; Coelho, 1992), where Λk(k+1,...,m) has
the same distribution as

∏pk
j=1 Yj, where, for a sample of size n+1, with n ≥ p,

Yj are pk independent Beta random variables with parameters (n+1−qk−j)/2
and qk/2, where qk = pk+1 + . . .+pm (Anderson, 1984, Theorem. 9.3.2). Then,
from this fact and from (13) above we may write the h-th moment of Λ under
(12), for a sample of size n + 1, as

E
(
Λh

)
=

m−1∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qk−j

2
+ h

)

Γ
(

n+1−j
2

+ h
)

Γ
(

n+1−qk−j
2

) (14)

where pk is the number of variables in the k-th set and qk = pk+1 + . . . + pm.
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In this section we will apply the results obtained so far to the distribution of
the generalized Wilks Lambda statistic, when there are two or three sets of
variables with an odd number of variables.

Theorem 3 When among the m (≥ 2) sets of variables there are two or three
that have an odd number of variables, then, under (12) and for a sample of
size n + 1,

W ∼ MGIG

(
1

B(a, 1
2)
√

π

Γ(ν+ 1
2)

ν! (a+ν)
; r∗∗1 , . . . , r∗∗p−2

∣∣∣∣ r∗1, . . . , r∗p−2, 1;

n+1−p
2

, . . . , n−2
2︸ ︷︷ ︸

p−2

∣∣∣∣ n+1−p
2

, . . . , n−2
2

, a + ν︸ ︷︷ ︸
p−1

;

ν = 1, . . . , qm−2

2
− 2

∣∣∣∣ ν = 0, ν ≥ qm−2

2
− 1

)

where W = − log Λ, a = n+1−qm−2

2
, qk = pk+1 + . . . + pm and the shape param-

eters r∗j and r∗∗j (j = 1, . . . , p− 2) are given by

r∗j =
m−2∑

k=1

rk,j−p∗
k

+ r∗m−1,j−p∗
k

(j = 1, . . . , p− 2) (15)

and

r∗∗j =
m−2∑

k=1

rk,j−p∗
k

+ r∗∗m−1,j−p∗
k

(j = 1, . . . , p− 2) (16)

where p∗k =
∑k−1

l=1 pl,

rk,j−p∗
k

= 0 if p∗k ≥ j

r∗∗m−1,j−p∗
k

= r∗m−1,j−p∗
k

= 0 if p∗k ≥ j or j = p− 2 ,
(17)

and where for k=1, . . . , m−2,

rkj =





hkj j = 1, 2

rk,j−2 + hkj j = 3, . . . , pk + qk − 2
(18)

with

hkj = (number of elements in {pk, qk} greater or equal to j)−1 (19)
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and, for ν = 1, . . . , qm−2

2
− 2

r∗∗m−1,j =





rj j = 2n
(
n = 1, . . . , pm−3

2

)
, j 6= 2ν

j = pm − 1, . . . , qm−2 − 3

rj + 1 j = 1 + 2n
(
n = 0, . . . , pm−3

2

)

rj + 2 j = 2ν

(20)

and for ν = 0 and ν ≥ qm−2

2
− 1,

r∗m−1,j =





rj j = 2n
(
n = 1, . . . , pm−3

2

)

j = pm − 1, . . . , qm−2 − 3

rj + 1 j = 1 + 2n
(
n = 0, . . . , pm−3

2

)
(21)

with

rj =





h∗j j = 1, 2

r∗j−2 + h∗j j = 3, . . . , qm−2 − 3
(22)

where

h∗j = (number of elements of {pm−1−1, pm} greater or equal to j)− 1 . (23)

Proof: From (14) we know that the characteristic function of W = − log Λ,
where Λ represents the generalized Wilks Λ statistic, may be written, for a
sample of size n + 1, as

E
(
eitW

)
=

m−1∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qk−j

2
− it

)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−qk−j
2

)

where i=(−1)1/2, pk is the number of variables in the k-th set (k =1, . . . , m)
and qk = pk+1 + . . . + pm.

Without any loss of generality, let the two or three sets with an odd number
of variables be the last ones among the m sets of variables.
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Then, it will be for k = m− 1 that the product

pk∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qk−j

2
− it

)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−qk−j
2

)

will have pk and qk both odd. This product has to be handled in the same way
the characteristic function of W1 was in the proof of Theorem 2 in section 3.

We may write the characteristic function of W as

E
(
eitW

)
=

m−3∏

k=1

pk+qk−2∏

j=1

(
n−pk−qk+j

2

)rkj
(
n−pk−qk+j

2
−it

)−rkj

︸ ︷︷ ︸
pk even

pm−2+qm−2−2∏

j=1

(
n−pm−2−qm−2+j

2

)rm−2,j (
n−pm−2−qm−2+j

2
−it

)−rm−2,j

︸ ︷︷ ︸
qm−2 even

pm−1∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qm−1−j

2
− it

)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−qm−1−j
2

)

︸ ︷︷ ︸
both pm−1 and qm−1 odd

(24)

where rkj (k = 1, . . . ,m−2; j = 1, . . . , pk+qk−2) is given by (18) and (19) and
qm−1 = pm. Then, using the same procedure used to handle the characteristic
function of W1 in the proof of Theorem 2 we may write

pm−1∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qm−1−j

2
− it

)

Γ
(

n+1−j
2

− it
)

Γ
(

n+1−qm−1−j
2

)

as in the result in the last row of (9) with

p = pm−1

f = qm−1 = pm

p + f = pm−1 + pm = qm−2

a =
n + 1− qm−1 − pm−1

2
=

n + 1− qm−2

2
,

and then we have for a = n+1−qm−2

2

15



E
(
eitW

)
=

1

B
(
a, 1

2

)√
π




qm−2
2

−2∑

ν=1

Γ
(
ν+ 1

2

)

ν! (a+ν)

qm−2−3∏

j=1

(
a+

j

2

)r∗∗m−1,j
(
a+

j

2
−it

)−r∗∗m−1,j

+
∞∑

ν=0,
qm−2

2
−1

Γ
(
ν+ 1

2

)

ν! (a+ν)
(a + ν) (a + ν − it)−1

qm−2−3∏

j=1

(
a+

j

2

)r∗m−1,j
(
a+

j

2
−it

)−r∗m−1,j




m−2∏

k=1

pk+qk−2∏

j=1

(
n−pk−qk+j

2

)rkj
(
n−pk−qk+j

2
−it

)−rkj

so that we may finally write

E
(
eitW

)
=

1

B
(
a, 1

2

)√
π




qm−2
2

−2∑

ν=1

Γ
(
ν+ 1

2

)

ν! (a+ν)

p−2∏

j=1

(
n− p + j

2

)r∗∗j
(

n− p + j

2
− it

)−r∗∗j

+
∞∑

ν=0,
qm−2

2
−1

Γ
(
ν+ 1

2

)

ν! (a+ν)
(a + ν) (a + ν − it)−1

p−2∏

j=1

(
n− p + j

2

)r∗j (
n− p + j

2
− it

)−r∗j



with r∗∗j and r∗j given by (15) through (23). 2

If one wants the exact distribution of the Wilks Λ statistic used to test the
independence of two sets with an odd number of variables then one only has
to set m = 2 in the Theorem above. Although some of the expressions may
then seem a bit strange they all work out well, since for m = 2 we will have

qm−2 = q0 = p1 + p2 = p ,

and given that we use the rule that any summation with an upper bound
smaller than its lower bound evaluates to zero and any product with an upper
bound smaller than its lower bound evaluates to one, thus, for m = 2, (15)
and (16) will respectivelly yield

r∗j = r∗1,j−p∗k
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and

r∗∗j = r∗∗1,j−p∗
k

while in (24) only the third product is active in this case since the first product
vanishes, or rather, evaluates to one, since its upper bound is smaller than its
lower bounder while the second product also evaluates to one given that we
take r0,j = 0 for any j.

This way if m = 2 and both sets of variables have an odd number of vari-
ables, Theorem 3 still gives the exact distribution, being enough to use in its
statement qm−2 = p.

5 Discussion and final remarks

Kabe (1962) already obtained the exact distribution of the Wilks Λ statistic
for the case of only two groups of variables under the form of hypergeometric
series related with the distribution of the sum of independent Gamma random
variables. However, the expressions for the p.d.f. of such distributions involved
representations with several infinite summations.

Our aim was to obtain representations for both the p.d.f. and the c.d.f. of the
product of an odd number of particular independent Beta random variables
and at least for some cases of the generalized Wilks Λ statistic, under the null
hypothesis, which would involve only one infinite summation, that is, which
would have the form of an infinite mixture of distributions whose p.d.f.’s and
c.d.f.’s would not involve any series representations.

Our goal was attained by obtaining such distributions under the form of in-
finite mixtures of GIG distributions. The representation of both the p.d.f.
and c.d.f. of such distributions does not involve any infinite sums or unsolved
integrals. This way, the esults obtained seem to be much adequate for the
computation of quantiles, mainly for very small values of the parameter a in
Theorem 2 or of the sample size in the distributin of the generalized Wilks
Λ statistic, since in these cases the weights in the mixture will vanish rather
quickly so that just a few terms in the mixture may be enough to obtain a
very accurate result.

Anyway, further numerical studies concerning the comparison of the near-
exact approximations in Grilo and Coelho (2003) and Alberto and Coelho
(2003) and the exact distribution in this paper need to be carried out, in order
to be able to better assess the situations where each of these distributions is
the most useful. These calculations, falling out of the scope of this paper, were
left for further work.
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Also left for further work is the application of the exact distributions studied
in this paper in building new near-exact distributions for both the product
of an odd number of independent Beta random variables and the generalized
Wilks Λ statistic.
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