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Abstract

Using the concept of near-exact approximation to a distribution we developed two
different near-exact approximations to the distribution of the product of an odd
number of particular independent Beta random variables. One of them is a par-
ticular Generalized Near-Integer Gamma (GNIG) distribution and the other is a
mixture of two GNIG distributions. These near-exact distributions are mostly ade-
quate to be used as a basis for approximations of distributions of several statistics
used in Multivariate Analysis. By factoring the characteristic function of the loga-
rithm of the product of the Beta random variables, and then replacing a suitably
chosen factor of that characteristic function by an adequate asymptotic result it is
possible to obtain what we call a near-exact characteristic function, which gives rise
to the near-exact approximation to the exact distribution. Depending on the asymp-
totic result used to replace the chosen parts of the characteristic function, one may
obtain different near-exact approximations. Moments from the two near-exact ap-
proximations developed are compared with the exact ones. The two approximations
are also compared with each other, namely in terms of moments and quantiles.
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1 Introduction

It is our aim to obtain a close approximation to the exact distribution of the
product of an odd number of independent r.v.’s (random variables) with Beta
distributions with parameters yielding particular relationships, in a concise
manageable form, so that at least the computation of quantiles is rendered
reasonably easy.

Let

Yj ∼ Beta

(
aj,

b

2

)
j = 1, . . . , p

be independent Beta r.v.’s with parameters aj and b/2, with p and b positive
odd integers, where aj = c + p/2− j/2 (j = 1, . . . , p), c ∈ IR+ (where IR+ is
the set of positive reals). We are then interested in the distribution of

W ′ =
p∏

j=1

Yj or W = − log W ′ = −
p∑

j=1

log Yj .

We may note that a few likelihood ratio test statistics used in Multivariate
Analysis, such as the Wilks Λ statistic (Wilks, 1932, 1935) have a distribution
of this kind (Anderson, 1984). However, the exact form of the distribution
of W and W ′ is too complicated for practical use, since it usually involves
hypergeometric functions of higher order. The exact form of the distribution
of W ′, as well as the distribution of the sum of independent Gamma r.v.’s with
different rate parameters, have already been studied in the past by several
authors but all results were obtained under the form of series expansions
(Kabe, 1962; Tretter and Walster, 1975; Nandi, 1977; Gupta and Richards,
1979, 1983).

When p and b are both even, or only one of them is odd, although some of the
series expansions have very good convergence properties, namely those based
on Chi-square mixtures (Gupta and Richards, 1983), the exact distribution
for W and W ′ was obtained in a concise manageable form, without any series
expansions by Coelho (1998, 1999). In Coelho (1998, 1999) the distribution of
W ′ is presented as a particular case of the GIG (Generalized Integer Gamma)
distribution, that is the distribution of the sum of independent Gamma r.v.’s
with different rate parameters and integer shape parameters.

When p and b are both odd, Coelho (2004) obtained a near-exact approx-
imation for the distribution of W under the form of a GNIG (Generalized
Near-Integer Gamma) distribution, that is the distribution of the sum of a
GIG r.v. with an independent Gamma r.v. with non-integer shape parame-
ter. These approximations were built in the following way: after factorizing
the c.f. (characteristic function) of W we replace one of the factors, by an
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approximation with good convergence properties, in such a way that we ob-
tain a near-exact c.f. that corresponds to a known distribution. In this paper
we obtain two other near-exact approximations for the distribution of W and
W ′, both of them even closer to the exact distribution. The factor that is
replaced corresponds to the c.f. of a Logbeta r.v. (a r.v. whose exponential
has a Beta distribution), being in one case approximated by the c.f. of the
sum of two Gamma r.v.’s that matches the first three exact moments and in
the other case approximated by the c.f. of the mixture of two Gamma r.v.’s
that matches the first four exact moments. By joining this factor, with the
remaining unchanged part of the c.f., we get what we call a near-exact c.f. for
W . For the first case this c.f. corresponds to a GNIG distribution, while in the
second case it corresponds to a mixture of two GNIG distributions.

In the following section we set forth some distributions that will be used in
the sections ahead.

2 Some useful distributions

2.1 The GNIG distribution and the mixture of two GNIG distributions

Let Z1 be a r.v. with a GIG distribution (Coelho, 1998) of depth g, with shape
parameters r1, . . . , rg ∈ IN (where IN is the set of positive integers) and all
different rate parameters λ1, . . . , λg ∈ IR+, that is,

Z1 ∼ GIG (r1, . . . , rg; λ1, . . . , λg)

and let Z2 be a r.v. with a Gamma distribution with positive non-integer shape
parameter r and rate parameter λ ∈ IR+, that is,

Z2 ∼ G(r, λ) .

Furthermore, let Z1 and Z2 be independent and λ 6= λj (j = 1 . . . , g). Then
the distribution of

Z = Z1 + Z2

is a GNIG distribution (Coelho, 2004) of depth g + 1. We will denote this by

Z ∼ GNIG(r1, . . . , rg, r; λ1, . . . , λg, λ) .

The p.d.f. (probability density function) of Z is given by

fZ(z) = Kλr
g∑

j=1

e−λjz
rj∑

k=1

{
cj,k

Γ(k)

Γ(k+r)
zk+r−1

1F1(r, k+r,−(λ−λj)z)

}
,

(z > 0)

(1)
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and the c.d.f. (cumulative distribution function) by

FZ(z) = λr zr

Γ(r+1)
1F1(r, r+1,−λz)

−Kλr
g∑

j=1

e−λjz
rj∑

k=1

c∗j,k
k−1∑

i=0

zr+iλi
j

Γ(r+1+i)
1F1(r, r+1+i,−(λ− λj)z)

(z > 0)

(2)

where

K =
g∏

j=1

λ
rj

j and c∗j,k =
cj,k

λk
j

Γ(k)

with cjk given by (11) through (13) in Coelho (1998). In the above expressions

1F1(a, b; z) is the Kummer confluent hypergeometric function (Abramowitz
and Stegun, 1974). Such functions have usually very good convergence prop-
erties and are nowadays handled by a number of software packages.

We may note that if r ∈ IN , the GNIG distribution turns itself into a GIG
distribution, so that we may look at the GNIG distribution as a generalization
of the GIG distribution.

Let us suppose now that the r.v. W has a distribution that is a mixture of two
GNIG distributions of depth g, the first one with shape parameters r∗1, . . . , r

∗
g

and rate parameters λ∗1, . . . , λ
∗
g, with weight θ (0<θ<1) and the second one

with shape parameters r1, . . . , rg and rate parameters λ1, . . . , λg, with weight
1− θ. We will denote this fact by

W ∼ MGNIG
(
θ; r∗1, . . . , r

∗
g , λ∗1, . . . , λ

∗
g; r1, . . . , rg, λ1, . . . , λg

)
.

2.2 The Logbeta distribution

Let now X be a r.v. with a Beta distribution with parameters α > 0 and
β > 0. We will denote this by

X ∼ Beta(α, β) .

The h-th moment of X is given by

E(Xh) =
B(α + h, β)

B(α, β)
=

Γ(α + β)

Γ(α)

Γ(α + h)

Γ(α + β + h)
(α + h > 0) . (3)
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If we take Y = − log X then we will say that Y has a Logbeta distribution
with parameters α and β (Johnson, Kotz and Balakrishnan, 1995), what is
denoted by

Y ∼ Logbeta(α, β) .

The p.d.f. of Y is

fY (y) =
1

B(α, β)
e−αy(1− e−y)β−1 , y > 0 . (4)

Since the Gamma functions in (3) are still defined for any real or complex
h ∈ Vε(0), the c.f. of Y is given by

φY (t) = E(eitY ) = E(e−it log X) = E(X−it) =
Γ(α + β)

Γ(α)

Γ(α− it)

Γ(α + β − it)
, (5)

where i = (−1)1/2 and t ∈ IR (where IR is the real set). Based on (5), we may
obtain the first four moments of Y as

µ′1 = E(Y ) = ψ(α + β)− ψ(α)

µ′2 = E(Y 2) = ψ′(α)− ψ′(α + β) + [ψ(α + β)− ψ(α)]2

µ′3 = E(Y 3) = ψ′′(α + β)− ψ′′(α) + [ψ(α + β)− ψ(α)]3

+3 [ψ(α + β)− ψ(α)] [ψ′(α)− ψ′(α + β)]

µ′4 = E(Y 4) = ψ′′′(α)− ψ′′′(α + β) + [ψ(α)− ψ(α + β)]4

+6 [ψ(α)− ψ(α + β)]2 [ψ′(α)− ψ′(α + β)]

+4 [ψ(α)− ψ(α + β)] [ψ′′(α)− ψ′′(α + β)]

+3 [ψ′(α)− ψ′(α + β)]2 ,

(6)

where ψ(x) = d
dx

log Γ(x) is the digamma function, ψ′(x) = d2

dx2 log Γ(x) =
d
dx

ψ(x) is the trigamma function and ψ′′(x) = d
dx

ψ′(x) is the quadrigamma
function, and so on.

3 Two near-exact approximations to the distribution of the prod-
uct of particular independent Beta random variables

In this section we will obtain two near-exact approximations for the distribu-
tion of the product of an odd number of independent Beta r.v.’s with same
second parameter and whose first parameter evolves by 1/2.
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Theorem 1 Let

Yj ∼ Beta

(
aj,

b

2

)
, j = 1, ..., p (7)

be p independent r.v.’s where p and b are both positive odd integers, with b ≥ 3,
and aj = c + p

2
− j

2
(j = 1, ..., p), with c ∈ IR+ and let

W ′
1 =

p∏

j=1

Yj and W1 = − log W ′
1 = −

p∑

j=1

log Yj . (8)

Let us further consider

Y ∗
j ∼ Beta

(
a∗j ,

p

2

)
, j = 1, ..., b

b independent r.v.’s where a∗j = c + b
2
− j

2
(j = 1, ..., b) and let

W ′
2 =

b∏

j=1

Y ∗
j and W2 = − log W ′

2 = −
b∑

j=1

log Y ∗
j .

Then a near-exact approximation to the distribution of W1 and W2 is a GNIG
distribution of depth p + b− 1, symbolically,

Wk
ne∼ GNIG

(
r∗1, ..., r

∗
p+b−3, r

∗
p+b−2 =1, r∗p+b−1; λ1, ..., λp+b−3, λp+b−2, λp+b−1

)
,

(k = 1, 2)

(9)

with rate parameters

λj = c +
j

2
− 1

2
, (j = 1, ..., p + b− 3) (10)

and shape parameters

r∗j =





rj j = 1, ..., p− 1

j = p + 1, ..., p + b− 4 step 2

j = p + b− 3

rj + 1 j = p, ..., p + b− 5 step 2

(11)
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(with sequences indexed by j being used only if the upper bound is larger than
the lower bound), where

rj =





hj j = 1, 2

rj−2 + hj j = 3, ..., p + b− 3
(12)

with

hj =





1 j = 1, ..., min(p− 1, b)

0 j = 1 + min(p− 1, b), ..., max(p− 1, b)

−1 j = 1 + max(p− 1, b), ..., p + b− 3

(13)

and yet r∗p+b−1, λp+b−2 and λp+b−1 obtained by numerical solution of the system
of equations





µ′1 =
1

λp+b−2

+
r∗p+b−1

λp+b−1

µ′2 =
2λ2

p+b−1 + 2λp+b−2λp+b−1r
∗
p+b−1 + λ2

p+b−2r
∗
p+b−1(1+r∗p+b−1)

λ2
p+b−2λ

2
p+b−1

µ′3 =
6λ3

p+b−1 + 6λp+b−2λ
2
p+b−1r

∗
p+b−1 + 3λ2

p+b−2λp+b−1r
∗
p+b−1(1+r∗p+b−1)

λ3
p+b−2λ

3
p+b−1

+
λ3

p+b−2r
∗
p+b−1(2+3r∗p+b−1+r∗2p+b−1)

λ3
p+b−2λ

3
p+b−1

(14)

where on the left hand side we have the first three moments of a Logbeta r.v.
with parameters a1 + b

2
− 3

2
and 3

2
, obtained from (6) by replacing α and β by

the appropriate values, and on the right hand side the first three moments of
the sum of two Gamma r.v.’s, the first one with shape parameter r∗p+b−2 = 1
and rate parameter λp+b−2 and the second one with shape parameter r∗p+b−1

and rate parameter λp+b−1.

The other near-exact approximation to the distribution of W1 and W2 is ob-
tained as a mixture of two GNIG distributions of depth p+ b−2, symbolically,

Wk
ne∼ MGNIG

(
θ; r∗1, ..., r

∗
p+b−3, rp+b−2; λ1, ..., λp+b−3, λp+b−2;

r∗1, ..., r
∗
p+b−3, r

′
p+b−2; λ1, ..., λp+b−3, λ

′
p+b−2

)
,

(k = 1, 2)

(15)
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where the shape parameters r∗1, . . . , r
∗
p+b−3 are given by (11) through (13), the

rate parameters λ1, . . . λp+b−3 by (10), r′p+b−2 is set equal to rp+b−2, and θ,
rp+b−2, λp+b−2 and λ′p+b−2 are obtained through the numerical solution of the
system of equations





µ′1 = θ
Γ (rp+b−2 + 1)

Γ (rp+b−2)

1

λp+b−2

+ (1− θ)
Γ (rp+b−2 + 1)

Γ (rp+b−2)

1

λ′p+b−2

µ′2 = θ
Γ (rp+b−2 + 2)

Γ (rp+b−2)

1

λ2
p+b−2

+ (1− θ)
Γ (rp+b−2 + 2)

Γ (rp+b−2)

1

λ′2p+b−2

µ′3 = θ
Γ (rp+b−2 + 3)

Γ (rp+b−2)

1

λ3
p+b−2

+ (1− θ)
Γ (rp+b−2 + 3)

Γ (rp+b−2)

1

λ′3p+b−2

µ′4 = θ
Γ (rp+b−2 + 4)

Γ (rp+b−2)

1

λ4
p+b−2

+ (1− θ)
Γ (rp+b−2 + 4)

Γ (rp+b−2)

1

λ′4p+b−2

(16)

where on the left hand side we have now the first four moments of a Logbeta
r.v. with parameters a1 + b

2
− 3

2
and 3

2
, obtained from (6) by replacing α and β

by the appropriate values, and on the right hand side the first four moments of
a mixture with weights θ (0<θ<1) and 1− θ, of two Gamma r.v.’s, the first
one with shape parameter rp+b−2 and rate parameter λp+b−2 and the second
one with shape parameter rp+b−2 and rate parameter λ′p+b−2.

Proof: From (3), the h-th moment of Yj is given by

E
(
Y h

j

)
=

Γ
(
aj + b

2

)

Γ (aj)

Γ (aj + h)

Γ
(
aj + b

2
+ h

) ,

so that, given the independence of the p r.v.’s Yj, we have

E
(
W ′h

1

)
= E




p∏

j=1

Y h
j


 =

p∏

j=1

E
(
Y h

j

)
=

p∏

j=1

Γ
(
aj + b

2

)

Γ (aj)

Γ (aj + h)

Γ
(
aj + b

2
+ h

) .

The c.f. of W1 is thus given by

φW1(t) = E
(
eitW1

)
= E

(
e−it log W ′

1

)

= E
(
W ′−it

1

)
=

p∏

j=1

Γ
(
aj + b

2

)

Γ (aj)

Γ (aj − it)

Γ
(
aj + b

2
− it

) ,

(17)
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where i = (−1)1/2 and t ∈ IR. But then, splitting the product and taking
aj+1 = c + p

2
− j

2
− 1

2
= aj − 1

2
we may write the c.f. of W1 as

φW1(t) =
Γ

(
a1+

b
2

)

Γ (a1)

Γ (a1−it)

Γ
(
a1+

b
2
−it

)
p∏

j=2

Γ
(
aj+

b
2

)

Γ (aj)

Γ (aj−it)

Γ
(
aj+

b
2
−it

)

=
Γ

(
a1+

b
2

)

Γ
(
a1+

b
2
− 3

2

)
Γ

(
a1+

b
2
− 3

2

)

Γ (a1)

Γ
(
a1+

b
2
− 3

2
−it

)

Γ
(
a1+

b
2
−it

) Γ (a1−it)

Γ
(
a1+

b
2
− 3

2
−it

)

p−1∏

j=1

Γ
(
aj+1 + b

2

)

Γ (aj+1)

Γ (aj+1−it)

Γ
(
aj+1+

b
2
−it

)

=
Γ

(
a1 + b

2

)

Γ
(
a1 + b−3

2

)
Γ

(
a1 + b−3

2

)

Γ (a1)

Γ
(
a1 + b−3

2
− it

)

Γ
(
a1 + b

2
− it

) Γ (a1 − it)

Γ
(
a1 + b−3

2
− it

)

p−1∏

j=1

Γ
(
aj + b−1

2

)

Γ
(
aj − 1

2

)
Γ

(
aj − 1

2
− it

)

Γ
(
aj + b−1

2
− it

) .

But then, since b is an odd integer and thus b−3
2

is an integer, we may use, for
any real or complex a, the identity

Γ(a + b−3
2

)

Γ(a)
=

b−3
2
−1∏

j=0

(a + j),

to write the c.f. of W1 as

φW1(t) =
Γ

(
a1+

b
2

)

Γ
(
a1+

b−3
2

)
Γ

(
a1+

b−3
2
−it

)

Γ
(
a1+

b
2
−it

)
b−3
2
−1∏

j=0

(a1+j)

b−3
2
−1∏

j=0

(a1−it + j)−1

p−1∏

j=1

Γ
(
aj+

b−1
2

)

Γ
(
aj− 1

2

)
Γ

(
aj− 1

2
−it

)

Γ
(
aj+

b−1
2
−it

)

=
Γ

(
a1+

b
2

)

Γ
(
a1+

b−3
2

)
Γ

(
a1+

b−3
2
−it

)

Γ
(
a1+

b
2
−it

)
b−5
2∏

j=0

(a1+j) (a1−it + j)−1

p−1∏

j=1

Γ
(
aj+

b−1
2

)

Γ
(
aj− 1

2

)
Γ

(
aj− 1

2
−it

)

Γ
(
aj+

b−1
2
−it

) .
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Finally, using, the identity (Coelho, 2004)

p−1∏

j=1

Γ
(
aj − 1

2
+ b

2

)

Γ
(
aj − 1

2

) =
p−1∏

j=1

Γ
(
c + p−1

2
− j

2
+ b

2

)

Γ
(
c + p−1

2
− j

2

) =
p+b−3∏

j=1

(
c +

j

2
− 1

2

)rj

,

valid for odd p, with rj (j = 1, . . . , p + b− 3) given by (12) and (13), we have

φW1(t) =
Γ

(
c + p−1

2
+ b

2

)

Γ
(
c + p−1

2
+ b−3

2

)
Γ

(
c + p−1

2
+ b−3

2
− it

)

Γ
(
c + p−1

2
+ b

2
− it

)

b−5
2∏

j=0

(
c +

p

2
− 1

2
+ j

) (
c +

p

2
− 1

2
+ j − it

)−1

p+b−3∏

j=1

(
c +

j

2
− 1

2

)rj (
c +

j

2
− 1

2
− it

)−rj

=
Γ

(
c + p−1

2
+ b

2

)

Γ
(
c + p−1

2
+ b−3

2

)
Γ

(
c + p−1

2
+ b−3

2
− it

)

Γ
(
c + p−1

2
+ b

2
− it

)

p+b−5∏

j=p
step 2

(
c +

j

2
− 1

2

) (
c +

j

2
− 1

2
− it

)−1

p+b−3∏

j=1

(
c +

j

2
− 1

2

)rj (
c +

j

2
− 1

2
− it

)−rj

=
Γ

(
c + p−1

2
+ b

2

)

Γ
(
c + p−1

2
+ b−3

2

)
Γ

(
c + p−1

2
+ b−3

2
− it

)

Γ
(
c + p−1

2
+ b

2
− it

)

p+b−3∏

j=1

(
c +

j

2
− 1

2

)r∗j (
c +

j

2
− 1

2
− it

)−r∗j
, (18)

where r∗j (j = 1, . . . , p + b− 3) is given by (11) through (13).

Now, we keep unchanged the last product in (18) and we replace

Γ
(
c + p−1

2
+ b

2

)

Γ
(
c + p−1

2
+ b−3

2

)
Γ

(
c + p−1

2
+ b−3

2
− it

)

Γ
(
c + p−1

2
+ b

2
− it

) , (19)

that is the c.f. of a Logbeta r.v. with parameters c + p−1
2

+ b−3
2

and 3
2
, by

λp+b−2 (λp+b−2 − it)−1 λ
r∗p+b−1

p+b−1 (λp+b−1 − it)−r∗p+b−1 , (20)
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that is the c.f. of the sum of two Gamma r.v.’s, one with shape parameter
1 and rate parameter λp+b−2 and the other with shape parameter r∗p+b−1 and
rate parameter λp+b−1. The replacement is made in such a way that the c.f.s in
(19) and (20) have the first three derivatives with respect to t at t = 0 equal.
This means that the distributions to which they correspond will have the same
first three moments. This leads us to obtain r∗p+b−1, λp+b−1 and λp+b−2 as the
solutions of the system of equations (14).

This way a near-exact c.f. of W1 is obtained under the form

φW1(t) ' λp+b−2 (λp+b−2 − it)−1 λ
r∗p+b−1

p+b−1 (λp+b−1 − it)−r∗p+b−1

p+b−3∏

j=1

(
c +

j

2
− 1

2

)r∗j (
c +

j

2
− 1

2
− it

)−r∗j
,

(21)

that is the c.f. of the GNIG distribution of depth p+ b− 1 in (9), the sum of a
GIG distribution of depth p + b− 3 with a Gamma r.v. with shape parameter
equal to 1 and rate parameter λp+b−2 and another Gamma r.v. with shape
parameter r∗p+b−1 ∈ IR+\IN and rate parameter λp+b−1. This turns out to be
the sum of a GIG distribution of depth p + b − 2 with the latter Gamma
distribution. If by chance r∗p+b−1 ∈ IN then the near-exact approximation to
the distribution of W1 we just obtained turns into a GIG distribution of depth
p + b− 1. In all the above we supposed that λp+b−2 and λp+b−1 were different
from each other and different from all the other λj (j = 1, . . . , p + b − 3).
We may note that if by chance it happens that any of λp+b−2 or λp+b−1 is
equal to any of the λj (j = 1, . . . , p + b − 3) or equal to each other this will
only reduce the depth of the GNIG distribution by one. In any case, this
near-exact approximation will have the same first three moments as the exact
distribution.

In fact, depending on the asymptotic result used in (18), we may obtain differ-
ent near-exact approximations to the distribution of W1. This way, we decided
now to replace the part of the c.f. of W1 in (19) by

θ
λ

rp+b−2

p+b−2

(λp+b−2 − it)rp+b−2
+ (1− θ)

λ
′ r′p+b−2

p+b−2(
λ′p+b−2 − it

)r′
p+b−2

, (22)

that is the c.f. of the mixture of two Gamma r.v.’s with shape parameters
rp+b−2 and r′p+b−2 and rate parameters λp+b−2 and λ′p+b−2. The approximation
is done in such a way that the c.f.’s in (19) and (22) have the same first four
derivatives with respect to t at t = 0, that is, the corresponding distributions
have the same first four moments. We set r′p+b−2 = rp+b−2 and then obtain the

11



four parameters θ, rp+b−2, λp+b−2 and λ′p+b−2 through the numerical solution
of the system of equations (16).

In this case we have

φW1(t) '

θ

λ
rp+b−2

p+b−2

(λp+b−2 − it)rp+b−2
+ (1− θ)

λ
′ rp+b−2

p+b−2(
λ′p+b−2 − it

)rp+b−2




p+b−3∏

j=1

(
c +

j

2
− 1

2

)r∗j (
c +

j

2
− 1

2
− it

)−r∗j
,

(23)

that is the c.f. of the mixture of two GNIG distributions of depth p + b− 2 in
(15), with r′p+b−2 = rp+b−2. In the above we supposed that λp+b−2 and λ′p+b−2

were different from all the other λj (j = 1, . . . , p + b − 3). If, by chance, this
does not happen, this will only reduce the depth of the corresponding GNIG
distribution by one. In any case, this near-exact approximation will have the
same first four moments as the exact distribution.

That the c.f. of W2 and W1 are the same (that is, that p and b are interchange-
able), may be seen through the use of the equality

p∏

j=1

Γ
(
c + p

2
− j

2
+ b

2

)

Γ
(
c + p

2
− j

2

) =
b∏

j=1

Γ
(
c + b

2
− j

2
+ p

2

)

Γ
(
c + b

2
− j

2

) ,

which is valid for any integer p and b (Coelho, 1998, 1999), by writing the c.f.
of W2 as

φW2(t) = E
(
eitW2

)
=

b∏

j=1

Γ
(
a∗j + p

2

)

Γ
(
a∗j

)
Γ

(
a∗j − it

)

Γ
(
a∗j + p

2
− it

)

=
b∏

j=1

Γ
(
c + p

2
− j

2
+ b

2

)

Γ
(
c + p

2
− j

2

)
Γ

(
c + p

2
− j

2
− it

)

Γ
(
c + p

2
− j

2
+ b

2
− it

)

=
p∏

j=1

Γ
(
c + b

2
− j

2
+ p

2

)

Γ
(
c + b

2
− j

2

)
Γ

(
c + b

2
− j

2
− it

)

Γ
(
c + b

2
− j

2
+ p

2
− it

)

=
p∏

j=1

Γ
(
aj + b

2

)

Γ (aj)

Γ (aj − it)

Γ
(
aj + b

2
− it

) = φW1(t) .

Since φW1(t) = φW2(t), W1 and W2 have the same distribution and thus
the same near-exact c.f.s and distributions. The near-exact distributions for
W ′

1 and W ′
2 may then be obtained through the transformation W ′

k = e−Wk

(k=1, 2). 2

12



The near-exact p.d.f. and c.d.f. of W1, for the first approximation in Theorem
1 above, corresponding to the c.f. in (21), are given by (1) and (2) respectively,
with Z = W1, g = p + b − 2, rj = r∗j (j = 1, . . . , p + b − 3), rg = r∗p+b−2 = 1,

r = r∗p+b−1, λj = c− 1
2
+ j

2
(j = 1, . . . , p + b− 3), λg = λp+b−2 and λ = λp+b−1,

that is, this near-exact p.d.f. of W1 is given by

f(w1) = Kλ
r∗p+b−1

p+b−1

p+b−2∑

j=1

e−λjw1

r∗j∑

k=1

{
cj,k

Γ(k)

Γ(k+r∗p+b−1)
w

k+r∗p+b−1−1

1

1F1(r
∗
p+b−1, k+r∗p+b−1,−(λp+b−1−λj)w1)

}
,

(w1 >0)

and the near-exact c.d.f., by

F (w1) = λ
r∗p+b−1

p+b−1

w
r∗p+b−1

1

Γ(r∗p+b−1 + 1)
1F1(r

∗
p+b−1, r

∗
p+b−1 + 1,−λp+b−1w1)

−Kλ
r∗p+b−1

p+b−1

p+b−2∑

j=1

e−λjw1

r∗j∑

k=1

c∗j,k
k−1∑

i=0

w
r∗p+b−1+i

1 λi
j

Γ(r∗p+b−1 + 1 + i)

1F1(r
∗
p+b−1, r

∗
p+b−1 + 1 + i,−(λp+b−1 − λj)w1)

(w1 >0)

with

K =
p+b−2∏

j=1

λ
rj

j .

The near-exact p.d.f. and c.d.f. of W1, for the second approximation in Theo-
rem 1 above, corresponding to the c.f. in (23), are given by

f(w1) = θ Kλ
rp+b−2

p+b−2

p+b−3∑

j=1

e−λjw1

r∗j∑

k=1

{
cj,k

Γ(k)

Γ(k+rp+b−2)
w

k+rp+b−2−1
1

1F1(rp+b−2, k+rp+b−2,−(λp+b−2−λj)w1)

}

+(1−θ) Kλ
′ rp+b−2

p+b−2

p+b−3∑

j=1

e−λjw1

r∗j∑

k=1

{
cj,k

Γ(k)

Γ(k+rp+b−2)
w

k+rp+b−2−1
1

1F1(rp+b−2, k+rp+b−2,−(λ′p+b−2−λj)w1)

}

(w1 >0)
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and

F (w1) = θ

{
λ

rp+b−2

p+b−2

w
rp+b−2

1

Γ(rp+b−2+1)
1F1(rp+b−2, rp+b−2+1,−λp+b−2w1)

−Kλ
rp+b−2

p+b−2

p+b−3∑

j=1

e−λjw1

r∗j∑

k=1

c∗j,k
k−1∑

i=0

w
rp+b−2+i
1 λi

j

Γ(rp+b−2+1+i)

1F1(rp+b−2, rp+b−2+1+i,−(λp+b−2 − λj)w1)

}

+(1− θ)

{
λ
′ rp+b−2

p+b−2

w
rp+b−2

1

Γ(rp+b−2+1)
1F1(rp+b−2, rp+b−2+1,−λ′p+b−2w1)

−Kλ
′ rp+b−2

p+b−2

p+b−3∑

j=1

e−λjw1

r∗j∑

k=1

c∗j,k
k−1∑

i=0

w
rp+b−2+i
1 λi

j

Γ(rp+b−2+1+i)

1F1(rp+b−2, rp+b−2+1+i,−(λ′p+b−2 − λj)w1)

}

(w1 >0)

with

K =
p+b−3∏

j=1

λ
rj

j .

The corresponding near-exact p.d.f.’s and c.d.f.’s of W ′
1 may then be obtained

through the transformation W ′
1 = e−W1 .

Although, at first sight, these expressions may look a bit complex, they are
actually much manageable. In fact, from these c.d.f.’s near-exact quantiles
may be easily computed.

4 Evaluation of the quality and comparison of the two near-exact
approximations

It is now important to analyze how good the proposed approximations are. Let
us start with the study of the proximity between a Logbeta

(
c + p−1

2
+ b−3

2
, 3

2

)

distribution and a GNIG
(
1, r∗p+b−1; λp+b−2, λp+b−1

)
distribution of depth 2,

which correspond to the c.f.s in (19) and (20), respectively. The parameters
r∗p+b−1, λp+b−2, λp+b−1 are obtained as the numeric solution of the system of
equations (14) where µ′1, µ′2 and µ′3 are given by (6).

If we take, for example, α = c + p−1
2

+ b−3
2

= 152
10

, where p and b are both
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positive odd integers, with b ≥ 3, we will obtain for r∗p+b−1, λp+b−2, λp+b−1 the
values in Table 1.

Table 1
Values for shape and rate parameters for the GNIG distribution

r∗p+b−2=1 λp+b−2=15.672643219241610

r∗p+b−1=0.499989615106888 λp+b−1=15.003755582976448

Then, in order to analyze the closeness between a Logbeta
(
c + p−1

2
+ b−3

2
, 3

2

)

distribution and the mixture of two Gamma distributions, MG (θ; rp+b−2,

λp+b−2; rp+b−2, λ
′
p+b−1

)
, which correspond respectively to the c.f.s in (19) and

(22), we will take θ, rp+b−2, λp+b−2, λ′p+b−2 in (22) as solutions of the system
of equations (16) where µ′1, µ′2, µ′3 and µ′4 are given by (6) with α = 152/10
and β =3/2. We obtain for θ, rp+b−2, λp+b−2 and λ′p+b−2 the values in Table 2.

Table 2
Values for the weight, shape and rate parameters for the MG distribution

rp+b−2=1.500000114557350 λp+b−2=15.248908384617104
r′p+b−2 = rp+b−2 λ′p+b−2=15.657422531150101

θ=0.517644326454732

We may note that the choice of the value 3/2 for the second parameter of the
above Logbeta distribution, made in a given moment of the proof of Theorem
1, was not random but rather a judicious one. This choice was based on the
assumption that this value should be of the form k/2 where k is a positive odd
integer. Besides, on one hand, for the sum of two Gamma distributions this
value has to be greater than one, since the sum of the two shape parameters
r∗p+b−2 = 1 and r∗p+b−1 in (20) will always be greater than one, while, on the
other hand, the value 3/2 is, for both approximations, the value of the form
k/2, that leads to a closer match between the exact and approximate c.f.s.

The p.d.f.’s for the three distributions, that is, the Logbeta, GNIG and MG
distributions, are indeed almost superimposed, as we may see by analyzing
Tables 3 and 4. In Table 3 we consider the ordinates of the Logbeta p.d.f. in
(4), with parameters α = 152/10 and β = 3/2 and the ordinates of the p.d.f.
of a GNIG distribution of depth 2 with parameters given in Table 1 and in
Table 4 the ordinates of the Logbeta p.d.f. and the ordinates of the p.d.f. of an
MG distribution with parameters given in Table 2. We may notice the close
match between the three p.d.f.’s, mainly between the p.d.f.’s for the Logbeta
and the MG distributions.
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Table 3
Ordinates for the Logbeta and GNIG p.d.f.’s and absolute
value of the differences

x-value Logbeta Ordinates
(α=152/10, β=3/2)

GNIG
Ordinates

Absolute value
of difference

(0.00) (0.00) (0.00) (0.00)
0.05 7.074907762548123 7.074891356005670 0.000016406542453
0.10 4.621799957250436 4.621799638464716 0.000000318785720
0.15 2.615034081669441 2.615038603240202 0.000004521570762
0.20 1.395122967860079 1.395125739783440 0.000002771923362
0.25 0.720739641900814 0.720740250195227 0.000000608294413
0.30 0.364858983899873 0.364858532419835 0.000000451480037
0.35 0.182137548158239 0.182136880665808 0.000000667492431
0.40 0.089999784336385 0.089999264351411 0.000000519984975
0.45 0.044127428272311 0.044127124974587 0.000000303297724
0.50 0.021504187316464 0.021504053584123 0.000000133732342

Table 4
Ordinates for the Logbeta and MG p.d.f.’s and absolute
value of the differences

x-value Logbeta Ordinates
(α=152/10, β=3/2)

MG
Ordinates

Absolute value
of difference

(0.00) (0.00) (0.00) (0.00)
0.05 7.074907762548123 7.074907891847342 0.000000129299219
0.10 4.621799957250436 4.621799915035653 0.000000042214784
0.15 2.615034081669441 2.615034040661706 0.000000041007735
0.20 1.395122967860079 1.395122962209558 0.000000005650520
0.25 0.720739641900814 0.720739652020356 0.000000010119543
0.30 0.364858983899873 0.364858994042061 0.000000010142219
0.35 0.182137548158239 0.182137553520275 0.000000005362036
0.40 0.089999784336385 0.089999785671716 0.000000001335331
0.45 0.044127428272311 0.044127427554592 0.000000000717719
0.50 0.021504187316464 0.021504186022274 0.000000001294190

In Table 5 we have the moments for these three distributions. As we can
see the first three moments of the GNIG distribution match the first three
moments of the Logbeta distribution and the first four moments of the MG
distribution match the first four moments of the Logbeta, as it was really
meant by construction of the two approximations. The other moments are all
very close to the exact Logbeta ones, once again with the MG distribution
showing an even better approximation.

Table 5
Comparison of moments of the three distributions

Moment
order

Logbeta distribution
(α=152/10, β=3/2)

GNIG
distribution

MG
distribution

1 0.097129744129098 0.097129744129098 0.097129744129098
2 0.015726385953047 0.015726385953047 0.015726385953047
3 0.003565408035466 0.003565408035466 0.003565408035466
4 0.001039464045853 0.001039465187900 0.001039464045853
5 0.000370454752724 0.000370456502839 0.000370454755770
6 0.000156058213794 0.000156060157529 0.000156058220471
7 0.000075868390181 0.000075870359673 0.000075868400193
8 0.000041808769278 0.000041810732914 0.000041808782411
9 0.000025754487269 0.000025756477006 0.000025754503685

10 0.000017537922433 0.000017540003334 0.000017537942764
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In Table 6 we may analyze the .90, .95 and .99 quantiles for the three distri-
butions. Once again the mixture of two Gamma distributions shows a better
approximation, although both distributions yield remarkably good approxi-
mations.

Table 6
Comparison of quantiles of the three distributions

Quantile Logbeta distribution
(α=152/10, β=3/2)

GNIG
distribution

MG
distribution

.90 0.202409649747600 0.202409639248248 0.202409650573903

.95 0.253045234566776 0.253045104347747 0.253045235827326

.99 0.367409541282429 0.367409219232922 0.367409540486442

We should note that both approximations improve for larger values of α =
c + p−1

2
+ b−3

2
being the approximation given by the mixture of two Gamma

distributions always the best of the two.

Finally, we compare the near-exact moments for W1 in (8) given by the two
near-exact distributions whose c.f.’s are given by (21) and (23) with the exact
ones, obtained from the c.f. in (17). In this case the exact distribution of W1

is the sum of p independent Logbeta r.v.’s.

We considered three possible different situations that yield α = c+ p−1
2

+ b−3
2

=
152/10. For all three situations we take c = 2/10. In Table 7 we have the
moments for p = 33 and b = 1, what would yield aj = 2

10
+ 33

2
− j

2
(j = 1, . . . , 33)

in (7) (or equivalently, p = 1 and b = 33, what would yield just one Logbeta
distribution , with a1 = c), in Table 8, the moments for p = 31 and b = 3,
what would yield aj = 2

10
+ 31

2
− j

2
(j = 1, . . . , 31) in (7), and in Table 9 for

p = 17 and b = 17, yielding aj = 2
10

+ 17
2
− j

2
(j = 1, . . . , 17).

For all three cases it is possible to confirm the equality of the first three
moments for the overall GNIG near-exact distribution and of the first four
for the overall mixture of two GNIG distributions (MGNIG) and the very
close proximity of all the other moments, of course with some relatively small
degradation as the order of the moments progress.

Table 7
Comparison of moments of order h for the sum of Logbetas (exact) and the
two near-exact distributions: the GNIG in (21) and the MGNIG in (23)
for p = 33 and b = 1, or p = 1 and b = 33, with c = 2/10

h Sum of Logbetas
(exact)

GNIG
(near-exact)

MGNIG
(near-exact)

1 8.074209799622 8.074209799622 8.074209799622
2 91.398532273409 91.398532273409 91.398532273409
3 1412.625283255628 1412.625283255628 1412.625283255628
4 28435.923374222438 28435.923374223580 28435.923374222438
5 711807.170188010914 711807.170188058215 711807.170188010917
6 21359273.623424165535 21359273.623425790148 21359273.623424165687
7 747606062.549602711864 747606062.549661527388 747606062.549602717994
8 29904460682.860704833626 29904460682.863075216977 29904460682.860705087549
9 1345702404593.773404360869 1345702404593.880233787601 1345702404593.773415877302

10 67285134362214.402856671253 67285134362219.745856866369 67285134362214.403433411033
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Table 8
Comparison of moments of order h for the sum of Logbetas (exact) and the
two near-exact distributions: the GNIG in (21) and the MGNIG in (23)
for p = 31 and b = 3, with c = 2/10

h Sum of Logbetas
(exact)

GNIG
(near-exact)

MGNIG
(near-exact)

1 15.058578518011 15.058578518011 15.058578518011
2 256.938443186038 256.938443186038 256.938443186038
3 5037.371813747536 5037.371813747536 5037.371813747536
4 114617.058355589198 114617.058355590340 114617.058355589198
5 3036894.158503457579 3036894.158503544763 3036894.158503457582
6 93345423.514353025083 93345423.514357535609 93345423.514353025363
7 3297990460.599706707560 3297990460.599914613797 3297990460.599706724521
8 132371103233.040425680975 132371103233.049932904859 132371103233.040426576351
9 5963688861840.865009412834 5963688861841.319697681349 5963688861840.865055538297

10 298299167638986.629019092376 298299167639009.954931173233 298299167638986.631472117996

Table 9
Comparison of moments of order h for the sum of Logbetas (exact) and the
two near-exact distributions: the GNIG in (21) and the MGNIG in (23)
for p = 17 and b = 17, with c = 2/10

h Sum of Logbetas
(exact)

GNIG
(near-exact)

MGNIG
(near-exact)

1 29.820927206388 29.820927206388 29.820927206388
2 922.355817517058 922.355817517058 922.355817517058
3 29738.684568847095 29738.684568847095 29738.684568847095
4 1005464.874469326057 1005464.874469327199 1005464.874469326057
5 35888096.386680082775 35888096.386680254255 35888096.386680082778
6 1362045465.297717201464 1362045465.297733216942 1362045465.297717202014
7 55355953130.110260320272 55355953130.111472384574 55355953130.110260380312
8 2424157852793.904581954260 2424157852793.986978435253 2424157852793.904587155921
9 114907378069157.741159672017 114907378069163.059301551761 114907378069157.741558075982

10 5909217530677925.017650505511 5909217530678262.697578488520 5909217530677925.046258781012

However, even for the higher moments the error percentage remains at ex-
tremely low levels, of no more than 8×10−14 percent for the 10th moment,
when computed taking the exact moments as a basis, as it may be seen in
Table 10. Another remarkable feature is the fact that the error percentages,
for a given near-exact distribution, remain quite stable for any combination
of p and b values.

Table 10
Error percentages for the 10th moment concerning the two
near-exact distributions: the GNIG in (21) and the
MGNIG in (23) taking as a basis the exact moment

GNIG
(near-exact)

MGNIG
(near-exact)

p = 33, b = 1 -7.941×10−14 -8.572×10−18

p = 31, b = 3 -7.820×10−14 -8.223×10−18

p = 17, b = 17 -5.714×10−14 -4.841×10−18
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Although we have the analytic expressions for the exact and near-exact c.f.’s
of the logarithm of product of p independent Beta r.v.’s, since some of the pa-
rameters in the near-exact approximations are computed by numerically solv-
ing systems of equations, it doesn’t render possible the evaluation of analytic
Berry-Esseen type of bounds (Berry, 1941; Esseen, 1945; Loève, 1977; Hwang,
1998) for the differences between the exact and the approximate c.d.f.’s. How-
ever, for any given case, once the values for all the parameters of the Beta dis-
tributions in the product are specified, we may compute a couple of measures
based on the difference between the exact c.f. of Y and the c.f. corresponding
to the near-exact approximation under study. These measures will help us
in evaluating and comparing the performance of the near-exact distributions
proposed. One of these measures is even indeed based on the Berry-Esseen
bound.

Let Y be a r.v. with support S and let ΦY (t) and FY (y) be respectively the
exact c.f. and c.d.f. of Y and let Φ(t) and F (y) represent respectively the c.f.
and c.d.f. corresponding to the approximation under study. Further, let f(y)
represent the p.d.f. corresponding to F (y). One measure we may think of is

∆1 =

∞∫

−∞
|ΦY (t)− Φ(t)| dt

while the other, related with this one and based directly on the Berry-Esseen
upper bound on |FY (y)− F (y)| is

∆2 =
1

2π

∞∫

−∞

∣∣∣∣∣
ΦY (t)− Φ(t)

t

∣∣∣∣∣ dt .

The Berry-Esseen inequality, which is indeed an upper bound on |FY (y) −
F (y)|, may, for any b > 1/(2π) and any T > 0, be written as

max
y∈S

|FY (y)− F (y)| ≤ b

T∫

−T

∣∣∣∣∣
ΦY (t)− Φ(t)

t

∣∣∣∣∣ dt + C(b)
M

T
(24)

where M = maxy∈Sf(y) and C(b) is a positive constant that only depends on
b. But if in (24) above we take T → ∞ then we will have ∆2 since then we
may take b = 1/(2π).

In Table 11 we may see the computed values of the two measures ∆1 and
∆2 for both near-exact distributions proposed. We considered the same three
situations as above, that is, the sum of p Logbeta distributions for α = 152/10,
with c = 2/10, and i) p = 33, b = 1, ii) p = 31, b = 3 and iii) p = 17, b = 17.
Once again we may see the better performance of the mixture of two GNIG
distributions, with lower values for both measures.
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Table 11
Values for the two measures ∆1 and ∆2 for the two near-exact distributions:
the GNIG in (21) and the MGNIG in (23) for α = 152/10, with c = 2/10,
and several values of p and b

GNIG MGNIG
∆1 ∆2 ∆1 ∆2

p = 33, b = 1 1.302×10−10 7.887×10−12 2.302×10−13 1.078×10−14

p = 31, b = 3 3.474×10−12 5.524×10−13 2.294×10−15 2.940×10−16

p = 17, b = 17 8.080×10−13 1.941×10−13 3.377×10−16 6.853×10−17

5 Conclusions and final remarks

The two near-exact approximations developed lay very close to the exact dis-
tribution in terms of c.f., moments, c.d.f. and quantiles and are highly adequate
to be used in computing near-exact quantiles.

Although some of the expressions of the near-exact distributions, namely for
the c.d.f.’s, may still seem a bit complicated they are not only far more manage-
able than the exact c.d.f. but also perfectly handled by a number of available
softwares, rendering the computation of near-exact quantiles not too hard.

The two near-exact distributions proposed, that is, the single GNIG distribu-
tion and the mixture of two GNIG distributions, illustrate well the trade-off
between manageability and precision. While the single GNIG near-exact dis-
tribution is much simpler both analytically and computationally, the mixture
of two GNIG distributions yields a much better approximation.

The mixture of two GNIG distributions leads to the best results. This was
somehow expected given that by construction this approximation has the same
first four moments equal to the exact ones while the single GNIG distribution
only has the first three.

The near-exact distributions presented and the methods of derivation used
may be readily applied to obtain near-exact distributions of the generalized
Wilks Λ statistic in the case where two or more sets of variables have an odd
number of variables, as well as to obtain near-exact approximations to the
distributions of other related statistics as the one used to test the equality of
two multivariate Normal distributions.
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