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Abstract. In this work we are concerned with the numerical solution of a
nonlinear weakly singular Volterra integral equation with a nonsmooth solu-
tion. We investigate the application of product integration methods and a
detailed analysis of the Trapezoidal method is given. In order to improve the
numerical results we consider extrapolation procedures and collocation meth-
ods based on graded meshes. Several examples are presented illustrating the
performance of the methods.

1. Introduction.
Lighthill [12] derived a nonlinear singular Volterra integral equation which de-

scribes the temperature distribution of the surface of a projectile moving through
a laminar layer

F (z)4 = − 1
2
√

z

∫ z

0

F ′(s)
(z

3
2 − s

3
2 )

1
3
ds, (1.1)

where
F (0) = 1 F (t) → 0, t →∞. (1.2)

In principle, equation (1.1) can be solved numerically by a quadrature method, by
employing an appropriate approximation for F ′. A different approach was con-
sidered in [10] and [9], where an inversion formula was applied to (1.1) and the
resulting equation was solved by product integration methods. More recently, after
applying suitable variable transformations to (1.1), the following nonlinear Volterra
integral equation has been considered in [6]

y(t) = 1−
√

3
π

∫ t

0

s
1
3 y(s)4

(t− s)
2
3
ds, t ∈ [0, 1]. (1.3)

Equation (1.3) has an Abel type kernel of the form p(t, s, y(s))(t − s)−α, with
α = 2/3 and p(t, s, y) = s1/3y4. It is straightforward to demonstrate that (1.3) has
a unique continuous solution y(t) for t ∈ [0, 1] (see e.g.[13]). Regularity properties
and numerical methods for Abel equations with a sufficiently smooth p(t, s, y) have
been considered by many authors. For detailed studies and a list of references we
refer to [11], [4], [3]. We note that, since p(t, s, y) = s1/3y4 is not differentiable with
respect to s (at s = 0), the results of those works are not applicable to equation
(1.3).

In [6] a series representation for the solution of equation (1.3) was obtained:

y(t) = 1− 1.461t2/3 + 7.252t4/3 − 46.460t2 + 332.9t8/3 + . . . (1.4)

for values of t satisfying 0 ≤ t < R3/2, where R ' 0.106. We thus see that the
derivative y′(t) behaves like t−1/3 near the origin. Moreover, using a result from
[5], the behaviour of y(t) away from the origin has been analysed in [6].
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Lemma 1.1. The solution of equation (1.3) is such that y ∈ C1,2/3(ε, 1] and y ∈
C2,5/3(ε, 1], where 0 < ε < R3/2. That is, y(t) ∈ C2]ε, 1] and for t ∈ (ε, 1] we have

|y′(t)| ≤ By(t− ε)−2/3 (1.5)

|y′′(t)| ≤ Cy(t− ε)−5/3, (1.6)

for some constants By > 0 and Cy > 0.

In this work we investigate the application of several numerical methods to equa-
tion (1.3). The singular behaviour of the solution near the origin is expected to
cause a drop in the global convergence orders. Recently, we have proved that the
product Euler’s method is convergent of order 1/3 and, for t away from the origin,
obtained order one. In the present paper we give a detailed convergence analysis of
the Trapezoidal method and investigate the use of higher order product integration
methods. Spline collocation methods based on graded meshes are also investigated.
Extrapolation methods are employed in order to improve the accuracy of low order
numerical methods. Numerical results are presented illustrating the performance
of the methods.

2. Two numerical methods. Here we describe the explicit product Euler’s method
and the product Trapezoidal method.
We introduce on I = [0, 1] the uniform grid Xh = {ti = ih, 0 ≤ i ≤ N}, with
stepsize h = 1/N .

In the Euler’s method we approximate the integrand, s
1
3 y(s)4, by a piecewise

constant function, that is, for j = 0, 1, ..., N − 1,

s
1
3 y(s)4 ≈ t

1
3
j y(tj)4, s ∈ [tj , tj+1].

This yields the algorithm

yi = 1−
√

3
π

i−1∑

j=0

∫ tj+1

tj

ds

(ti − s)2/3
t
1/3
j y4

j , i = 1, 2, ..., N, (2.7)

where yi denotes an approximation to y(ti).
In the Trapezoidal method we consider a piecewise linear approximation, that

is, on each subinterval [tj , tj+1],

s1/3y4(s) ≈ (s− tj)
h

t
1/3
j+1y

4(tj+1) +
(tj+1 − s)

h
t
1/3
j y4(tj).

We obtain the algorithm

yi = 1−
√

3
π

h

i∑

j=0

wijt
1/3
j y4

j , (2.8)

with 1 ≤ i ≤ N , and where the weights wij are given by

wi0 =
1
h2

∫ t1

0

(t1 − s)
(ti − s)2/3

ds

wij =
1
h2

(∫ tj+1

tj

(tj+1 − s)
(ti − s)2/3

ds +
∫ tj

tj−1

(s− tj−1)
(ti − s)2/3

ds

)

1 ≤ j ≤ i− 1, 2 ≤ i ≤ N

wii =
1
h2

∫ ti

ti−1

(s− ti−1)
(ti − s)2/3

ds, 2 ≤ i ≤ N

It can be shown that there exists M > 0 such that

0 < wij < M
h−2/3

(i− j)2/3
, 1 ≤ j ≤ i ≤ N. (2.9)
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Taking y0 = y(0) = 1 as a starting value, the above algorithms yield approximate
values of y(ti). In the numerical examples, the non-linear equation (2.8) was solved
for yi by Newton iteration, using yi−1 as the initial guess.

3. Convergence results. The convergence results for Euler’s method, proved in
[6], are contained in the next theorem.

Theorem 3.1. Let y(t) be the solution of (1.3) and yi an approximation to y(t) at
t = ti, obtained with (2.7). Then the error ei = y(ti)− yi, i = 1, 2, . . . , N, satisfies

|ei| ≤ D h1/3 (3.10)

|ei| ≤ D1

(
h4/3

t
2/3
i

+ h

)
, (3.11)

where D, D1 are positive constants independent of h.

Therefore we can conclude that error of the explicit product Euler’s method for
equation (1.3) is of order O(h1/3). However, at points ti away from the origin, first
order of convergence may be obtained.

In this work we study the product Trapezoidal method and give a summary of
its convergence analysis. The total error ei = y(ti)−yi of the approximate solution
obtained with the Trapezoidal method satisfies, at t = ti

ei =
√

3
π




i−1∑

j=0

∫ tj+1

tj

s1/3y(s)4

(ti − s)2/3
ds− h

i∑

j=0

wijt
1/3
j y4

j




=
√

3
π

h




i∑

j=0

(
t
1/3
j y(tj)4 − t

1/3
j y4

j

)
wij


 + Ti, (3.12)

where Ti is the quadrature error at t = ti, given by:

Ti =
√

3
π

i−1∑

j=0

∫ tj+1

tj

(
s1/3y4(s)− Pj(s)

) 1
(ti − s)2/3

ds,

i = 1, ..., N, (3.13)

where, for s ∈ [tj , tj+1],

Pj(s) =
(tj+1 − s)

h
t
1/3
j y4(tj) +

(s− tj)
h

t
1/3
j+1y

4(tj+1) (3.14)

Using (2.9) in (3.12) and the fact that the function f(x) = x4 satisfies a Lipschitz
condition, we obtain

|ei| ≤ |Ti|+ M ′h1/3
i∑

j=0

|ej |
(i− j)2/3

Therefore, provided (1−M ′h1/3) < 1,

|ei| ≤ C1|Ti|+ M ′′h1/3
i−1∑

j=0

|ej |
(i− j)2/3

. (3.15)

Lemma 3.1. The quadrature error, Ti, satisfies

|Ti| ≤ C3 h1/3, i = 1, 2, . . . , N, (3.16)

where C3 is a positive constant independent of h.
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Proof. In [6] it was proved that the solution y to equation (1.3) satisfies the in-
equality

|y(z)− y(z′)| ≤ C|z − z′|1/3, ∀z, z′ ∈ [0, 1], (3.17)

where C is a positive constant that does not depend on z or z′. Defining

ψj(s) =
∣∣∣∣
(tj+1 − s)

h

∣∣∣∣ t
1/3
j |y4(s)− y4(tj)|+

∣∣∣∣
(s− tj)

h

∣∣∣∣ t
1/3
j+1|y4(s)− y4(tj+1)|

and

φj(s) = y4(s)
∣∣∣∣s1/3 −

(
tj+1 − s

h
t
1/3
j +

s− tj
h

t
1/3
j+1

)∣∣∣∣ ,

we have
|s1/3y4(s)− Pj(s)| ≤ ψj(s) + φj(s), s ∈ [tj , tj+1], (3.18)

for j = 0, 1, · · · , i− 1. Then, making use of (3.17), gives

ψj(s) ≤ |y4(s)− y4(tj)|+ |y4(s)− y4(tj+1)|
≤ LC(|s− tj |1/3 + |s− tj+1|1/3)

= 2LCh1/3.

On the other hand, it can be shown that, for s ∈ (tj , tj+1], j = 0, 1, ..., N − 1,
∣∣∣∣s1/3 −

(
(tj+1 − s)

h
t
1/3
j +

(s− tj)
h

t
1/3
j+1

)∣∣∣∣ ≤ C2h
1/3.

Let M4 = max
s∈[0,1]

|y4(s)|. Using the above inequalities to bound (3.18), it follows from

(3.13)

|Ti| ≤ max{2LC + M4C2}h1/3

∫ ti

0

1
(ti − s)2/3

ds

≤ C3h
1/3.

Using Lemma 2 in (3.15) and applying a standard weakly singular Gronwall
lemma (see e.g. [8]) leads to the following theorem.

Theorem 3.2. Let y(t) be the solution of (1.3) and yi an approximation to y(t) at
t = ti defined by (2.8). Then, the error ei = y(ti)− yi satisfies:

|ei| ≤ C4 h1/3, i = 1, . . . , N (3.19)

where C4 is a constant independent of h.

By a detailed analysis of the quadrature error, as it was done in [6] for the
product Euler’s method, we have the following result.

Lemma 3.2. The quadrature error, Ti, satisfies

|Ti| ≤ C5
h4/3

t
2/3
i

+ C6h
2, i = 1, 2, . . . , N, (3.20)

where C5, C6 are positive constants independent of h.

Using (3.20) into (3.15) we obtain

|ei| ≤ C7
h4/3

t
2/3
i

+ C8h
2 + M ′′h1/3

i−1∑

j=0

1
(i− j)2/3

|ej |.

Then a generalized discrete Gronwall lemma from [7] can be applied to yield the
following convergence result.
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Figure 1. Absolute errors for Euler’s method with uniform meshes

Theorem 3.3. Let y(t) be the solution of (1.3) and yi an approximation to y(t) at
t = ti defined by (2.8). Then the error ei = y(ti)− yi satisfies

|ei| = |y(ti)− yi| ≤ C9

(
h4/3

t
2/3
i

+ h2

)
, (3.21)

where C9 is a positive constant independent of h.

From the above theorem we conclude that the order of the error at the fixed
point ti away from the origin is 4/3.

4. Numerical results. In this section we present some numerical results obtained
with the product Euler and Trapezoidal methods considered in the previous section.
Table 1 shows the computed experimental convergence rates, defined by

p ≈
log

(
yh/2 − yh

yh/4 − yh/2

)

log 2
, (4.22)

where yh, yh/2 and yh/4 denote approximations to y(t) using the mesh spacings
h, h/2 and h/4, respectively. The results of Table I are in agreement with Theorems
1 and 3, confirming the predicted first order of convergence for the Euler’s method
and 4/3 for the Trapezoidal method. The absolute errors for N = 160, 320, 640 are
shown in Figures 1,2.
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Figure 2. Absolute errors for Trapezoidal method

Table 1. Convergence rates for several values of N

ti Euler’s method Trapezoidal method

80, 160, 320 160, 320, 640 80, 160, 320 160, 320, 640

0.2 1.108 1.061 1.322 1.320
0.4 1.066 1.041 1.308 1.313
0.5 1.057 1.035 1.305 1.311
0.7 1.045 1.029 1.302 1.309
0.8 1.041 1.026 1.301 1.309
1.0 1.035 1.023 1.300 1.308
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Let |eN (ti)| = |y(ti)−y
1/N
i |. In order to obtain error estimates we have used the

formula

|eN (ti)| ≈ |y1/N
i − y

1/2N
i |

1− (1/2)p
,

where the value p = 1 was taken for Euler’s method and p = 1.3 for the Trapezoidal
method, according to the estimate (4.22). The computed error norms, given by:

‖eN‖∞ = max
1≤i≤N

|y(tNi )− yN
i |, tNi =

i

N
,

are displayed in Table 2. The results show an expected drop in the global conver-
gence orders, due to the nonsmooth behaviour of the solution near the origin.

Table 2. Error norms for several values of N

N Euler’s method Trapezoidal method

40 0.1782 0.1600× 10−1

80 0.1122 0.1117× 10−1

160 0.7071× 10−1 0.7548× 10−2

320 0.4454× 10−1 0.4981× 10−2

640 0.2806× 10−1 0.3234× 10−2

5. Other methods.

5.1. Higher order product quadrature rules. Consider the discretised form
of (1.3) at t = ti

y(ti) = 1−
√

3
π

∫ ti

0

s
1
3 y(s)4

(ti − s)
2
3 ds

, 0 ≤ i ≤ N. (5.1)

In the product Simpson’s method we approximate the integral in (5.1) by the
product Simpson’s rule used repeatedly over [0, ti] if i is even. When i is odd, we
use the product Simpson’s rule over [0, ti−3] and the product three-eights rule will
be used over [ti−3, ti].
Then the product Simpson’s method for equation (1.3) is defined by

y2r = 1−
√

3
π

h1/3
r−1∑

j=0

2∑

k=0

t
1/3
2j+ky4

2j+kbk(2j, 2r)

(5.2)

y2r+1 = 1−
√

3
π

h1/3
r−2∑

j=0

2∑

k=0

t
1/3
2j+ky4

2j+kbk(2j, 2r + 1)

−
√

3
π

h1/3
3∑

k=0

t
1/3
2r−2+ky4

2r−2+k dk, (5.3)

with

b0(j, i) =
1
2

∫ 2

0

(υ − 2)(υ − 1)
(i− j − υ)2/3

dυ

b1(j, i) = −
∫ 2

0

υ(υ − 2)
(i− j − υ)2/3

dυ

b2(j, i) =
1
2

∫ 2

0

υ(υ − 1)
(i− j − υ)2/3

dυ
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and

d0 = −1
6

∫ 3

0

(υ − 2)(υ − 1)(υ − 3)
(3− υ)2/3

dυ

d1 =
1
2

∫ 3

0

υ(υ − 2)(υ − 3)
(3− υ)2/3

dυ

d2 = −1
2

∫ 3

0

υ(υ − 1)(υ − 3)
(3− υ)2/3

dυ

d3 =
1
6

∫ 3

0

υ(υ − 1)(υ − 2)
(3− υ)2/3

dυ

Like in the Trapezoidal method, the nonlinear equations (5.2) and (5.3) were solved
by Newton’s method and we have used the series (1.4) to compute the starting value
y1 ≈ y(t1).

Again the numerical results show evidence of a drop in the global convergence
order (cf. Table 4). The results of Table 3 suggest that, for points away from the
origin, the product Simpson’s method may exhibit the same convergence order, 4/3,
as the Trapezoidal method. We believe that similar conclusions are to be expected
for product integration methods based on the application of higher order repeated
rules (as main rules).

Table 3. Convergence rates for several values of N

Simpson’s method

ti 80, 160, 320 160, 320, 640

0.2 1.379 1.385
0.4 1.388 1.387
0.5 1.389 1.387
0.7 1.390 1.388
0.8 1.390 1.388
1.0 1.391 1.388

Table 4. Error norms for several values of N

N Simpson’s method

40 0.4953× 10−2

80 0.3500× 10−2

160 0.2377× 10−2

320 0.1578× 10−2

640 0.1030× 10−2

5.2. Collocation methods with uniform meshes. Here we present numerical
results generated by the application of collocation methods with uniform meshes.
The following notation and methods were introduced in [2]. Given an integer N ≥ 1,
let ΠN : 0 = t0 < t1 < ... < tN = 1 be a partition of the interval [0, 1]. Consider
the associated subintervals σ0 := [t0, t1], σn := (tn, tn+1], 1 ≤ n ≤ N − 1, and
define ZN := {tn : n = 1, . . . , N − 1}. The collocation methods use elements of
the polynomial spline space S

(d)
m−1(ZN ), that is, functions u ∈ C(d)([0, 1]) : u|σn =

un ∈ πm−1, 1 ≤ n ≤ N − 1. Here πm−1 is the set of polynomials of degree not
exceeding m − 1 (with m ≥ 1). In the case d = −1, no continuity conditions are
imposed at the mesh points and u will in general possess jump discontinuities at
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the knots ZN . The desired approximation to the solution of equation (1.3) is an
element u ∈ S

(d)
m−1(ZN ) satisfying

u(t) = 1−
√

3
π

∫ t

0

s1/3u4(s)
(t− s)2/3

ds, t ∈ X(N), (5.1)

where XN =
⋃N−1

n=0 Xn with

Xn =
{

tnj = tn + cjh : 0 ≤ c1 < ... < cm ≤ 1, h =
1
N

}
.

The collocation equation (5.1) has the form

ui(tik)

= 1−
√

3
π

h1/3
i−1∑

j=0

∫ 1

0

(tj + sh)1/3u4
j (tj + sh)

(i + ck − j − s)2/3
ds

−
√

3
π

h1/3

∫ ck

0

(ti + sh)1/3u4
i (ti + sh)

(ck − s)2/3
ds (5.2)

Approximating the integrals in (5.2) by product integration formulae, we obtain
the following discretised version of (5.1)

uik = 1−
√

3
π

h1/3
i−1∑

j=0

m∑

l=1

w
(ij)
kl (tj + clh)1/3u4

jl

−
√

3
π

h1/3
m∑

l=1

wkl(ti + clckh)1/3
m∑

r=1

Lr(ckcl)u4
ir

(5.3)

for k = 1, ..., m and 0 ≤ i ≤ N − 1. Lr, r = 1, ..., m, are the Lagrange polynomials
associated with cr.
The quadratures weights in (5.3) are given by

w
(ij)
kl =

∫ 1

0

λl(s)
(i + ck − j − s)2/3

ds

wkl =
∫ ck

0

λkl(s)
(ck − s)2/3

ds,

where

λl(s) =
m∏

j=1,j 6=l

(s− cj)
(cl − cj)

and

λkl(s) =
m∏

j=1,j 6=l

(s− ckcj)
(ckcl − cjck)

.

In order to approximate the solution of equation (1.3) we have considered several
choices of m and of the collocation parameters:

1. m = 2 (u ∈ S
(−1)
1 (ZN )), with collocation parameters

• c1 = 1/2 and c2 = 1,
• c1 = 2/3 and c2 = 1,

2. m = 3 (u ∈ S
(−1)
2 (ZN )), with collocation parameters

• Gauss points:
c1 = 3−√3

6 , c2 = 3+
√

3
6 , c3 = 1;

• Radau II points:
c1 = 4−√6

10 , c2 = 4+
√

6
10 , c3 = 1;
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In Tables 5 and 6 we show the computed experimental rates of convergence.
The results suggest that the convergence order of the collocation methods is ap-
proximately 1.3 and, similarly to product integration methods, we see a reduction
in the global orders of convergence (cf. Tables 7). However, let us compare, for
example, the error norms of Tables 7 and 8 with the ones in Tables 2 and 4. It
would appear that collocation methods give more accurate approximations than
the ones obtained with product integration methods using quadrature rules of the
same orders.

Table 5. Convergence rates for several values of N for collocation
method in S

(−1)
1 (ZN )

ti c1 = 1/2, c2 = 1 c1 = 2/3, c2 = 1

80, 160, 320 160, 320, 640 80, 160, 320 160, 320, 640

0.2 1.314 1.324 1.285 1.302
0.4 1.306 1.317 1.270 1.291
0.5 1.302 1.315 1.266 1.288
0.7 1.298 1.312 1.260 1.284
0.8 1.296 1.311 1.258 1.282
1.0 1.294 1.309 1.254 1.281

Table 6. Convergence rates for several values of N for collocation
method in S

(−1)
2 (ZN )

ti Gauss points Radau II points

80, 160, 320 160, 320, 640 80, 160, 320 160, 320, 640

0.2 1.386 1.375 1.367 1.361
0.4 1.388 1.377 1.370 1.362
0.5 1.388 1.379 1.370 1.360
0.7 1.389 1.393 1.371 1.353
0.8 1.390 1.340 1.371 1.347
1.0 1.392 1.415 1.369 1.335

Table 7. Error norms for several values of N

N S
(−1)
1 (ZN ) S

(−1)
2 (ZN )

c1 = 1/2, c2 = 1 Gauss Points

40 0.1177× 10−2 0.2947× 10−3

80 0.8296× 10−3 0.2013× 10−3

160 0.5648× 10−3 0.1342× 10−3

320 0.3745× 10−3 0.8787× 10−4

640 0.2437× 10−3 0.5684× 10−4

5.3. Collocation methods with graded meshes. One way to recover the op-
timal convergence rates of collocation methods for weakly singular equations, when
the solution is not smooth, is to use a graded mesh (see e.g. [4]). We have considered
collocation in the polynomial spline space S

(−1)
0 (ZN ), using the grid:

∆N =
{
ti ∈ [0, 1] : ti = (i/N)3, i = 0, 1, ..., N

}
.
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The numerical results of Table 8 indicate first order of convergence for the piecewise
constant approximation, that is, the optimal order seems to have been recovered.

Table 8. Error norms for several values of N , for collocation with
graded meshes

S
(−1)
0 (ZN ) (c1 = 1)

N ‖e‖∞ rate

10 0.2135× 10−1 −
20 0.7969× 10−2 1.422
40 0.3352× 10−2 1.250
80 0.1502× 10−2 1.158
160 0.6935× 10−3 1.115
320 0.3269× 10−3 1.085
640 0.1563× 10−3 1.065

5.4. Extrapolation. Here we present some results concerning the use of extrap-
olation procedures in order to accelerate the convergence of the numerical results
obtained with the two low order methods considered in Section II. In the case of the
explicit product Euler’s method, we have assumed that the approximate solution
yhn has an asymptotic error expansion with the form

yhn
j − y(tj) = a1hn + a2h

2
n + O(h3),

for points tj away from the origin. Using an algorithm based on Richardson’s
extrapolation, we started with an inicial approximation E

(n)
0j = yhn

j and the new
approximations were computed recursively by

E
(n)
kj =

hn+kE
(n)
k−1j − hnE

(n+1)
k−1j

hn+k − hn
,

k = 1, 2; n = 0, 1, 2, 3

The results of Tables 9 and 10 illustrate this extrapolation process at points
0.3 and 0.5, where we have taken E

(1)
2 as the exact solution of equation (1.3) at

those points. We see that the convergence is accelerated only in the first step of
the process, that is, there is an improvement in the accuracy from the first to the
second column but not to the third column. This seems to confirm the O(h) order
of the first term of the error expansion, but no conclusions can be drawn about the
order of the next term.

Table 9. Absolute error of the entries of the E-array (t = 0.3) for
Euler’s method

n |E(n)
0 − y(0.3)| |E(n)

1 − y(0.3)| |E(n)
2 − y(0.3)|

0 2097× 10−3 0.3337× 10−5 0.1427× 10−5

1 1032× 10−3 0.1904× 10−5

2 5064× 10−4 0.4761× 10−6

3 2508× 10−4
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Table 10. Absolute error of the entries of the E-array (t = 0.5)
for Euler’s method

n |E(n)
0 − y(0.5)| |E(n)

1 − y(0.5)| |E(n)
2 − y(0.5)|

0 0.8704× 10−4 0.1737× 10−5 0.7749× 10−6

1 0.4265× 10−4 0.1015× 10−5

2 0.2082× 10−4 0.2539× 10−6

3 0.1028× 10−4

For the product Trapezoidal method we have assumed that the approximate
solution yhn has an asymptotic error expansion with the form

yhn
j − y(tj) = a1h

4/3
n + a2h

2
n + O(h3),

for points tj away from the origin. In this case we have used the E-algorithm in
order to accelerate the convergence of the Trapezoidal method. The computation
of E

(n)
k begins with

E
(n)
0 = yhn

j , n = 0, 1, 2

g
(n)
0,i = gi(n), i = 1, 2 n = 0, 1, 2

where g1(n) = h
4/3
n and g2(n) = h2

n.
For k = 1, 2, 3 and n = 0, 1, ..., 3 − k the new approximations are computed

recursively by

E
(n)
k =

E
(n)
k−1g

(n+1)
k−1,k − E

(n+1)
k−1 g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

g
(n)
k,i =

g
(n)
k−1,ig

(n+1)
k−1,k − g

(n+1)
k−1,i g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, i = k + 1, k + 2, ...

We have taken E
(1)
2 as the exact solution of equation (1.3) and the absolute

errors, for points 0.3 and 0.5, of the entries of the E-array are displayed in Tables
11 and 12. The results show that the accuracy is improved in each step of the
extrapolation process. This seems to confirm the O(h4/3) order of the first term of
the error expansion and the O(h2) order of the second term.

Table 11. Absolute error of the entries of the E-array (t = 0.3)
for Trapezoidal method

n |E(n)
0 − y(0.3)| |E(n)

1 − y(0.3)| |E(n)
2 − y(0.3)|

0 9875× 10−4 0.7041× 10−6 0.4993× 10−7

1 3961× 10−4 0.2135× 10−6

2 1585× 10−4 0.5337× 10−7

3 6322× 10−5



12 M.REBELO∗, T.DIOGO∗∗ AND P.LIMA∗∗

Table 12. Absolute error of the entries of the E-array (t = 0.5)
for Trapezoidal method

n |E(n)
0 − y(0.5)| |E(n)

1 − y(0.5)| |E(n)
2 − y(0.5)|

0 0.5608× 10−4 0.4869× 10−6 0.2736× 10−7

1 0.2255× 10−4 0.1423× 10−6

2 0.9034× 10−5 0.3556× 10−7

3 0.3606× 10−5

6. Conclusions. This work has been concerned with the numerical analysis of
the nonlinear Volterra integral equation (1.3), which has a weakly singular ker-
nel of the form s1/3y(s)4 (t − s)−2/3. The derivative y′(t) of the solution of this
equation behaves like t−1/3 near the origin and this is expected to cause a loss
in the global convergence order of product integration and collocation methods.
This has been shown theoretically for the explicit product Euler’s method and the
product Trapezoidal method, where the errors are of orders O(h1/3); for points t
away from the origin, the convergence order is one for Euler’s method and 4/3 for
the Trapezoidal method. These results were confirmed by some numerical exam-
ples. We have also implemented a product integration method based on Simpson’s
rule as well as collocation methods using polynomial splines of degrees 0,1,2. The
numerical experiments of Section V suggest that general product integration and
collocation methods applied to equation (1.3) have 1/3 global order of convergence,
independently of the degree of the approximating polynomials used; as t increases
the errors seem to be of order 4/3. On the other hand, the use of collocation meth-
ods based on graded meshes suggest that the optimal orders can be recovered. The
theoretical study of these methods will be done elsewhere. Finally, Richardson’s
extrapolation procedure was used in conjunction with the product Euler’s method
and some improvement in the accuracy was observed. In order to accelerate the
convergence of the Trapezoidal method the E-algorithm was applied, indicating
that the first and the second terms of the error expansion are of orders O(h4/3) and
O(h2), respectively.
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001 Lisboa, Portugal

E-mail address: msjr@fct.unl.pt

E-mail address: tdiogo@math.ist.utl.pt

E-mail address: plima@math.ist.utl.pt


