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Abstract

In the homogenization of second order elliptic equations with periodic coefficients, it is well
known that the rate of convergence of the corrector un − uhom in the L2 norm is 1/n, the same
as the scale of periodicity (see Jikov et al [7]). It is possible to have the same rate of convergence
in the case of almost periodic coefficients under some stringent structural conditions on the
coefficients (see Kozlov [8]). The goal of this note is to construct almost periodic media where
the rate of convergence is lower than 1/n. To that aim, in the one dimensional setting, we
introduce a family of random almost periodic coefficients for which we compute, using Fourier
series analysis, the mean rate of convergence rn (mean with respect to the random parameter).
This allows us to present examples where we find rn À 1/nr for every r > 0, showing a big
contrast with the random case considered by Bourgeat and Piatnitski [3] where rn ∼ 1/

√
n.

2000MSC :

Keywords : homogenization, random almost periodic coefficients, correctors, rate of convergence, Fourier

analysis, irrationality measure.

1 Introduction

Let D be a bounded domain in RN . Let f and g be suitable data. Consider the following sequence
of Dirichlet boundary value problems :

{
− div(An(x)∇un) = f in D,

un = g on ∂D .
(1.1)

where An(·) is a family of matrices with measurable entries satisfying

λ |ξ|2 ≤ An(x)ξ · ξ ≤ Λ |ξ|2 a.e. x ∈ D , ∀ξ ∈ RN , (1.2)

for given constants 0 < λ < Λ. Typically the coefficients An oscillate at a scale 1/n as is the case
when An(x) := A(nx), and A(·) is either a periodic or an almost periodic function on RN . So,
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although there is existence and uniqueness of a solution un to (1.2), its numerical computation
is impracticable due to highly oscillating coefficients. The theory of homogenization provides the
asymptotic behaviour of the sequence of problems and it is well known (see [9], for a recent transla-
tion of the original work of Murat and Tartar on H-convergence during the 70’s) that the sequence
un converges in H1(D) towards the solution uhom of a homogenized problem :

{
− div(Ahom∇uhom) = f in D,

uhom = g on ∂D .
(1.3)

The effective matrix Ahom is independent of the data f and g, as well as of the domain D, and,
in the periodic or almost periodic case, it has constant coefficients. In those special cases the
computations required to calculate the matrix Ahom and then to calculate uhom, knowing Ahom, are
numerically stable. So, uhom can be used as a numerical approximation of un if we can estimate
for example the mean square of the error un−uhom, that is ‖un−uhom‖L2(D). The error un−uhom

is also called the corrector of order zero.

When A(·) is periodic it is well known that the following estimate holds (see [7]) :

‖un − uhom‖L2(D) ≤ C/n (1.4)

However, even for very smooth almost periodic coefficients the estimate (1.4) is not always sat-
isfied and additional assumptions are needed. In oder to estimate the corrector in this case,
Kozlov (see [8]) proposed a perturbation method derived from a formal asymptotic expansion,

un(x) = uhom(x) +
1

n
u1(x, nx) + ..., where u1 is a sufficiently regular function, almost periodic in

the second variable. By this method he could prove an estimate of the type (1.4) provided that the
equation :

− div(A(y)∇(yk + χk(y))) = 0 in RN , 1 ≤ k ≤ N . (1.5)

has an almost periodic solution χk. The existence of such solutions is not always guaranteed. A
sufficient condition to have such a solution is that the coordinate projection of the frequencies of
aij(·) (see Definition 2.1), for each coordinate, have a finite basis {ω1

ij , · · · , ωdij} over Z and that
there exists constants C > 0 and s > 0 such that

|k1ω
1
ij + · · ·+ kdω

d
ij | ≥ C|k|−s ∀(k1, · · · , kd) ∈ Zd , ∀i, j. (1.6)

Furthermore, it is assumed in [8] that the coefficients aij have a degree of regularity depending on
the exponent s. In the purely periodic case the condition (1.6) is trivially verified and no smoothness
is required.

On the other hand, in the case of random media, the rate of convergence results are strikingly
different. In the one-dimensional case, Bourgeat and Piatnitski (see [3]) consider the following
mixing condition on the random coefficients ξ(x, ω) :

∣∣∣E
(
ξ(x, ω) ξ(y, ω)

)
− Eξ(x, ω)Eξ(y, ω)

∣∣∣ ≤ d−βE(ξ2(x, ω))
1
2E(ξ2(y, ω))

1
2 , for all |x− y| ≥ d (1.7)

for some β > 1, where the symbol E just denotes the expectation, that is, the integral with
respect to the random variable ω. Under this condition, they show that for all x, the sequence
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√
n(un(x, ω)− uhom) converges in law to a Gaussian random variable. This means that the typical

deviation of un from uhom is of the order 1/
√

n. This is significantly different from the type of
estimate (1.4) obtained in the periodic case or in the almost periodic case so far.

In this note, we take up the problem of determining the rate of convergence of un − uhom, in
the one-dimensional almost periodic problem. We do not make any structural assumptions of the
kind (1.6) but we assume as in Guenneau [5], that the almost periodic coefficient is obtained by
restricting a periodic function a(x1, x2) defined on R2 along a line of irrational slope α.

We obtain precise estimates, by introducing a random parameter in the problem and by
averaging over it. Using Fourier analysis, we derive the average rate of convergence from the
behavior of a series involving α and the Fourier coefficients of a−1 (Theorem 3.1). As a consequence,
we obtain that the rate of convergence cannot be faster than 1/n and that it is exactly 1/n under
a necessary and sufficient condition which is less restrictive than (1.6).

Furthermore, in contrast with the stochastic case considered in [3] where the mixing condition
(1.7) is satisfied, we provide examples where the rate is slower than 1/

√
n and in particular can be

set to be 1/nr for arbitrary positive r < 1/2 (see Corollary 3.4 and Remark 3.5).
Finally we derive an upperbound for rn taking into account the regularity of a(x1, x2) and

the irrationality measure of the slope α (Corollary 3.7).

2 Setting of the homogenization problem.

We first recall the notion of almost periodic function and then introduce the problem of almost
periodic homogenization in the random setting using the formalism of dynamical systems.

Almost periodic functions. We denote by Trig(R) the space of trigonometric polynomials on
R, that, is finite sums of the form

p(x) =
∑

ak ei ξk x , ak ∈ C , ξk ∈ R.

There are several choices of norms on the space Trig(R) and its completion with respect to any of
these leads to different notions of the space of almost periodic functions. The closure with respect
to the sup norm |·|∞ is called the space of almost periodic functions in the sense of Bohr. Obviously,
such functions are continuous, and therefore are too restrictive for physical applications, like, for
instance, the modeling of quasicrystals. Instead we will use the following norm on Trig(R) (see
Besicovitch [1] or Jikov et al [7] for details)

|p|2 :=

(
lim

T→+∞
1

2T

∫ T

−T
|p(x)|2 dx

) 1
2

. (2.1)

Definition 2.1 The closure of Trig(R) with respect to the norm | · |2 will be called the space of
almost periodic functions in the sense of Besicovitch. We will denote this space by AP2(R). The
elements of AP2(R) are identified as measurable functions f defined on R for which the limit in
the right hand side of (2.1) exists and is finite. For such a function f the set of frequencies defined
below is an at most countable subset of R

Freq(f) = {ω ∈ R : M(f e−i ω x) 6= 0}. (2.2)
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Dynamical systems formalism (see [7]). Recall that a dynamical system on R with respect to
the probability space (Ω,A, µ) is a family T = {T (x)}x∈R : Ω→ Ω such that

1. T (x) is measure preserving on (Ω,A, µ), i.e.,
∫

Ω f(T (x)ω) dµ =
∫

Ω f(ω) dµ, for all f ∈ L∞(Ω)
and for each x ∈ R ;

2. T (x + y) = T (x) ◦ T (y) for all x, y ∈ R ;

3. for every measurable function f on Ω, the application (x, ω) 7→ f(T (x) ω), called a stationary
random field, is measurable on (R× Ω,F ⊗A), where F is the Lebesgue σ-algebra on R.

We say that T is ergodic if T -invariant functions are constant that is, if f(T (x)ω) = f(ω), µ-
a.e. ω ∈ Ω, for all x ∈ R, then f is constant µ a.e. in Ω. In this case, by the Birkhoff Ergodic
Theorem (see [7], p.225), for every f ∈ L1(Ω, µ) and for every compact subset K ⊂ R the following
convergence holds for almost all ω ∈ Ω :

1

|K|

∫

K
f(T (n x)ω) dx

n→+∞−→ 〈f〉 :=

∫

Ω
f dµ . (2.3)

Almost periodic random fields. We will focus on a particular stationary random field whose
almost all realizations are almost periodic in the sense of Besicovitch. Consider the probability
space ([0, 1)2, F ⊗F , m), where F is the σ-algebra of Lebesgue measurable sets in [0, 1) and m the
restriction of the two-dimensional Lebesgue measure to [0, 1)2. Let α ∈ R\Q and let T (x) : Ω→ Ω,
where Ω = [0, 1)2, be defined as follows :

T (x)ω := (ω + (1, α) x) mod [0, 1)2, for ω ∈ Ω. (2.4)

It is easy to see that {T (x)}x∈R is an ergodic dynamical system with respect to m.

Let now a(ω1, ω2) be a given function in L2(Ω) which we implicitely periodize on all R2. Then, we
claim that, for almost all ω ∈ Ω, the function x 7→ a(T (x)ω) belongs to the class AP2(R). Indeed

we may write a(ω1, ω2) =
∑

(k,l)∈Z×Z
akl e

2πi(k ω1+l ω2) and consider its polynomial approximations

pn :=
∑

|k|,|l|≤n
akl e

2πi(k ω1+l ω2) . Applying (2.3) with f = | a − pn|2 which is an element of L1(Ω, µ),

the following convergence holds for almost all ω ∈ Ω

lim
N→+∞

1

2 N

∫ N

−N
|a(T (x)ω)− pn(T (x)ω)|2 dx =

∫

Ω
| a− pn|2 dω. (2.5)

The claim follows since the right hand side of (2.5) goes to zero as n → +∞ and x → pn(T (x)ω)
is a trigonometric polynomial.

Setting of the homogenization problem. Let α be fixed in R \Q and consider T (·) defined in
(2.4) . Let a(ω1, ω2) be a bounded measurable function on Ω = [0, 1]2 satisfying

0 < λ ≤ a(·) ≤ Λ a.e. in Ω (2.6)
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for given constants 0 < λ < Λ. Let us define the stationary random field

ξ(x, ω) = a(T (x)ω). (2.7)

We have already noticed that almost all realizations of ξ(·, ω) are Besicovitch almost periodic and
therefore the realizations of the rescaled fields x 7→ ξ(nx, ω) are almost periodic at a scale 1/n, for
every n ∈ N.

We consider the following boundary value problem, where ω ∈ Ω acts like a parameter :

− d

dx

(
ξ(n x, ω)

dun(x, ω)

dx

)
= 0 in (0, 1) ,

un(0, ω) = 0 , un(1, ω) = 1.

(2.8)

The solution of (2.8) is given explicitly by

un(x, ω) =

∫ x
0 [ξ(n t, ω)]−1 dt
∫ 1

0 [ξ(n t, ω)]−1 dt
=

∫ x
0 [a(T (n t)ω)]−1 dt
∫ 1

0 [a(T (n t)ω)]−1 dt
(2.9)

Then (2.3), together with the coercivity condition (2.6), yield the weak convergence in H1(0, 1),
as n → +∞, for almost all ω ∈ Ω, of the sequence un to the function u(t) = t. Similarly the

sequence ξ(n x, ω)
dun(x, ω)

dx
=

1∫ 1
0 [a(T (n t)ω)]−1 dt

, which is a sequence of constant functions in

x, converges strongly in L2(0, 1) to 〈a−1〉−1 for almost all ω in Ω. Thus, for almost all ω ∈ Ω, the
homogenized equation reads as

− d

dx
(〈a−1〉−1 du

dx
) = 0 ,

u(0) = 0 , u(1) = 1,

(2.10)

where 〈a−1〉 =
∫

Ω a(ω)−1 dω. Note that the equation (2.10) is independent of the parameter ω.
Due to the compact inclusion H1(0, 1) ⊂ L2(0, 1), the following convergence takes place :

r2
n(ω) :=

∫ 1

0
|un(x, ω)− x|2 dx→ 0, (2.11)

for almost all ω ∈ Ω. By (2.6) the sequence {un} given by (2.9) is uniformly bounded for all x ∈ [0, 1]
and all ω ∈ Ω and therefore, by Lebesgue’s Dominated Convergence Theorem we conclude from
(2.11) that

r2
n :=

∫

Ω

∫ 1

0
|un(x, ω)− x|2 dx dω → 0.

The main question, now, is to find the rate of the convergence of the error rn.

Remark 2.2 Actually it is easy to deduce a rate of convergence for individual realizations (that
is for rn(ω) given in (2.11)) if we know the behavior of the quadratic average rn. More precisely
assume that rn ¿ εn (which means that rn

εn
converges to zero as n tends to +∞) for a suitable

sequence εn ↘ 0, then
rn(ω)

εn
converges to 0 in L2(Ω) and therefore by Egoroff’s Theorem, there

exists for every δ > 0 a subset Ωδ ⊂ Ω such that P (Ω \ Ωδ) < δ and sup
ω∈Ωδ

rn(ω)¿ εn .
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Remark 2.3 We conclude this section by emphasizing that our problem is not a particular case
of the one studied in [3], since the mixing condition (1.7) is not satisfied, in general. In fact
we claim that it is never the case unless a(ω) is constant. Indeed in view of (1.7), saying that
ξ(x, ω) := a(T (x)ω) satisfies a mixing condition implies that there exists β > 1 such that
∣∣∣∣∣

∫

Ω
a(T (x)ω) a(T (y)ω) dω −

[∫

Ω
a(ω) dω

]2
∣∣∣∣∣ ≤

1

dβ

∫

Ω
a(ω)2 dω, whenever |x− y| ≥ d. (2.12)

Since α is irrational, we may choose a subsequence nk of n such that the fractional part {nk α} of
nk α converges to 0, as k → +∞. Applying (2.12) with x = 0, y = nk, we would obtain

lim
k→+∞

∫ 1

0

∫ 1

0
a(ω1, ω2) a(ω1 + nk, ω2 + nk α) dω1 dω2 = 〈a〉2, (2.13)

Now, using some approximation arguments and the periodicity of a(ω), it can be easily shown
that ak(ω1, ω2) := a(ω1 + nk, ω2 + nk α) converges strongly to a(ω) in L2(Ω). Thus, by (2.13),∫

Ω (a(ω1, ω2))
2 dω1 dω2 = 〈a〉2 and a(ω) = 〈a〉 for almost all ω ∈ Ω as claimed.

3 Main result

In this section we state and prove our main result on the rate of convergence of correctors for the
problem (2.8). More precisely we give an equivalent of rn as n→ +∞ where

rn := ‖un − u‖L2((0,1)×Ω) . (3.1)

In the following we will write rn ∼ εn if the ratio
rn
εn

ranges between two positive constants for

large n.
We consider a non-constant measurable periodic function a(ω1, ω2) satisfying (2.6) and we represent
its inverse in terms of Fourier series

a−1(ω1, ω2) =
∑

(k,l)∈Z×Z
bkl e

2π i(k ω1+l ω2). (3.2)

We will say that a−1 ∈ Hs
per(R2) if

∑

k,l

|bkl|2 (k2 + l2)s <∞. (3.3)

We introduce the non increasing function S : R+ → (0, +∞] defined by

S(t) :=
∑

|k+α l|≥t

|bkl|2
(k + α l)2

. (3.4)

Theorem 3.1 Let un and u be the solutions of the equations (2.8) and (2.10) respectively, where
a(ω) is given by (3.2). Then we have

rn ∼ n

√∫ 1
n

0
t3 S(t) dt , (3.5)
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Remark 3.2 A trivial consequence of (3.5) is that the rate of convergence of rn cannot be faster

than
1

n
. Indeed, since S(t) is non increasing, we have

lim
n→+∞

n4

∫ 1
n

0
t3 S(t) dt =

S(0+)

4
> 0 .

Therefore, by (3.5), the following equivalence holds

rn ∼
1

n
⇐⇒ S(0+) =

∑

(k,l) 6=(0,0)

|bkl|2
(k + α l)2

< +∞ . (3.6)

Notice that the right-hand side condition holds when the function a−1 belongs to Trig(R2).

In the case where the previous series diverges ( i.e. S(0+) = +∞), the speed of convergence of rn
can very often be deduced from the behavior of S(t) near t = 0. For example, it is easy to check
that, for every real β ∈ [0, 2], one has

S(t) ∼ 1

tβ
as t→ 0 =⇒ rn ∼

1

n1−β
2

. (3.7)

The proof of the theorem is based on the following lemma which converts the initial problem into
a more explicit one, involving Fourier series. Let g : R→ R+ be the function defined by

g(t) :=





1

3

[
5− 3

π2t2
+

(
1 +

3

π2t2

)
cos 2πt

]
t 6= 0,

0 t = 0 .

(3.8)

Lemma 3.3 Let a−1 be given by (3.2). Then

r2
n ∼ 1

n2

∑

(k,l) 6=(0,0)

|bkl|2
(k + α l)2

g(n (k + α l)) . (3.9)

Proof: From (2.9), we obtain

r2
n =

∫ 1

0

∫

Ω

|
∫ x

0 [a(T (nt)ω)]−1 dt− x
∫ 1

0 [a(T (nt)ω)]−1 dt|2

|
∫ 1

0 [a(T (nt)ω)]−1 dt|2
dω dx .

The assumption (2.6) implies that
1

|
∫ 1

0 [a(T (nt)ω)]−1 dt|2
is bounded from below and from above

by positive constants λ2 and Λ2, respectively, independently of n. So, we have

r2
n ∼

∫ 1

0

∫

Ω

∣∣∣∣
∫ x

0
[a(T (nt)ω)]−1 dt− x

∫ 1

0
[a(T (nt)ω)]−1 dt

∣∣∣∣
2

dω dx .
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Using the Fourier representation (3.2), we may write for every fixed x :

∫ x

0
[a(T (nt)ω)]−1 dt− x

∫ 1

0
[a(T (nt)ω)]−1 dt

=
∑

(k,l) 6=(0,0)

bkl
e2π i n(k+α l)x − 1− x(e2π i n (k+α l) − 1)

2 π i n (k + α l)
e2π i(k ω1+l ω2) ,

and compute the L2(Ω) norm of the right hand side (as a function of (ω1, ω2)) thanks to Parseval
identity. The relation (3.3) follows by integrating in x and after checking that g defined in (3.8)
satisfies the equality

g(t) =

∫ 1

0
|e2π i t x − 1− x(e2π i t − 1)|2 dx.

Proof of Theorem 3.1 Recalling (3.8) we can check, by developing the cosine function in a
Taylor series near 0 and also by noticing that g(t) is O(1) away from 0, that there exist two positive
constants c0 and c1 such that,

c0 h(t) ≤ g(t) ≤ c1 h(t), where h(t) :=

{
t4 t ≤ 1,
1 t > 1 .

(3.10)

Define on Z× Z \ {(0, 0)} the measure µ and, for each n, the function Φn as follows

µ :=
∑

(k,l) 6=(0,0)

|bkl|2
(k + α l)2

δkl , Φn(k, l) := inf

{
1

n
, n (k + αl)2

}
.

Then we can write

1

n2

∑

(k,l) 6=(0,0)

|bkl|2
(k + α l)2

g(n (k + α l)) =

∫
g(n (k + α l))

n2
dµ (3.11)

and, in view of (3.10),

c0 Φ2
n(k, l) ≤ g(n (k + α l))

n2
≤ c1 Φ2

n(k, l) . (3.12)

On the other hand, since µ is a Radon measure, one has

∫
Φ2
n dµ = 2

∫ +∞

0
tµ({(k, l) : Φn(k, l) > t}) dt . (3.13)

Computing the measure of

{(k, l) : Φn(k, l) > t} =

{ ∅ , t ≥ 1
n ,{

(k, l) : |k + α l| >
√

t
n

}
, t < 1

n ,
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we obtain

µ({(k, l) : Φn(k, l) > t}) =

{
0 , t ≥ 1

n ,

S
(√

t
n

)
, t < 1

n .
(3.14)

The relation (3.5) immediately follows from Lemma 3.3 and equations (3.11)-(3.14) after a simple
change of variables.

Corollary 3.4 Let α ∈ R \Q and let {εn} be a sequence such that

εn ↘ 0+ , {n εn} is increasing ,
∑

(εn/n) < +∞ .

Then there exists a bounded periodic function a(ω1, ω2) satisfying (2.6) such that rn ∼ εn .

Proof: Given any α ∈ R \ Q, the set {k − α l : k, l ∈ Z} is dense in R. So given any real number
0 < λ < 1 we can choose, for every j ∈ N, a pair (kj , lj) ∈ Z2 (among an infinite number of such
pairs) such that

λj − λ2j ≤ kj − α lj ≤ λj + λ2j .

Then we set

αj := |kj − α lj | , nj :=

[
1

αj

]
, jn := sup

{
j : αj >

1

n

}
,

where [x] stands for the integer part of x. We observe that αj decreases exponentially to zero as
j → +∞ and therefore,

jn ∼ ln(n) , lim
j→+∞

nj+1

nj
= λ−1 . (3.15)

We claim that, given any δ with 0 < δ < 1, we have

δ λ

2
n ≤ njn < n for large n. (3.16)

Indeed, by the definition of jn, we have αjn >
1

n
which implies the second inequality. On the other

hand, as jn tends increasingly to infinity, there holds for n sufficiently large

αjn+1 ≥ λjn+1 − λ2(jn+1)

≥ λ
(
λjn − λ2 jn

)

≥ δ λ
(
λjn + λ2 jn

)
≥ δ λ αjn

Then, since αjn+1 ≤
1

n
, we conclude that for large n

njn ≥
1

αjn
− 1 ≥ δ λ

αjn+1
− 1 ≥ δ λ n− 1 ≥ δ λ

2
n.
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This proves (3.16). Recalling that εn is non increasing whereas nεn is increasing, we deduce

εn ∼ εnjn . (3.17)

Now we define a−1 by specifying its Fourier coefficients bkl. We set

bkl :=





fj if (|k|, |l|) = (aj+1, aj), kl ≤ 0 , (k, l) 6= (0, 0)
c0 if (k, l) = (0, 0)
0 otherwise

(3.18)

where, recalling that {n εn} is increasing, we define fj for j ≥ 1 by

fj := αj

√
n2
j ε2

nj − n2
j−1 ε2

nj−1
. (3.19)

Since njαj ≤ 1, it is easy to check that

fj ≤ εnj . (3.20)

On the other hand, since εn is non increasing, we have

εnj ≤
1

(nj − nj−1)

nj∑

k=nj−1+1

εk ≤
1

(1− nj−1

nj
)

nj∑

k=nj−1+1

εk
k

.

Therefore, by (3.20) and (3.15) there exists a positive constant C such that

∑

j≥1

fj ≤
∑

j≥1

εnj ≤ C
∑

k≥1

εk
k

< +∞ . (3.21)

Writing a−1 in the form

a−1(ω1, ω2) = c0 +
∑

j≥1

fj cos[2π(aj+1ω1 − ajω2)],

we see that, possibly after multiplying the fj ’s by a suitable constant, we may choose c0 in (3.18)
so that condition (2.6) is fulfilled.
Now we may compute S(t) given in (3.4) taking into account (3.18)). We have, for all t ∈ R+,

S(t) =
∑

αj>t

f2
j

α2
j

.

Thus, by Fubini’s Theorem :

n2

∫ 1/n

0
t3S(t) dt =

∑

j≥0

f2
j

α2
j

[
inf

{
αj ,

1

n

}]4

= an + bn , (3.22)

where we have set

an =
1

n2

∑

αj>
1
n

f2
j

α2
j

, bn = n2
∑

αj≤ 1
n

f2
j α

2
j .
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We can calculate an with the help of the definition (3.19), using (3.16) and (3.17), whereby it
follows immediately that

an =
1

n2

∑

j≤jn

f2
j

α2
j

=
1

n2
n2
jn ε2

njn
∼ ε2

n. (3.23)

On the other hand, using the fact that αj ∼ λj and also the definition of jn, the following calculation
yields, for some positive constant C, that

∑

αj≤ 1
n

α2
j =

∑

j>jn

α2
j = C α2

jn+1 ≤ C
1

n2
. (3.24)

From (3.20), (3.24) and since the sequence εn is nonincreasing, we infer that

bn ≤ n2 ε2
njn

∑

j>jn

α2
j ≤ Cε2

n. (3.25)

The conclusion follows from (3.22), (3.23) and (3.25).

Remark 3.5 The conditions of Corollary 3.4 are satisfied if we take εn =
1

nr
for any r ∈ (0, 1).

We may also choose εn =
{
(log n) . . . (logm−1 n)(logm n)s

}−1
for every m ∈ N and s > 1, where

logm denotes the log function composed with itself m times. These examples show that the rate
can be much weaker than that previously exhibited by Bourgeat and Piatnitski in the random case
(see [3]) without the mixing condition (1.7).

We now wish to study how the regularity of a−1(ω1, ω2) and the degree of irrationality of α influence
the behavior of rn. It is well known in Number Theory that to each real number α we can assign
a value ξ0(α), the irrationality measure of α, defined by ξ0(α) := sup

ξ∈χ(α)
ξ, where χ(α) is the

set of all ξ ∈ R+ is such that the inequality 0 <

∣∣∣∣α−
k

l

∣∣∣∣ ≤
1

lξ
has an infinite number of solutions

(k, l) ∈ Z, l > 0. It can be seen easily that ξ0(α) = 1 if x is rational, and ξ0(α) ≥ 2 if α is irrational.
In fact it is a difficult result due to K.F. Roth that ξ0(α) = 2 for every algebraic number. In view
of Lemma 3.6 below this equality extends to almost all irrational numbers. If ξ0(α) = +∞, then
α is called a Liouville number. For further details and results on this topic we refer to Hardy and
Wright [6] or Cassels [4].

Lemma 3.6 There exists a Lebesgue negligible subset D ⊂ R such that Q ⊂ D and ξ0(α) ≤ 2 for
every α ∈ R \D.

Proof: Since ξ0(α + n) = ξ0(α) for all n ∈ Z, it is enough to specify D as a subset of [0, 1) we will
implicitely extend by periodicity. Define, for any A > 1 and ε > 0,

EA,ε :=
⋃

p
q
∈Q∩[0,1]

[
p

q
− 1

A q2+ε
,
p

q
+

1

A q2+ε

]
∩
[
0, 1
)
.
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Then we set

D :=
⋃

ε>0

(⋂

A>1

EA,ε

)
.

Clearly we have m(D) = 0 since

m(EA,ε) ≤
∑

q∈Q

2 q

A q2+ε
<

Cε
A

.

Let α ∈ [0, 1)\D. Then, for every ε > 0, there exists a contant Aε such that

∣∣∣∣
p

q
− α

∣∣∣∣ >
1

Aεq2+ε
for all

p

q
∈ [0, 1]. The latter inequality extends to all

p

q
∈ Q provided q is so large that

1

Aεq2+ε
< min{α, 1− α}. It follows that ξ0(α) ≤ 2 + ε. Hence the conclusion by sending ε to

zero.

Let us consider an irrational number α with finite irrationality measure ξ0 = ξ0(α). Then, by the

definition, for every ε > 0 there exists n0 ∈ N such that for all |k|, |l| ≥ n0,

∣∣∣∣α−
k

l

∣∣∣∣ >
1

|l|ξ0+ε
and,

consequently,

|k + α l| ≥ 1

(k2 + l2)
ξ0−1+ε

2

(3.26)

Corollary 3.7 Let a−1 ∈ Hs
per(R2) and suppose that α has irrationality measure ξ0 = ξ0(α) <

+∞, then,

rn ≤ C
1

nr
, for all r < min

{
s

(ξ0 − 1)
, 1

}
.

Proof: From Theorem 3.1, if tβS(t) is bounded then β ≥ 0 and rn ≤ C
1

n1−β
2

for some constant

C. Recalling (3.4) and (3.26) we obtain the following estimate

tβS(t) ≤
∑

k,l∈Z
|bkl|2 (k2 + l2)(ξ0−1+ε)(1−β

2 ) . (3.27)

Since a−1 ∈ Hs(Ω), for all β such that (ξ0 − 1 + ε)

(
1− β

2

)
≤ s or, equivalently, such that

(
1− β

2

)
<

s

ξ0 − 1
, we conclude from (3.27) that tβS(t) is bounded. The result follows by set-

ting r = 1− β

2
.

Remark 3.8 By Corollary 3.7 and Lemma 3.6, it turns out that, in a realistic situation like when
a(ω1, ω2) is a piecewise constant periodic function discontinuous along Lipschitz curves in Ω, the

error rn satisfies rn ≤
C

nr
for every r < 1/2, provided α is either algebric or it does not belong to
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the negligible subset D defined in Lemma 3.6. Indeed in this case a−1 belongs to Hs
per(R2) for all

s < 1/2. In a very similar way, keeping the same assumption on α, we obtain rn ∼
1

n
if a−1 is

assumed to have the regularity Hs
per(R2) for some s > 1.

Remark 3.9 The upper bound obtained in Corollary 3.7 is not optimal in general. For example,
let α ∈ R \ Q with ξ0(α) = 2 and let a be the characteristic function of periodically distributed

squares in R2. Then, Corollary 3.7 yields that rn ≤ C
1

nr
for every r <

1

2
. Whereas, we can make

a more refined estimate using the fact that |bkl| ∼
1

k l
. For that we split the series given by S(0+)

into two parts: the sum over (k, l) such that |k − α l| > 1

2
which results in a finite value and the

sum over (k, l) with

∣∣∣∣
k

l
− α

∣∣∣∣ <
1

2 l
which is of the order

∑

l>>M

1

l6
l2(2+ε) < +∞ (notice that for any

given l a unique k(l) ∼ α l is associated in the latter sum, besides the fact that for given ε > 0, one

has |k − α l| > 1

l2+ε
for k, l large enough). Eventually, by Remark 3.2, we find that rn ∼

1

n
which

improves vastly the behaviour predicted by the above corollary in this special case.
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