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Abstract

Let A = (A1,..., ) be a partition of m and X' = (X],..., X} ) its
conjugate partition. Denote also by A the irreducible C-character of
Sm associated with A. Let V be a finite dimensional vector space over
C.

The reach of an element of the symmetry class of tensors V) (sym-
metry class of tensors associated with \) is defined. The concept
of critical element is introduced, as an element whose reach has di-
mension equal to \]. It is observed the coincidence, in A™V, of the
notions of critical element and decomposable element. Known results
for decomposable elements of A™V are extended to critical elements
of V. In particular, for a basis of ®™V induced by a basis of V,
generalized Pliicker polynomials are constructed in a way that the set
of their common roots contains the set of the families of components
of decomposable critical elements of Vj.
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1 Introduction

Let V be a n-dimensional vector space over C and let (e, ..., e,) be a basis
of V. Let A = (Ar,..., As) (As > 0) be a partition of m and x = (A1,..., A, 1)
the partition of m + 1 obtained from A\ by adding one part equal to 1. The
irreducible complex characters of S, correspond canonically in a one to one
way to the partitions of m. So, we identify A with the corresponding irre-
ducible complex character of S,, and x with the corresponding irreducible
complex character of S, 1.

We denote by @™V the mth tensor power of V. If o € S,,, then P(0) is
the unique linear operator on ®™V satisfying

P(U)(xl Q- ® xm) = To-1(1) @+ @ To-1(m)

forall z1,...,2,, € V.
We define the symmetrizer associated with A as the linear operator,

Ty := )\T(j) Z Ao)P(o).

0ESm

The range of T) is called symmetry class of tensors associated with
A and is denoted by V). The image by T\ of the decomposable tensor
1 Q- @ Xy, where x1,..., 2, € V, is called decomposable symmetrized
tensor or decomposable tensor of V) and is denoted by

I’l**xm:T)\(x1®®xm)

Let z € V). A family (z;5) i=1.....» that satisfies
J

=1,..., m

k
qu Q- ® Ty € Tgl({Z})
i=1

is called pre-image family of z in V. Let X = (x;;) i=1.....» be a pre-image
i=1

family of z € V). We call the pair

(X,Z):(([L'U) ;‘_:1 ,,,,, k ,Z)

=1,..., m

a presentation of z. By abuse of language presentation of z is the expression



k
z = E Ti1 k= X Thm
=1

where (z;;) i=1,....x 1is a pre-image family of z. The tensor
j=1

k
® _ ) )
ZX_ x11®"'®$zm
i=1

is a root of the presentation (X,z). The vectors x;; are the vectors of the
presentation and the dimension of the subspace of V'

(xyji=1,...)k,g=1,...,m)

is called the dimension of the presentation.

If X is the alternating character ¢, V), is denoted by A"V, the well known
m-Grassmann space, or the m-th exterior power of V and the decompos-
able symmetrized tensors T.(z1 ® - -+ ® x,,) are the decomposable tensors of
Grassmann denoted by

1N\ N\ Ty

It is well known that the tensors of the form z; A --- A z,,, with
Ti,...,T, €V, are an algebraic variety of A" (®™V). This algebraic vari-
ety is the affine cone of a projective variety whose defining polynomials are
the quadratic Pliicker polynomials.

We define reach of a nonzero tensor of V), the smallest (by inclusion)
subspace W of V' such that z € W,. We define also annihilator of a nonzero
tensor z of V) as the subspace of the reach of z whose elements v satisfy

k
=1

whenever

k
z= E Lig * =k Ty
i=1

is a presentation of z with vectors in the reach of z. The concepts of reach
and annihilator of a tensor of V) have a crucial role in this approach. The
elementary properties of these concepts and the relations with the critical



elements of V) are established. When A\ is the alternating character the
annihilator of z is the subspace of V' whose elements v € V' satisfy

zNANv=0.

We prove that a Grassmann tensor is critical if and only if it is Grassmann
decomposable. This observation allow us to conclude that the first of the
main theorems of this paper generalizes the well known result (see [7]):

Theorem 1.1 Let z be a nonzero vector in N™V . Then z is decomposable
(in ANV ) if and only if there exists a linearly independent set of m vectors
U, ..., Uy Such that

zANu; =0, 1=1,...,m.

Following the strategy presented by M.Marcus in [7] we construct a family
of Pliicker polynomials to the set of critical decomposable tensors of V).

2 Combinatorial tour

Let X be a finite set, we denote by I';,, x the set of all mappings from
{1,...,m} into X. When X = {1,...,n}, we use the notation I'y,, (I}, )
to the set of the mappings from {1,...,m} into {1,...,n} (respectively
{1,...,m} into {0,...,n}. We will call multiplicity partition of o € ', x the
partition of m obtained by rearranging in decreasing order the components of
the family of nonnegative integers (Ja™!(z)|).cx. We denote the multiplicity
partition of @ by M («).

Let w € Iy, ,, we denote by w; the element of I';,,_1 5,

wi = (w(),...,wi—-1),wiE+1),...,w(m)), i=1,...,m.

fvel,ante{l,...,m}andj € {1,...,n} we will denote by v <i>j

the element of I',, ,, defined by

vej:=w),. ..,vit—1),5v®t),. .., vim—=1)), if t=1,...,m—1,

vej:=(w(),...,v(m—1),7).



If o € Ty, we denote by & the element of T,
&= (a(l),...,a(m),0).

The subset of the increasing functions of I',, ,, is denoted by G, ,,.

We define an action

(0,a) — ao™?

of Sy, (respectively Spq1) on Ty (vespectively on (I, ). If v € Ty, the
orbit of « is denoted by O,. If @ and ( belongs to the same orbit we will say
a = f(modS,,). Observe that G,,,, is the system of distinct representatives
of the orbits of this action, choosing in each orbit O, the smallest element
by the lexicographic order. We denote by H, the stabilizer of a.

Lemma 2.1 Let o and (3 be elements of L'y, ,,. Then o = F(modS,,) if and
only if
™ (@) = 18710, i=1.n

Proposition 2.1 Let o and 3 be elements of I'y, .. Then o = f(mod S,,)

~

if and only if & = f(mod Spy1)-

Let (e1,...,e,) be a basis of V and o € T',,,,. We denote by €2 the
element of ™V
€a = Ca(1) &+ & €a(m)-

In the same way e, is the element of V)
€h 1= Ca(1) ¥t K Ca(m)-
Denote by €2 (or just by ) the subset of I, ,,,
Q:={ael,,, e #0}
By the definitions it is easy to conclude that
VA C(e2:ae Q). (1)

So, if 2 =3 o cae € Vi we define support of z and denote by supp(z) the
subset of (2

supp(z) := {a € Q: ¢, # 0}.



Let m be a positive integer and A = (\1,...,\;) be a partition of m. We
identify A\ with an m-tuple of nonnegative integers by adding, if necessary, a
list of zeros, i.e.

A= ()\1,...,)\15) = (Al,...,At,O,...,O).

If X is a partition of m, then X" = (A},..., X} ) defined by
Ne=H{ge{l,...0t}: N, >k}, k=1,..., )\,

is also a partition of m called the conjugate partition of .

Let A = (A,...,A\p) and v = (v1,...,1,) be partitions of m. We say
that \ majorizes v, and denote A = v, if

k k
Z/\Z‘ZZVZ‘, k’:l,...,m.
i=1 i=1

3 Auxiliary results

Let W be a subspace of V' and (ey,...,e,) be a basis of W. Let ey ¢ W
and denote by U the subspace of V, U = W + (ep). Then (e, ...,e,) is a
basis of U and

(6? : ﬁ S an—i-l,n)

is a basis of @™ t1U. Therefore

@ = (65 1 €Ty 187 ({0))] = 1, A(m +1) = 0)

®(ef 1 B € Tpyrm 187 ({0N] =1, B(m +1) #0)

&lef 1 B € Ty 1871 ({0D)]# 1)

=(eg 1@ €lny) @ (ef : BT, [B7({0})] =1, B(m+1) #0)



®(ef : B € Topar s 187 ({0} # 1), (2)
Let (z1,...,%,) be a family of nonzero vectors of V' and p = (py,..., )
be a partition of m. A p-coloring of (z1,...,x,) or coloring of shape . is a
decomposition of (z1,...,x,,) in linearly independent subfamilies,

(1317 e 7$m) = (l’z‘)iemU cee U<xi>i€Ak

where (Aq,...,A) is a set partition of {1,...,m} and |A;| = u;y @ =
1,...,k. We say that the family (xy,...,2,,) is u-colorable if there exists a
coloring of (x1,...,x,,) of shape u.

In [1] was proved that in the majorization order, the set of the shapes
of the colorings of (z1,...,z,;,) has a maximum. This maximum partition is
the rank partition of (z1,...,x,) and is denoted by

p(x1, .. T).

In [4] Gamas proved the following result that we present here with the
formulation referred to [1]:

Proposition 3.2 Let A be an irreducible character of S,,. Let (x1,...,Zy)
be a family of nonzero vectors of V.. Then T\(x1 ® -+ - ® x,) # 0 if and only
of

p(xy, ... oy) = N,

Remark

1. By the proposition, if z is a nonzero decomposable tensor of V) the
dimension of the presentations of z is greater or equal to A].

2. The proposition is a generalization of the following result previously
established by R.Merris [8].

Proposition 3.3 Let A be an irreducible character of S,,. Let (eq,...,ey,)
be a basis of V. If « € T,y then Th(e2) # 0 if and only if A = M(«).



The next proposition is another formulation of the Gamas Theorem pre-
sented for the first time in [1].

Proposition 3.4 Let A be an irreducible character of S,,. Let (x1,...,Tpy)
be a family of nonzero vectors of V.. Then T\(x1 ® -+ ® x,) # 0 if and only
if the family (z1,...,xy) is N-colorable.

The relation between the principal result of this article and the classical
results of the Grassmann spaces depends to the following theorem:

Theorem 3.2 Let (x1,...,Zm), (Y1,---,Ym) be families of linearly indepen-
dent vectors of V.. Then

if and only if

(X1, Ty = Y1y oy Ym)-

4 Pre-image families and reach of a tensor of
Vi

Let

k
z = E Lig * =k Ty
i=1

be a presentation of z. If, for all subset L C {1,...,k}, we have

S ke £ 0 3)

» ) is a simple presentation

,,,,,

we say that z = Zle T % * Ty ((45) =1
5=

of z (a simple pre-image family of z).



From now on we assume that all the presentations (pre-image families )
considered are simple.

Definition 4.1 Let 0 # z € V},

k
z = E Ti1 k- X Tjm
=1

is a critical presentation of z and the family ((x;;) i=1....x ) is a critical
j=1

,,,,,

pre-image family of z if

dim(xﬁ,...,xim>:)\/l, Zzl,,k

Definition 4.2 Let 0 # z € V). We say that z is weakly decomposable if
exists a presentation of z

k
z = E Ti1 ko X Thm
i=1

such that

<xi17---7$im>:<xj17---axjm>7 Z,je{l,,k}

This presentation of z is called weakly decomposable and the corresponding
pre-image family is also called weakly decomposable .

Definition 4.3 A nonzero vector of Vy has k rank if it is a sum of k and not
less than k£ decomposable symmetrized tensors of V). If z € V) has k rank

then the expression
k
z = E Lig * =k Ty
i=1

is called a rank presentation of z and the family ((x;;) i=1,....» ) will be
j

=1,..., m

called a rank pre-image family of z.



10
In [5] M. H. Lim has proved the following result:

Lemma 4.2 Let z be a nonzero tensor of V. If

1s a rank presentation of z and

q
J=1

1s another presentation of z, then

k

q
Z(mid:dzl,...,m>QZ(yjd:dzl,...,m>.
=1

i=1

Proposition 4.5 Let W and U be subspaces of V and z € V. If z € W,
and z € Uy then z € (W NU),.

Proof
Let
k
i=1
be a rank presentation of z. Since z € U, there exists uy; € U with

1=1,...,s,t=1,...,m, such that

s

=1

In the same way there exists w;, € W with j =1,...,p,r =1,...,m, such
that



11

Using the lemma 4.2 we obtain

k

Z(xid:dzl,...,m)QZ(uid:dzl,...,T@gU.
i=1

i=1
In the same way

k

p
Z(:pid:dzl,...,m> QZ(wjd:dzl,...,m) CW.
i=1 j=1
From this two inclusions we conclude that

k
Y (ww:d=1,....m) CWNU.

=1

Then z € (W NU),.
|

Definition 4.4 We call reach of z, and denote by W (z), the intersection of
the subspaces W of V' such that z € W,.

By the definition, W(z) is the smallest subspace, by inclusion, that con-
tains a pre-image family of z.

Definition 4.5 Let 0 # z € V. We say that z is critical if dim W (z) = .

Proposition 4.6 Let 0 # z be a critical tensor of V. Then all the pre-
sentations of z with vectors in W (z) are simultaneously critical and weakly
decomposable.
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Proof
Let

k
1=1

be a presentation of z with vectors in W (z). Since z is critical we have
dim{z;1, ..., i) < dimW(z) = \].

By proposition 3.2 (we assume z = Zle Ty *k -k Ty simple) we conclude
that

So, dim(x;1, ..., Tim) = dim W (z) = A| and then (z;, ..., 2;,) = W(z) for
alli=1.. k
[

Theorem 4.3 Let z € V), and let

k
z = § Lig * = * Ty,
i=1

be a rank presentation of z. Then

W(z)=(z:i=1,....kj=1...,m).

Proof
By definition of reach we conclude that
Wi(z) C(xijri=1,...,kj=1,...,m).

Since z € W (z),, there exists y;; € W(z),i=1,...,[, j =1,...,m, such
that z = Zﬁzl Yi1 * - * Yim 1S a presentation of z. Then, by lemma 4.2, we
have

W(z)QZ(xij:jzl,...,m>§Z<yij:j:1,...,m>QW(Z).

Corollary 1 If V\ = A™V then z € NV s critical iof and only if it is
decomposable.
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Proof

We observe first that the partition corresponding to ¢ is (1™). Then, all
nonzero decomposable tensors x1 A - - - A x,, are critical, since they satisfy

dim(zy, ..., 2,) =&} =m.

By the previous theorem, proposition 4.6 and theorem 3.2 it is easy to con-
clude that if z is critical, then z is a decomposable element of A"V .
|

Lemma 4.3 Let 0 # z € V) and let

l
=1

be a weakly decomposable presentation of z. Then there exists a weakly de-
composable presentation of z with vectors in W(z) and dimension less or
equal to the dimension of the presentation (4).

Proof

77777

Let () i=1.....« be a rank pre-image family of z. Let (u;;) i=1
=1 :

j=1,..., m j=1,..., m

the weakly decomposable pre-image family of z. Then

k !
E xil*---*xim:zzg Uiy %+ % Ujp.- (5)
i—1 i=1

Let P be a projection of V' over W(z). Then, by theorem 4.3, P(x;;) = x;;
foralle=1,....,kand j =1,...,m. The images by P =P ®---® P in
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the both sides of the equality (5) are

k
(®@™P)(2) = (g@p)(ZIﬂ 10k Ty
. =1
= ZP(xﬂ) sk« ook P(Zq)
i1
= 2@1 ke k Tim
= Zl
= ZP(uﬂ) sk« ook Py

Suppose, without loss of generality, that s <[ is a positive integer and

z = Z P(ujp) *+ - x P(uim)

is simple. But,

P((wi1, .oy Uim)) = (P(win), ...y P(tim))

so, we conclude from (u;;) i=1,.... beeing weakly decomposable, that
j 1

j=1,..., m

(P(uiz)) =1 is a pre-image family of z weakly decomposable with ele-

.....

dimension of the presentation (4).
|

Proposition 4.7 Let 0 # z € V. The tensor z is critical if and only if ad-
mits a presentation simultaneously critical and weakly decomposable. More-
over, if z is critical, a presentation of z is critical and weakly decomposable
if and only if the vectors are in W(z).
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Proof

If z # 0 have a critical and weakly decomposable presentation, by the previ-
ous lemma there exists a presentation of z,

k
z = E L1 ¥ v % Ty,
=1

weakly decomposable with elements in W (z) and dimension less or equal to
A}. Then

W(z) C Z@;U cj=1,...,m) = (x11, -, x1m) C W(2).

So, as dim(z1y, -+ -, T1,) = A}, 2 is critical.
Conversly, if z is critical, by proposition 4.6, the presentations of z with
vectors in W (z) are critical and weakly decomposable.

Finally, we know by proposition 4.6, that if z is critical all the presen-
tations of z with vectors in W (z) are critical and weakly decomposable.
Conversly, if

k
Z = E Yi1 * - % Yim
i=1

is critical and weakly decomposable, we have

k
W(Z) g Z<y1j j = 17"'am> = <ysla--'aysm>
i=1
for all s € {1,...,k}. Then, by an argument of dimension, we have

W(Z):<ysl7"’7ysm>7 S:].,...7k.
[ |

Definition 4.6 Let i = (z;;) +=1,....» be a pre-image family of a nonzero

z of V. We call annihilator of U (or the presentation z = Zle Tip ke KTy,
and denote by Ann“(z) the subspace of V
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Annt(2) = {v € V : T\ (2] ® v) = 0}.

We are now prepared to prove the following theorem:

Theorem 4.4 Let V' be a vector space over C, X = (A,..., As) € Irr(Sy)
with As > 0 and x = (A1,..., A, 1) € Irr(Spmy1). Let z be a nonzero and
critical element of V. Then all the pre-image family of z,

u:($ij)i:1 ,,,,, k

j=1,..., m
with elements in W (z), satisfy
W(z) = AnnM(2).

Proof

Observe first that W(z) = (xa,...,Zim), © = 1,..., k. So, if v € W(z), we
have

(p(xih PN ,xim,v))l = (p(l’il, ce ,I‘Z‘m))l = /\,17 1= 1, .. .,k’.

Then,
(p(a:ﬂ,,xzm,v))l <X/1 :)\Il—i-l, 1= 1,,]{)

So,
P(Ti1y oy Tim, V) X
Then, by proposition 3.2, we have

Tx(le®®xzm®v> :0, 1= 1,...,k’.
Therefore,

k
TX(Z‘TH (S ®xim®v) = 0
i=1

Conversly, we will show that if v ¢ W (z) then

T\ (2] @ v) # 0.
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In order to prove this result we start by introducing terminology, notation
and some results about the symmetric group. We will denote by S;n the
subgroup of S,,11

S ={0€Smi1:0(m+1)=m+1}.

Consider in S,,1; the permutations 7 = id, 7, = (m+11¢) fori =1,...,m.
Then,
Sm+1 = SmUSmT1U . USme

is a right coset decomposition of S, in S,,+; . Then, we have

T, = (sl(idl))! Z x(o)P (o)

0ESm+1

= (2@1))!2 ZX(UTi)P(UTi)

e

= 22U X(@P©@) + DD x(om)P(o)P(7)]

ocs,, i=1 5eg8/
m

= Ty, + 255> Y x(om)P(o)P(m).

i=1 O'ES/

m

(6)

By the “Branching Theorem”, X is a constituint of xs; . Then, there exists
irreducibles characters of S,,, A = A, ... A such that

X\Sin :/\+)\(2)+...+)\(l).

Therefore, we can express TX‘S, as a sum of the pairwise orthogonal projec-
m
tions

TX‘S% =T+T\o+...+T\o. (7)
Let (e, ... ,e/\fl) be a basis of W(z). Then (ey = v,eq,... ’6/\/1) is a linearly

independent family.
As zj] is the root of the presentation (U, z),

k
® __ . .
Zy = Tl X R Tiym-
i=1

then,
T\(z ®@v) =T

X|sh,

(% ® )

A
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x(id) S ®
+ mz Z, X(om)P(o)P(1i) (2, ®v).
=1 e8!/
B
Our purpose is to prove that Tx(zf? ®wv) is not equal to zero. We compute
separately parts A and B. Bearing in mind that (eq, ... ,exl) is a basis of
W (z), we have
25 = Z Cats. (8)
aerm,)\ll
Part B
id
Sl Y x(eT)P(o)P(n) () @)
=1 5es;,
id
= (;,ggf),z X(ET)PO)P(T)( Y cald @ ep)
i=1 4¢3/, aGFm’All
id
= (,ﬁ&l))lz x(oTi)P(o)( Z Ca€ i ® ea(i))
i=1 58/ aEFm N &
1

C(ef i BE T [B7H{ON =1, Blm+1) #0).

Part A According to (8) we have

TX‘S%(zS’@v) = TX‘%( Z Cat? ® eg)

ael
€ 'm,/\ll

= Tyg,( Z Caly,).

ael
€ m,)\ll

. !
Since o € S,,, we have

P(o)(es) = Plo)(ed ®eo)

®
€oo & €0
_ 6®

ao
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and we conclude that

Ty o (2] ®v) C(ef v € Dpgrny)-

X\|sh, & -

So, according to (2), if we show that part A is not equal to zero, we conclude
that T, (z; ® v) # 0. But, by (7),

Ty (@7 V) = (TN (@™V)@V) & (T (8™V)@V) &+ - & (Tyo (8™V)BV).
But the component of T ., (25 ®v) to TA(@™V) @V is
T(z)@v=2®uv

not equal to zero because z and v are nonzero.
|

Remark Using the arguments of the second part of the proof of the last
theorem we can conclude that if U = (z;5) i=1.....» is a pre-image family of
1

z with elements in W(z) then

Ann¥(2) C W(2). 9)

Definition 4.7 Let z be a nonzero element of Vy. We call annihilator of z
and denote by Ann(z) the set of the elements v € V' such that

T\(z; ®v) =0

for all pre-image family & = (x;;) +=1,....x of z with elements in W (2).
j=1

and then Ann(z) = W(z).
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5 Decomposable tensors

Proposition 5.8 Let 0 #£ 2z =T)\(11 ® - @ x,) € Vi If
{y117'"ayl)\ll}u"‘u{yz\llv'"ay)\l)\l)\l}

is a N-coloring of (x1,...,2y), then

Ann®@ zm)(z) C (Y11, ’ylAl1>'

Proof

Let
{Z/ll; cee ayl)\ll}u S U{yz\ﬂv s ’y)‘l)‘lh}

be a N-coloring of (x1,...,2,). If x & (y11,... ’yl/\'1> then (z,y11, ... ’yu’l)
is linearly independent and so

{z,y11, . .. 7’y1>\/1}U{y21, . ,yQAIQ}U Uy, - ,y)\l)\;l}
is a x’-coloring of (xy,...,Zm,x). So, by proposition 3.4, we conclude that
I(t1® - @z, @x)#0
and then z ¢ Ann®*)(2). So,
Ann@mm) (2) C (g, . . Y1)
|

Corollary 1 If0 # z = T\(1 ® - -+ ® xy,) 1s a decomposable tensor of V)
we have

Theorem 5.5 Let 0 # z = Ty(x1 ® -+ ® x,,) be a decomposable tensor of
Vi, then z is critical if and only if

dim Ann@v@m) (2) = N
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Proof
If z is critical and decomposable, by theorem 4.4, we have that
W (z) = Ann(@tom)(2)

So, dim Ann@"m)(2) = X,
For the converse condition we need the following:

Fact If (x1,...,xm) is N-colorable and dim(z1, ..., x,) > A| then there
exists two N -colorings

{xu,...,xl)\rl}U{:pgl,...,x2/\/2}U...U{a:,\ll,...,x)\l)\gl}
and

{yn,---,?/u;}U{yzl,---»yQA;}U--~U{?JA11V~->?/A1A;1}
such that

<13117---7371>J1> # <Z/117~--73/1,\’1>'

Proof
Let

{xll,...,xlA;}U{le,...,$2/\/2}U...U{x,\ll,...,x)q)\;l}

be a X-coloring of (x1,...,x,). By hypothesis, dim(xy, ..., x,) > ],
so, there exists i € {2,..., A\ } and k € {1,..., \;} such that

Tk & (211, .. ,5171,\'1>-

Also
(T11,- - ,1'1,\’1> (w1, .. ,l’i/\;>-

In fact if (z11,...,21x) € (w1, ..., Tax) then

dim<$11, Ce ,l’l)\/1> S dim<l’i1, c. ,ZL‘M;>

so A} < A} which implies A} = A} and so @y, € (T11,...,T1x)-
Contradiction.
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We can conclude that exists j € {1,..., ]} such that
371]‘ é <$i17 e ,ZL‘,‘)\;>.
So (9611, e L1j—1, Tiky T1j41y - - - ,171>J1) and (1'1'1, vy Lik—15 L1455 Tik+1, - - - 7%,\;)

are linearly independent families.
Consequently

{.Z'H, e ,56'1)\/1}0{1'21, e ,.TQ)\IQ}U e U{I,\ll, Ce ,37)\1)\/)\1}
and
{IH, e ,xljfl’xik’x1j+1, e ,Il)\/l}U{Izl, Ce ,1’2/\/2}0 ce

.. .U{ZEZ‘I, Ce 7xik—17$1j7xik+17 e ,(L’M;}U . U{xAﬂ; . ,$)\1)\/>\ }
1

are two A'-colorings of (x1,...,x,,) satisfying the referred conditions. —

Suppose that z is not critical. Then, by the theorem 4.3 and z # 0, we have
dim(zy,...,2,) = dimW(z) > N|. According now to the proved fact and
the proposition 5.8 we conclude that

Ann(“"“’x’”)(z) C (x11,- .- ,xl/\/1> N (Y11, - - ’y1>\/1>
wich leads
dim Ann(@t2m) (2) < dim((z11, ... ,xl)\/l) N (a1, - - ,yl)\/1>) < AL
[

Next proposition gives us a necessary and sufficient condition for the
criticality of decomposable tensors.

Corollary 1 Let 0 # z = Th(21 ® -+ ® x,,) be a decomposable tensor of
V. Then z is critical if and only if there exists a linearly independent family
(v1,...,ux) with elements in Ann@mm) ()
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Proof

Suppose that z is critical. By theorems 4.4 and 4.3 we conclude that
Ann(z) = W(z).

Consequently dim Ann(z) = A}, so there exists | vectors in the conditions
of the statement.
Conversly, let (vy,...,vy;) be a family of linearly independent vectors in

Ann(“cl""’xm)(z). Corollary 1 of proposition 5.8 gives us

dim Ann(®-2m) (2) < N,

So, we can conclude that dim Ann(®*%m)(z) = X/. Then, by the theorem

5.5, we have that z is critical.
|

6 Plucker polynomials

The main purpose of this section is to construct a family of polynomials
characterizing the criticality of a decomposable tensor of V). The idea behind
this construction is to use corollary 1 to theorem 5.5 to extend the argument
referred by M. Marcus in [7].

We start with some basic computations. Recall we are fixing a basis

(é1,...,e,) of V. Consider a tensor z € "V,
z= E ane.
aGFm,n

Let v € I',1,, and ¢t € {1,...,m}, we denote by uﬁ? or briefly by u,, the
vector of V,

n
Uty = E a ¢ €.
V]
i=1

Let v € Tyy10. Let . ,wﬁj) be a system of representatives of the right
cosets of H., in Sp,41, 1. €.,

Sl 1= er@U - UH, 7). (10)

Sy



24

For i e {1,...,s,} we denote the mapping 77r by ~@

is a basis of the orbital subspace

It can be easily seen that (ew))i:l ,,,,, s

associated to v, i.e. |

<e§’g 20 € Spy1) = (eﬁl), o ,ef’(w)

Therefore, if { € {1,...,s,}, we have

Sy
nies) = 2SS e

k=1 T7€H,
Sv
— ®
= E:C%k,leym (11)
k=1

where ¢, ;,; denotes

Cy kel = ' Z 7Tk Tm

TEH,

Definition 6.8 Let v € I'yp1p, v € T, t € {1,...,m} and k €
{1,...,s,}. The polynomial of C[X, : a € T';;, ,)]

Sy
f’y,u,t,k(Xoa HEOAS 1—‘m,n) = E cw,k’,leiw(l)(erl)X @

’Ym+1
=1

is called A-Pliicker polynomial associated with (v, v, t, k).

We denote by 7 the element of I',, ,,, n = (1,...,m). If A = (a;;) € C™*"
and a € Iy, ,, we denote by A[n\a] the m x m matrix whose jth column is
the column a( j)of A, j =1,...,m; ie., the (i,7) entry of A[n|a] is a; (),
,j=1,...,m

If B = (bj;) € C™™, we denote by dy(B) the value of the generalized
matrix function dy on B,

= > Mo) [ beow
t=1

OGSm
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The Hadamard function on B will be denoted by h(B), i.e., h(B) := [, bi.
Next result is technical and prepares the computations needed for the
main results of this section.

Lemma 6.4 Let z be an element of ™V,

E N

aGFm,n

Let u be a vector of V, u=73"7_,

®
(2 ®u) g E E .1 /C a e® ..
® ( 7 kA Cy O (o4 1) @ O ) (k)

YEGm+1,m k=1 =

cjej. The following equality holds:

Proof

By the assumptions of the theorem we have

T(z@u) = T (Z aaeg)@)(zcjej)

OAEFm n
= E E cja, Ty (€2 ® e;).
j=la€lmn
Therefore, since I'yy1 = D x {1, ..., n}, we get,

Ty(z®@u) = Z C’y(m+l)avm+1Tx(6$)~

'YEF'rrH»l,n

As Gi1,0 18 a system of distinct representatives of the orbits for the action
of Syt1 on I'yyir, and due to (10) and (11) we obtain, from the previous
equalities,

T(z@u) = Z ch) m+1)@, 0, T w(e <z>)

’YEGm+1 n =1
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YEGm+1,n =1

— E § § ®
= ( Cw,klcyﬂ) m+1)a (z) > 67(,@).

’YEGm+1 nk=1

Lemma 6.4 can be restated in view of definition of \-Pliicker polynomial
as follows:

Corollary 2 Ifv e€l',,_1, andt € {1,...,m}, we have the following equal-
ity

T (2 @ugy) = Z Zf%mt,k(a ra €T )el € k-

7€Gm+l,n k=1

Definition 6.9 Let 7 be an element of I';,41,. Let v be an element of
['yn—11, and t and k positive integers respectively in {1, ..., m}and {1,...,s,}.
We denote by F, ,, the polynomial of C[X, : a € T',, ],

’7 v, k- : : A fv’gu,a,t,w(l)(m+l)’a’71(t)’k )

oESm

t .
where 5.1 = [(V < J)0)o-1(1)-
We denote by D, the polynomial of C[X, : a € I, ],

Do(Xp:BETmu) =Y Ao)X,

O'ESm

Proposition 6.9 Let v € T'yi1,, v € Tpiq, t € {1,...,m} and k €
{1,...,s,}. Then, we have

Sy

v,v,t.k E : Cy kil VL'Y(Z)(WH»U 'Yv(rlL)Jrl
=1
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Proof

By definitions, we have

Froar = D MOV, ferOmayo o 1apo LDk
O’ESm
= Ao Cy k1 X o1 X o
a;;n Z T O 1)l )T O ) T
- Zc’y,k’l Z /\ (V«—”y(l) (m+1))o )X’qui)JA

oESm

= ¢y ki D X .
Z ’Y,k,l y(iVy(l) (m+1) 7£VZL)+1
=1

|
Next lemma makes the connection between the polynomials D, and the
generalized matrix functions as it was done in [2].

Lemma 6.5 Let A= (a;;) € C™" and

n
QTZ:ZCLUBJ‘ Z:Z,,m
j=1
Let z be the decomposable tensor

2= X - QI = Z age?.

Ber'm,n

Then the following equality holds

Da(aﬁ 1 p e 1—‘m,n) = dA(AW&]) .

Proof
Since ag = (A[|]), VB € Ty, then
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Dfas:f €T = 3 Ale)b(Alylac)

UGSm

> A(U)H t,00(1)

0ESm t=1
= dx(A[nla]) .
|
A special linearly independent family of vectors is constructed in the
following proposition.

Proposition 6.10 Let A = (a;;) € C™*",

n
€r; = E ;i€ Z:Z,,m
j=1

Assume that z* = Ty(x1 @ - @ ) # 0. Let w € supp(z*) such that
M(w) is mazimal for the mayomzatzon order of {M(a) a € supp(z*)}.

Let ({1, m}) = {pnr-omd, (@] > -+ > - )]) and r; =
minw‘l(pi), i=1,...,1. Then

* A(id T . .
v; = ul®) :Z 7(71)61)\( Anlw,, <= jle;, i=1,....1

Ti,Wr,
j=1

1s a linearly independent family.

Proof

We begin by proving the following

Fact
If j < i, then M(w,, <= p;) = M(w) .

Proof
If j <1, we have,

M (wr, <= p) = (@™ )l o i) ™ )+ L 0™ ()])

Therefore,
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M (wr, <= p;) 2 M(w) -

Then, we have

o= 32D At 2 ey

j=1
A(id T "
- 7(n! ) (dx(An|wr, <= pr])ep, + - + da(Aln|w,, < pi])ep, +

+ Y da(Alwr, <> j])e;).
Ji¢{p1,-p1}

Since for j < i, we have M(w, <> p;) = M(w), we can conclude that

Wy, <= p; ¢ supp(z*) if j < i. Then

A ld T T3
v r<n|>(dA(A[?7!wn = pil)ep, + -+ + dr(Aln|wr, < p)ep, +
+ Y d(Alwrn, <)),
JE{p1sp1}
But, by definition, w,, &5 pi = w, so we have that (v1,...,v) is linearly

independent.

Lemma 6.6 Let v be an element of I'yy_1,, and t € {1,...,m}.
Let A = (a;;) € C™™ and

xT; = E Ai;€5 Z:l,,m

j=1
Then, if
2= QR Xy = Z aae?,
a€lmn
we have
ut,,, € <$t> .
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Proof

It is well known [6] that the coeficient of z1 ® -+ ® @y, in €¥ is the value of
the Hadamard function on the matrix A[n|a], i.e.,

T ® Z h(Alnla)e

a€lym n

Therefore taking k = a1,(1) - - - G—1,0(t—1)Gt41,0(¢) - - - Amp(m—1), We have

Zh [nlv < 5))
n t—1 m
= Z (Hamj(r)> Qyj ( H ar,u(r—l)) €;j

=1 \r=1 =t+1
= (Haryr H Ay (r— 1> E Ag5€5
r=t+1
= k% i€
Jj=1
= /{;xt .

Lemma 6.7 Let A = (a;;) € C™*". Let a € Iy, ,,, such that o ¢ Q. Then

dx(Alnla]) =

Proof

Let 6y, ...,6,, be a system of distinct representatives of the left coset decom-
position of H, in S,,. Then, we have

e;:%ZA<o>ego_l— )3 M)

oESm ’ ] 1 7€Hq

Then, since a & 2
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Z)\(Hﬁ):(), j=1,...,$a.

TeHoc

So, as A is a character of S,,,, A(0) = Ao ™),

daAllal) = 3 M) [ avar

O'ESm
m

— Z )\(O'_I)H At a0—1(t)

oESm t=1

= Z )\(U)H at,ao'—l(t)
t=1

U'ESm
Sa

= Z( Z A(er))H Q007 (1)

j=1 T€H, t=

= 0

Theorem 6.6 Let 0 # 2z* =T)(x1 ® -+ ® x,,) and

2=21Q QT = E aaes.

OéEFm,n

Then z* is critical if and only if (a, : o € I'y, ) is a zero of the A-Plicker
polynomials associated with (v,v,t, k), when v € Guiipn, V € D1, t €
{1,....m} and k € {1,...,s,}.

Proof
Let A = (a;;) € C™™ such that

n
T; = E Ai€5 Z:Z,,m
j=1

Let
=21 - QIy = Z aﬂega
BETm,n
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such that

S =Ty 9w = 3 20 (Apla)ed £0

O(GQ)\

Let w € supp(z*) such that M(w) is maximal for the majorization order of

{M(a) : o € supp(z™)}.

From lemma 6.7, we conclude that [{w(1),...,w(m)} > A].
Let

o " \(id t.
) =3 20, (Ao & e
j=1

According to lemma 6.4, lemma 6.5 and proposition 6.9 we have

Sy Sy

T (z X u(z )) = Z ZZ cykld)\ [7]|V <i’ ’y(l)(m + 1)])@7(1) 1659(1@)
NEGmi1.mk=1 I=1 mE

Sy Sy

c%kJ

) ®
)(aa ta € Fm’”)avﬁllev“)

ml 1/<—>'y(l)(m+1

YEGmi1,nk=11=1

A(id) ”
Y Z ZF%”’t*k(aa ra e me)e?(k)

'YGGm+1 n k=1

1d
- Z Z Z )\ f’Y gu o,t ’y(l>(m+1) (t) k< o€ Fm7n))€’(§(k)

’YGGm+1 nk=1 0c€Sm

- 0. (12)

But, by proposition 6.10, (vy, ..., vz ) is a linearly independent family of
vectors, and by (12) the vectors belongs to

Then, by corollary 1 to theorem 5.5, z* is critical.

Conversely, assume that 2* is critical.
Let t € {1,...,m}, v € I';,_1,. Then, according to corollary 2 to lemma 6.4,
we have
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Sy
T (2 ®@u,) = Z Zf’y,y,t,k(aa S me)ef’f’(m.

’YeGm+l,ﬂ, k=1

But, by lemma 6.6 and theorem 4.3, for all ¢ and all v, u;, € (x;) C W(z*).
Consequently, by theorem 4.4, since z* is critical, for all £ and all v,

Then,

T (z®@u,,) =0 .

So, we have that (a, : @ € I',,,) is a root of f, ., for all v € Gpi1m,
vel,ante{l,....om}, ke{l,...,s,}.
[ |
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