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Abstract

Let λ = (λ1, . . . , λt) be a partition of m and λ′ = (λ′1, . . . , λ
′
λ1

) its
conjugate partition. Denote also by λ the irreducible C-character of
Sm associated with λ. Let V be a finite dimensional vector space over
C.

The reach of an element of the symmetry class of tensors Vλ (sym-
metry class of tensors associated with λ) is defined. The concept
of critical element is introduced, as an element whose reach has di-
mension equal to λ′1. It is observed the coincidence, in ∧mV , of the
notions of critical element and decomposable element. Known results
for decomposable elements of ∧mV are extended to critical elements
of Vλ. In particular, for a basis of ⊗mV induced by a basis of V ,
generalized Plücker polynomials are constructed in a way that the set
of their common roots contains the set of the families of components
of decomposable critical elements of Vλ.
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1



2

1 Introduction

Let V be a n-dimensional vector space over C and let (e1, . . . , en) be a basis
of V . Let λ = (λ1, . . . , λs) (λs > 0) be a partition of m and χ = (λ1, . . . , λs, 1)
the partition of m + 1 obtained from λ by adding one part equal to 1. The
irreducible complex characters of Sm correspond canonically in a one to one
way to the partitions of m. So, we identify λ with the corresponding irre-
ducible complex character of Sm and χ with the corresponding irreducible
complex character of Sm+1.

We denote by ⊗mV the mth tensor power of V . If σ ∈ Sm, then P(σ) is
the unique linear operator on ⊗mV satisfying

P(σ)(x1 ⊗ · · · ⊗ xm) = xσ−1(1) ⊗ · · · ⊗ xσ−1(m)

for all x1, . . . , xm ∈ V .
We define the symmetrizer associated with λ as the linear operator,

Tλ :=
λ(id)

m!

∑
σ∈Sm

λ(σ)P(σ).

The range of Tλ is called symmetry class of tensors associated with
λ and is denoted by Vλ. The image by Tλ of the decomposable tensor
x1 ⊗ · · · ⊗ xm, where x1, . . . , xm ∈ V , is called decomposable symmetrized
tensor or decomposable tensor of Vλ and is denoted by

x1 ∗ · · · ∗ xm := Tλ(x1 ⊗ · · · ⊗ xm).

Let z ∈ Vλ. A family (xij) i = 1, . . . , k
j = 1, . . . , m

that satisfies

k∑
i=1

xi1 ⊗ · · · ⊗ xim ∈ T−1
λ ({z})

is called pre-image family of z in V . Let X = (xij) i = 1, . . . , k
j = 1, . . . , m

be a pre-image

family of z ∈ Vλ. We call the pair

(X , z) = ((xij) i = 1, . . . , k
j = 1, . . . , m

, z)

a presentation of z. By abuse of language presentation of z is the expression
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z =
k∑

i=1

xi1 ∗ · · · ∗ xim

where (xij) i = 1, . . . , k
j = 1, . . . , m

is a pre-image family of z. The tensor

z⊗X =
k∑

i=1

xi1 ⊗ · · · ⊗ xim

is a root of the presentation (X , z). The vectors xij are the vectors of the
presentation and the dimension of the subspace of V

〈xij : i = 1, . . . , k, j = 1, . . . ,m〉

is called the dimension of the presentation.
If λ is the alternating character ε, Vλ is denoted by ∧mV , the well known

m-Grassmann space, or the m-th exterior power of V and the decompos-
able symmetrized tensors Tε(x1 ⊗ · · · ⊗ xm) are the decomposable tensors of
Grassmann denoted by

x1 ∧ · · · ∧ xm.

It is well known that the tensors of the form x1 ∧ · · · ∧ xm, with
x1, . . . , xm ∈ V , are an algebraic variety of Anm

(⊗mV ). This algebraic vari-
ety is the affine cone of a projective variety whose defining polynomials are
the quadratic Plücker polynomials.

We define reach of a nonzero tensor of Vλ, the smallest (by inclusion)
subspace W of V such that z ∈ Wλ. We define also annihilator of a nonzero
tensor z of Vλ as the subspace of the reach of z whose elements v satisfy

Tχ(
k∑

i=1

xi1 ⊗ · · · ⊗ xim ⊗ v) = 0

whenever

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

is a presentation of z with vectors in the reach of z. The concepts of reach
and annihilator of a tensor of Vλ have a crucial role in this approach. The
elementary properties of these concepts and the relations with the critical
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elements of Vλ are established. When λ is the alternating character the
annihilator of z is the subspace of V whose elements v ∈ V satisfy

z ∧ v = 0.

We prove that a Grassmann tensor is critical if and only if it is Grassmann
decomposable. This observation allow us to conclude that the first of the
main theorems of this paper generalizes the well known result (see [7]):

Theorem 1.1 Let z be a nonzero vector in ∧mV . Then z is decomposable
(in ∧mV ) if and only if there exists a linearly independent set of m vectors
u1, . . . , um such that

z ∧ ui = 0, i = 1, . . . ,m.

Following the strategy presented by M.Marcus in [7] we construct a family
of Plücker polynomials to the set of critical decomposable tensors of Vλ.

2 Combinatorial tour

Let X be a finite set, we denote by Γm,X the set of all mappings from
{1, . . . ,m} into X. When X = {1, . . . , n}, we use the notation Γm,n (Γ0

m,n)
to the set of the mappings from {1, . . . ,m} into {1, . . . , n} (respectively
{1, . . . ,m} into {0, . . . , n}. We will call multiplicity partition of α ∈ Γm,X the
partition of m obtained by rearranging in decreasing order the components of
the family of nonnegative integers (|α−1(x)|)x∈X . We denote the multiplicity
partition of α by M(α).

Let ω ∈ Γm,n we denote by ωi the element of Γm−1,n

ωi := (ω(1), . . . , ω(i− 1), ω(i + 1), . . . , ω(m)), i = 1, . . . ,m.

If ν ∈ Γm−1,n, t ∈ {1, . . . ,m} and j ∈ {1, . . . , n} we will denote by ν
t←↩ j

the element of Γm,n defined by

ν
t←↩ j := (ν(1), . . . , ν(t− 1), j, ν(t), . . . , ν(m− 1)), if t = 1, . . . ,m− 1,

and
ν

m←↩ j := (ν(1), . . . , ν(m− 1), j).
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If α ∈ Γm,n we denote by α̂ the element of Γ0
m+1,n,

α̂ = (α(1), . . . , α(m), 0).

The subset of the increasing functions of Γm,n is denoted by Gm,n.
We define an action

(σ, α)→ ασ−1

of Sm (respectively Sm+1) on Γm,n (respectively on (Γ0
m+1,n)). If α ∈ Γm,n the

orbit of α is denoted by Oα. If α and β belongs to the same orbit we will say
α ≡ β(modSm). Observe that Gm,n is the system of distinct representatives
of the orbits of this action, choosing in each orbit Oα the smallest element
by the lexicographic order. We denote by Hα the stabilizer of α.

Lemma 2.1 Let α and β be elements of Γm,n. Then α ≡ β(modSm) if and
only if

|α−1(i)| = |β−1(i)|, i = 1, ..., n.

Proposition 2.1 Let α and β be elements of Γm,n. Then α ≡ β(mod Sm)

if and only if α̂ ≡ β̂(mod Sm+1).

Let (e1, . . . , en) be a basis of V and α ∈ Γm,n. We denote by e⊗α the
element of ⊗mV

e⊗α := eα(1) ⊗ · · · ⊗ eα(m).

In the same way e∗α is the element of Vλ

e∗α := eα(1) ∗ · · · ∗ eα(m).

Denote by Ωλ (or just by Ω) the subset of Γm,n,

Ω := {α ∈ Γm,n : e∗α 6= 0}.

By the definitions it is easy to conclude that

Vλ ⊆ 〈e⊗α : α ∈ Ω〉. (1)

So, if z =
∑

α∈Ω cαe⊗α ∈ Vλ we define support of z and denote by supp(z) the
subset of Ω

supp(z) := {α ∈ Ω : cα 6= 0}.
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Let m be a positive integer and λ = (λ1, . . . , λt) be a partition of m. We
identify λ with an m-tuple of nonnegative integers by adding, if necessary, a
list of zeros, i.e.

λ = (λ1, . . . , λt) ≡ (λ1, . . . , λt, 0, . . . , 0).

If λ is a partition of m, then λ′ = (λ′1, . . . , λ
′
λ1

) defined by

λ′k = |{j ∈ {1, . . . , t} : λj ≥ k}|, k = 1, . . . , λ1,

is also a partition of m called the conjugate partition of λ.
Let λ = (λ1, . . . , λm) and ν = (ν1, . . . , νm) be partitions of m. We say

that λ majorizes ν, and denote λ � ν, if

k∑
i=1

λi ≥
k∑

i=1

νi, k = 1, . . . ,m.

3 Auxiliary results

Let W be a subspace of V and (e1, . . . , en) be a basis of W . Let e0 /∈ W
and denote by U the subspace of V , U = W + 〈e0〉. Then (e0, . . . , en) is a
basis of U and

(e⊗β : β ∈ Γ0
m+1,n)

is a basis of ⊗m+1U . Therefore

⊗m+1U = 〈e⊗β : β ∈ Γ0
m+1,n, |β−1({0})| = 1, β(m + 1) = 0〉

⊕〈e⊗β : β ∈ Γ0
m+1,n, |β−1({0})| = 1, β(m + 1) 6= 0〉

⊕〈e⊗β : β ∈ Γ0
m+1,n, |β−1({0})| 6= 1〉

= 〈e⊗α̂ : α ∈ Γm,n〉 ⊕ 〈e⊗β : β ∈ Γ0
m+1,n, |β−1({0})| = 1, β(m + 1) 6= 0〉
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⊕〈e⊗β : β ∈ Γ0
m+1,n, |β−1({0})| 6= 1〉. (2)

Let (x1, . . . , xm) be a family of nonzero vectors of V and µ = (µ1, . . . , µk)
be a partition of m. A µ-coloring of (x1, . . . , xm) or coloring of shape µ, is a
decomposition of (x1, . . . , xm) in linearly independent subfamilies,

(x1, . . . , xm) = (xi)i∈∆1∪̇ . . . ∪̇(xi)i∈∆k

where (∆1, . . . , ∆k) is a set partition of {1, . . . ,m} and |∆i| = µi, i =
1, . . . , k. We say that the family (x1, . . . , xm) is µ-colorable if there exists a
coloring of (x1, . . . , xm) of shape µ.

In [1] was proved that in the majorization order, the set of the shapes
of the colorings of (x1, . . . , xm) has a maximum. This maximum partition is
the rank partition of (x1, . . . , xm) and is denoted by

ρ(x1, . . . , xm).

In [4] Gamas proved the following result that we present here with the
formulation referred to [1]:

Proposition 3.2 Let λ be an irreducible character of Sm. Let (x1, . . . , xm)
be a family of nonzero vectors of V . Then Tλ(x1 ⊗ · · · ⊗ xm) 6= 0 if and only
if

ρ(x1, . . . , xm) � λ′.

Remark

1. By the proposition, if z is a nonzero decomposable tensor of Vλ the
dimension of the presentations of z is greater or equal to λ′1.

2. The proposition is a generalization of the following result previously
established by R.Merris [8].

Proposition 3.3 Let λ be an irreducible character of Sm. Let (e1, . . . , en)
be a basis of V . If α ∈ Γm,n then Tλ(e

⊗
α ) 6= 0 if and only if λ �M(α).
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The next proposition is another formulation of the Gamas Theorem pre-
sented for the first time in [1].

Proposition 3.4 Let λ be an irreducible character of Sm. Let (x1, . . . , xm)
be a family of nonzero vectors of V . Then Tλ(x1 ⊗ · · · ⊗ xm) 6= 0 if and only
if the family (x1, . . . , xm) is λ′-colorable.

The relation between the principal result of this article and the classical
results of the Grassmann spaces depends to the following theorem:

Theorem 3.2 Let (x1, . . . , xm), (y1, . . . , ym) be families of linearly indepen-
dent vectors of V . Then

〈x1 ∧ · · · ∧ xm〉 = 〈y1 ∧ · · · ∧ ym〉
if and only if

〈x1, . . . , xm〉 = 〈y1, . . . , ym〉.

4 Pre-image families and reach of a tensor of

Vλ

Let

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

be a presentation of z. If, for all subset L ⊆ {1, . . . , k}, we have∑
l∈L

xl1 ∗ · · · ∗ xlm 6= 0 (3)

we say that z =
∑k

i=1 xi1 ∗ · · · ∗ xim ((xij) i = 1, . . . , k
j = 1, . . . , m

) is a simple presentation

of z (a simple pre-image family of z).
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From now on we assume that all the presentations (pre-image families )
considered are simple.

Definition 4.1 Let 0 6= z ∈ Vλ,

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

is a critical presentation of z and the family ((xij) i = 1, . . . , k
j = 1, . . . , m

) is a critical

pre-image family of z if

dim〈xi1, . . . , xim〉 = λ′1, i = 1, . . . , k.

Definition 4.2 Let 0 6= z ∈ Vλ. We say that z is weakly decomposable if
exists a presentation of z

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

such that

〈xi1, . . . , xim〉 = 〈xj1, . . . , xjm〉, i, j ∈ {1, . . . , k}.

This presentation of z is called weakly decomposable and the corresponding
pre-image family is also called weakly decomposable .

Definition 4.3 A nonzero vector of Vλ has k rank if it is a sum of k and not
less than k decomposable symmetrized tensors of Vλ. If z ∈ Vλ has k rank
then the expression

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

is called a rank presentation of z and the family ((xij) i = 1, . . . , k
j = 1, . . . , m

) will be

called a rank pre-image family of z.
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In [5] M. H. Lim has proved the following result:

Lemma 4.2 Let z be a nonzero tensor of Vλ. If

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

is a rank presentation of z and

z =

q∑
j=1

yj1 ∗ · · · ∗ yjm

is another presentation of z, then

k∑
i=1

〈xid : d = 1, . . . ,m〉 ⊆
q∑

j=1

〈yjd : d = 1, . . . ,m〉.

Proposition 4.5 Let W and U be subspaces of V and z ∈ Vλ. If z ∈ Wλ

and z ∈ Uλ then z ∈ (W ∩ U)λ.

Proof

Let

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

be a rank presentation of z. Since z ∈ Uλ there exists uit ∈ U with
i = 1, . . . , s, t = 1, . . . ,m, such that

z =
s∑

i=1

ui1 ∗ · · · ∗ uim.

In the same way there exists wjr ∈ W with j = 1, . . . , p, r = 1, . . . ,m, such
that

z =

p∑
j=1

wj1 ∗ · · · ∗ wjm.
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Using the lemma 4.2 we obtain

k∑
i=1

〈xid : d = 1, . . . ,m〉 ⊆
s∑

i=1

〈uid : d = 1, . . . ,m〉 ⊆ U.

In the same way

k∑
i=1

〈xid : d = 1, . . . ,m〉 ⊆
p∑

j=1

〈wjd : d = 1, . . . ,m〉 ⊆ W.

From this two inclusions we conclude that

k∑
i=1

〈xid : d = 1, . . . ,m〉 ⊆ W ∩ U.

Then z ∈ (W ∩ U)λ.
�

Definition 4.4 We call reach of z, and denote by W (z), the intersection of
the subspaces W of V such that z ∈ Wλ.

By the definition, W (z) is the smallest subspace, by inclusion, that con-
tains a pre-image family of z.

Definition 4.5 Let 0 6= z ∈ Vλ. We say that z is critical if dim W (z) = λ′1.

Proposition 4.6 Let 0 6= z be a critical tensor of Vλ. Then all the pre-
sentations of z with vectors in W (z) are simultaneously critical and weakly
decomposable.
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Proof

Let

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

be a presentation of z with vectors in W (z). Since z is critical we have

dim〈xi1, . . . , xim〉 ≤ dim W (z) = λ′1.

By proposition 3.2 (we assume z =
∑k

i=1 xi1 ∗ · · · ∗ xim simple) we conclude
that

dim〈xi1, . . . , xim〉 ≥ λ′1.

So, dim〈xi1, . . . , xim〉 = dim W (z) = λ′1 and then 〈xi1, . . . , xim〉 = W (z) for
all i = 1, . . . , k.

�

Theorem 4.3 Let z ∈ Vλ and let

z =
k∑

i=1

xi1 ∗ · · · ∗ xim

be a rank presentation of z. Then

W (z) = 〈xij : i = 1, . . . , k, j = 1, . . . ,m〉.

Proof

By definition of reach we conclude that

W (z) ⊆ 〈xij : i = 1, . . . , k, j = 1, . . . ,m〉.

Since z ∈ W (z)λ, there exists yij ∈ W (z), i = 1, . . . , l, j = 1, . . . ,m, such

that z =
∑l

i=1 yi1 ∗ · · · ∗ yim is a presentation of z. Then, by lemma 4.2, we
have

W (z) ⊆
k∑

i=1

〈xij : j = 1, . . . ,m〉 ⊆
l∑

i=1

〈yij : j = 1, . . . ,m〉 ⊆ W (z).

�

Corollary 1 If Vλ = ∧mV then z ∈ ∧mV is critical if and only if it is
decomposable.
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Proof

We observe first that the partition corresponding to ε is (1m). Then, all
nonzero decomposable tensors x1 ∧ · · · ∧ xm are critical, since they satisfy

dim〈x1, . . . , xm〉 = ε′1 = m.

By the previous theorem, proposition 4.6 and theorem 3.2 it is easy to con-
clude that if z is critical, then z is a decomposable element of ∧mV .

�

Lemma 4.3 Let 0 6= z ∈ Vλ and let

z =
l∑

i=1

ui1 ∗ · · · ∗ uim (4)

be a weakly decomposable presentation of z. Then there exists a weakly de-
composable presentation of z with vectors in W (z) and dimension less or
equal to the dimension of the presentation (4).

Proof

Let (xij) i = 1, . . . , k
j = 1, . . . , m

be a rank pre-image family of z. Let (uij) i = 1, . . . , l
j = 1, . . . , m

be

the weakly decomposable pre-image family of z. Then

k∑
i=1

xi1 ∗ · · · ∗ xim = z =
l∑

i=1

ui1 ∗ · · · ∗ uim. (5)

Let P be a projection of V over W (z). Then, by theorem 4.3, P (xij) = xij

for all i = 1, . . . , k and j = 1, . . . ,m. The images by ⊗mP = P ⊗ · · · ⊗ P in
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the both sides of the equality (5) are

(⊗mP )(z) = (⊗mP )(
k∑

i=1

xi1 ∗ · · · ∗ xim)

=
k∑

i=1

P (xi1) ∗ · · · ∗ P (xim)

=
k∑

i=1

xi1 ∗ · · · ∗ xim

= z

=
l∑

i=1

P (ui1) ∗ · · · ∗ P (uim).

Suppose, without loss of generality, that s ≤ l is a positive integer and

z =
s∑

i=1

P (ui1) ∗ · · · ∗ P (uim)

is simple. But,

P (〈ui1, . . . , uim〉) = 〈P (ui1), . . . , P (uim)〉

so, we conclude from (uij) i = 1, . . . , l
j = 1, . . . , m

beeing weakly decomposable, that

(P (uij)) i = 1, . . . , s
j = 1, . . . , m

is a pre-image family of z weakly decomposable with ele-

ments in W (z) and the dimension of the presentation is less or equal to the
dimension of the presentation (4).

�

Proposition 4.7 Let 0 6= z ∈ Vλ. The tensor z is critical if and only if ad-
mits a presentation simultaneously critical and weakly decomposable. More-
over, if z is critical, a presentation of z is critical and weakly decomposable
if and only if the vectors are in W (z).
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Proof

If z 6= 0 have a critical and weakly decomposable presentation, by the previ-
ous lemma there exists a presentation of z,

z =
k∑

i=1

xi1 ∗ · · · ∗ xim,

weakly decomposable with elements in W (z) and dimension less or equal to
λ′1. Then

W (z) ⊆
k∑

i=1

〈xij : j = 1, . . . ,m〉 = 〈x11, · · · , x1m〉 ⊆ W (z).

So, as dim〈x11, · · · , x1m〉 = λ′1, z is critical.
Conversly, if z is critical, by proposition 4.6, the presentations of z with
vectors in W (z) are critical and weakly decomposable.

Finally, we know by proposition 4.6, that if z is critical all the presen-
tations of z with vectors in W (z) are critical and weakly decomposable.
Conversly, if

z =
k∑

i=1

yi1 ∗ · · · ∗ yim

is critical and weakly decomposable, we have

W (z) ⊆
k∑

i=1

〈yij : j = 1, . . . ,m〉 = 〈ys1, . . . , ysm〉

for all s ∈ {1, . . . , k}. Then, by an argument of dimension, we have

W (z) = 〈ys1, . . . , ysm〉, s = 1, . . . , k.

�

Definition 4.6 Let U = (xij) i = 1, . . . , k
j = 1, . . . , m

be a pre-image family of a nonzero

z of Vλ. We call annihilator of U (or the presentation z =
∑k

i=1 xi1∗· · ·∗xim),
and denote by AnnU(z) the subspace of V
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AnnU(z) := {v ∈ V : Tχ(z⊗U ⊗ v) = 0}.

We are now prepared to prove the following theorem:

Theorem 4.4 Let V be a vector space over C, λ = (λ1, . . . , λs) ∈ Irr(Sm)
with λs > 0 and χ = (λ1, . . . , λs, 1) ∈ Irr(Sm+1). Let z be a nonzero and
critical element of Vλ. Then all the pre-image family of z,

U = (xij) i = 1, . . . , k
j = 1, . . . , m

with elements in W (z), satisfy

W (z) = AnnU(z).

Proof

Observe first that W (z) = 〈xi1, . . . , xim〉, i = 1, . . . , k. So, if v ∈ W (z), we
have

(ρ(xi1, . . . , xim, v))1 = (ρ(xi1, . . . , xim))1 = λ′1, i = 1, . . . , k.

Then,
(ρ(xi1, . . . , xim, v))1 < χ

′

1 = λ′1 + 1, i = 1, . . . , k.

So,
ρ(xi1, . . . , xim, v) � χ

′
.

Then, by proposition 3.2, we have

Tχ(xi1 ⊗ · · · ⊗ xim ⊗ v) = 0, i = 1, . . . , k.

Therefore,

Tχ(
k∑

i=1

xi1 ⊗ · · · ⊗ xim ⊗ v) = 0.

Conversly, we will show that if v /∈ W (z) then

Tχ(z⊗U ⊗ v) 6= 0.
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In order to prove this result we start by introducing terminology, notation
and some results about the symmetric group. We will denote by S

′
m the

subgroup of Sm+1

S
′

m = {σ ∈ Sm+1 : σ(m + 1) = m + 1}.

Consider in Sm+1 the permutations τ0 = id, τi = (m + 1 i) for i = 1, . . . ,m.
Then,

Sm+1 = S
′

m∪̇S
′

mτ1∪̇ . . . ∪̇S
′

mτm

is a right coset decomposition of S
′
m in Sm+1 . Then, we have

Tχ = χ(id)
(m+1)!

∑
σ∈Sm+1

χ(σ)P(σ)

= χ(id)
(m+1)!

m∑
i=0

∑
σ∈S′

m

χ(στi)P(στi)

= χ(id)
(m+1)!

[
∑

σ∈S′
m

χ(σ)P(σ) +
m∑

i=1

∑
σ∈S′

m

χ(στi)P(σ)P(τi)]

= Tχ|S′m
+ χ(id)

(m+1)!

m∑
i=1

∑
σ∈S′

m

χ(στi)P(σ)P(τi).

(6)

By the “Branching Theorem”, λ is a constituint of χ|S′
m
. Then, there exists

irreducibles characters of Sm, λ = λ(1), . . . , λ(l), such that

χ|S′
m

= λ + λ(2) + . . . + λ(l).

Therefore, we can express Tχ|S′m
as a sum of the pairwise orthogonal projec-

tions
Tχ|S′m

= Tλ + Tλ(2) + . . . + Tλ(l) . (7)

Let (e1, . . . , eλ
′
1
) be a basis of W (z). Then (e0 = v, e1, . . . , eλ

′
1
) is a linearly

independent family.
As z⊗U is the root of the presentation (U , z),

z⊗U =
k∑

i=1

xi1 ⊗ · · · ⊗ xim.

then,
Tχ(z⊗U ⊗ v) = Tχ|S′m

(z⊗U ⊗ v)︸ ︷︷ ︸
A
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+
χ(id)

(m + 1)!

m∑
i=1

∑
σ∈S′

m

χ(στi)P(σ)P(τi)(z
⊗
U ⊗ v)

︸ ︷︷ ︸
B

.

Our purpose is to prove that Tχ(z⊗U ⊗v) is not equal to zero. We compute
separately parts A and B. Bearing in mind that (e1, . . . , eλ

′
1
) is a basis of

W (z), we have

z⊗U =
∑

α∈Γ
m,λ

′
1

cαe⊗α . (8)

Part B

χ(id)
(m+1)!

m∑
i=1

∑
σ∈S′

m

χ(στi)P(σ)P(τi)(z
⊗
U ⊗ v)

= χ(id)
(m+1)!

m∑
i=1

∑
σ∈S′

m

χ(στi)P(σ)P(τi)(
∑

α∈Γ
m,λ

′
1

cαe⊗α ⊗ e0)

= χ(id)
(m+1)!

m∑
i=1

∑
σ∈S′

m

χ(στi)P(σ)(
∑

α∈Γ
m,λ

′
1

cαe⊗
αi

i
←↩0
⊗ eα(i))

and as α(i) 6= 0, i = 1, . . . ,m,

⊆ 〈e⊗β : β ∈ Γ0
m+1,λ′1

, |β−1({0})| = 1, β(m + 1) 6= 0〉.

Part A According to (8) we have

Tχ|S′m
(z⊗U ⊗ v) = Tχ|S′m

(
∑

α∈Γ
m,λ

′
1

cαe⊗α ⊗ e0)

= Tχ|S′m
(
∑

α∈Γ
m,λ

′
1

cαe⊗α̂ ).

Since σ ∈ S
′
m, we have

P(σ)(e⊗α̂ ) = P(σ)(e⊗α ⊗ e0)
= e⊗ασ ⊗ e0

= e⊗cασ



19

and we conclude that

Tχ|S′m
(z⊗U ⊗ v) ⊆ 〈e⊗α̂ : α ∈ Γm+1,λ′1

〉.

So, according to (2), if we show that part A is not equal to zero, we conclude
that Tχ(z⊗U ⊗ v) 6= 0. But, by (7),

Tχ|S′m
(⊗m+1V ) = (Tλ(⊗mV )⊗V )⊕(Tλ(2)(⊗mV )⊗V )⊕· · ·⊕(Tλ(l)(⊗mV )⊗V ).

But the component of Tχ|S′m
(z⊗U ⊗ v) to Tλ(⊗mV )⊗ V is

Tλ(z
⊗
U )⊗ v = z ⊗ v

not equal to zero because z and v are nonzero.
�

Remark Using the arguments of the second part of the proof of the last
theorem we can conclude that if U = (xij) i = 1, . . . , k

j = 1, . . . , m

is a pre-image family of

z with elements in W (z) then

AnnU(z) ⊆ W (z). (9)

Definition 4.7 Let z be a nonzero element of Vλ. We call annihilator of z
and denote by Ann(z) the set of the elements v ∈ V such that

Tχ(z⊗U ⊗ v) = 0

for all pre-image family U = (xij) i = 1, . . . , k
j = 1, . . . , m

of z with elements in W (z).

Remark Let 0 6= z = Tλ(x1 ⊗ · · · ⊗ xm) a decomposable and critical
tensor of Vλ. If U = (uij) i = 1, . . . , k

j = 1, . . . , m

is a pre-image family of z with elements

in W (z), by theorem 4.3 and the previous theorem, we have

AnnU(z) = Ann(x1,...,xm)(z) = W (z),

and then Ann(z) = W (z).
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5 Decomposable tensors

Proposition 5.8 Let 0 6= z = Tλ(x1 ⊗ · · · ⊗ xm) ∈ Vλ. If

{y11, . . . , y1λ
′
1
}∪̇ . . . ∪̇{yλ11, . . . , yλ1λ

′
λ1

}

is a λ′-coloring of (x1, . . . , xm), then

Ann(x1,...,xm)(z) ⊆ 〈y11, . . . , y1λ
′
1
〉.

Proof

Let
{y11, . . . , y1λ

′
1
}∪̇ . . . ∪̇{yλ11, . . . , yλ1λ

′
λ1

}

be a λ′-coloring of (x1, . . . , xm). If x /∈ 〈y11, . . . , y1λ
′
1
〉 then (x, y11, . . . , y1λ

′
1
)

is linearly independent and so

{x, y11, . . . , y1λ
′
1
}∪̇{y21, . . . , y2λ

′
2
}∪̇ . . . ∪̇{yλ11, . . . , yλ1λ

′
λ1

}

is a χ′-coloring of (x1, . . . , xm, x). So, by proposition 3.4, we conclude that

Tχ(x1 ⊗ · · · ⊗ xm ⊗ x) 6= 0

and then x /∈ Ann(x1,...,xm)(z). So,

Ann(x1,...,xm)(z) ⊆ 〈y11, . . . , y1λ′1
〉.

�

Corollary 1 If 0 6= z = Tλ(x1 ⊗ · · · ⊗ xm) is a decomposable tensor of Vλ

we have
dim Ann(x1,...,xm)(z) ≤ λ′1.

Theorem 5.5 Let 0 6= z = Tλ(x1 ⊗ · · · ⊗ xm) be a decomposable tensor of
Vλ, then z is critical if and only if

dim Ann(x1,...,xm)(z) = λ′1.
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Proof

If z is critical and decomposable, by theorem 4.4, we have that

W (z) = Ann(x1,...,xm)(z)

So, dim Ann(x1,...,xm)(z) = λ′1.
For the converse condition we need the following:

Fact If (x1, . . . , xm) is λ′-colorable and dim〈x1, . . . , xm〉 > λ′1 then there
exists two λ′-colorings

{x11, . . . , x1λ
′
1
}∪̇{x21, . . . , x2λ

′
2
}∪̇ . . . ∪̇{xλ11, . . . , xλ1λ

′
λ1

}

and

{y11, . . . , y1λ
′
1
}∪̇{y21, . . . , y2λ

′
2
}∪̇ . . . ∪̇{yλ11, . . . , yλ1λ

′
λ1

}

such that
〈x11, . . . , x1λ

′
1
〉 6= 〈y11, . . . , y1λ

′
1
〉.

Proof
Let

{x11, . . . , x1λ
′
1
}∪̇{x21, . . . , x2λ

′
2
}∪̇ . . . ∪̇{xλ11, . . . , xλ1λ

′
λ1

}

be a λ′-coloring of (x1, . . . , xm). By hypothesis, dim〈x1, . . . , xm〉 > λ′1,
so, there exists i ∈ {2, . . . , λ1} and k ∈ {1, . . . , λ′i} such that

xik /∈ 〈x11, . . . , x1λ′1
〉.

Also
〈x11, . . . , x1λ′1

〉 6⊆ 〈xi1, . . . , xiλ′i
〉.

In fact if 〈x11, . . . , x1λ′1
〉 ⊆ 〈xi1, . . . , xiλ′i

〉 then

dim〈x11, . . . , x1λ′1
〉 ≤ dim〈xi1, . . . , xiλ′i

〉

so λ′1 ≤ λ′i which implies λ′1 = λ′i and so xik ∈ 〈x11, . . . , x1λ′1
〉.

Contradiction.
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We can conclude that exists j ∈ {1, . . . , λ′1} such that

x1j /∈ 〈xi1, . . . , xiλ′i
〉.

So (x11, . . . , x1j−1, xik, x1j+1, . . . , x1λ′1
) and (xi1, . . . , xik−1, x1j, xik+1, . . . , xiλ′i

)
are linearly independent families.
Consequently

{x11, . . . , x1λ
′
1
}∪̇{x21, . . . , x2λ

′
2
}∪̇ . . . ∪̇{xλ11, . . . , xλ1λ

′
λ1

}

and

{x11, . . . , x1j−1, xik, x1j+1, . . . , x1λ′1
}∪̇{x21, . . . , x2λ

′
2
}∪̇ . . .

. . . ∪̇{xi1, . . . , xik−1, x1j, xik+1, . . . , xiλ′i
}∪̇ . . . ∪̇{xλ11, . . . , xλ1λ

′
λ1

}

are two λ′-colorings of (x1, . . . , xm) satisfying the referred conditions.

Suppose that z is not critical. Then, by the theorem 4.3 and z 6= 0, we have
dim〈x1, . . . , xm〉 = dim W (z) > λ′1. According now to the proved fact and
the proposition 5.8 we conclude that

Ann(x1,...,xm)(z) ⊆ 〈x11, . . . , x1λ
′
1
〉 ∩ 〈y11, . . . , y1λ

′
1
〉

wich leads

dim Ann(x1,...,xm)(z) ≤ dim(〈x11, . . . , x1λ
′
1
〉 ∩ 〈y11, . . . , y1λ

′
1
〉) < λ′1.

�

Next proposition gives us a necessary and sufficient condition for the
criticality of decomposable tensors.

Corollary 1 Let 0 6= z = Tλ(x1 ⊗ · · · ⊗ xm) be a decomposable tensor of
Vλ. Then z is critical if and only if there exists a linearly independent family
(v1, . . . , vλ′1

) with elements in Ann(x1,...,xm)(z).
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Proof

Suppose that z is critical. By theorems 4.4 and 4.3 we conclude that

Ann(z) = W (z).

Consequently dim Ann(z) = λ′1, so there exists λ′1 vectors in the conditions
of the statement.

Conversly, let (v1, . . . , vλ′1
) be a family of linearly independent vectors in

Ann(x1,...,xm)(z). Corollary 1 of proposition 5.8 gives us

dim Ann(x1,...,xm)(z) ≤ λ′1.

So, we can conclude that dim Ann(x1,...,xm)(z) = λ′1. Then, by the theorem
5.5, we have that z is critical.

�

6 Plücker polynomials

The main purpose of this section is to construct a family of polynomials
characterizing the criticality of a decomposable tensor of Vλ. The idea behind
this construction is to use corollary 1 to theorem 5.5 to extend the argument
referred by M. Marcus in [7].

We start with some basic computations. Recall we are fixing a basis
(e1, . . . , en) of V . Consider a tensor z ∈ ⊗mV ,

z =
∑

α∈Γm,n

aαe⊗α .

Let ν ∈ Γm−1,n and t ∈ {1, . . . ,m}, we denote by u
(z)
t,ν or briefly by ut,ν the

vector of V ,

ut,ν :=
n∑

j=1

a
ν

t
←↩j

ej.

Let γ ∈ Γm+1,n. Let π
(γ)
1 , . . . , π

(γ)
sγ be a system of representatives of the right

cosets of Hγ in Sm+1, i. e. ,

Sm+1 := Hγπ
(γ)
1 ∪̇ · · · ∪̇Hγπ

(γ)
sγ

. (10)
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For i ∈ {1, . . . , sγ} we denote the mapping γπ
(γ)
i by γ(i) .

It can be easily seen that (e⊗
γ(i))i=1,...,sγ is a basis of the orbital subspace

associated to γ, i.e. ,

〈e⊗γσ : σ ∈ Sm+1〉 = 〈e⊗
γ(1) , . . . , e

⊗
γ(sγ )〉.

Therefore, if l ∈ {1, . . . , sγ}, we have

Tχ(e⊗
γ(l)) =

χ(id)

(m + 1)!

sγ∑
k=1

(
∑
τ∈Hγ

χ(π−1
k τπl))e

⊗
γ(k)

=

sγ∑
k=1

cγ,k,le
⊗
γ(k) (11)

where cγ,k,l denotes

cγ,k,l :=
χ(id)

(m + 1)!

∑
τ∈Hγ

χ(π−1
k τπl).

Definition 6.8 Let γ ∈ Γm+1,n, ν ∈ Γm−1,n, t ∈ {1, . . . ,m} and k ∈
{1, . . . , sγ}. The polynomial of C[Xα : α ∈ Γm,n]

fγ,ν,t,k(Xα : α ∈ Γm,n) :=

sγ∑
l=1

cγ,k,lX
ν

t
←↩γ(l)(m+1)

X
γ
(l)
m+1

is called λ-Plücker polynomial associated with (γ, ν, t, k).

We denote by η the element of Γm,n, η = (1, . . . ,m). If A = (aij) ∈ Cm×n

and α ∈ Γm,n, we denote by A[η|α] the m ×m matrix whose jth column is
the column α(j) of A, j = 1, . . . ,m; i.e., the (i, j) entry of A[η|α] is ai,α(j),
i, j = 1, . . . ,m.

If B = (bij) ∈ Cm×m, we denote by dλ(B) the value of the generalized
matrix function dλ on B,

dλ(B) :=
∑

σ∈Sm

λ(σ)
m∏

t=1

bt,σ(t) .
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The Hadamard function on B will be denoted by h(B), i.e., h(B) :=
∏m

i=1 bii.
Next result is technical and prepares the computations needed for the

main results of this section.

Lemma 6.4 Let z be an element of ⊗mV ,

z =
∑

α∈Γm,n

aαe⊗α .

Let u be a vector of V , u =
∑n

j=1 cjej. The following equality holds:

Tχ(z ⊗ u) =
∑

γ∈Gm+1,n

sγ∑
k=1

(
sγ∑
l=1

cγ,k,lcγ(l)(m+1)aγ
(l)
m+1

)
e⊗

γ(k) .

Proof

By the assumptions of the theorem we have

Tχ(z ⊗ u) = Tχ

(
∑

α∈Γm,n

aαe⊗α )⊗ (
n∑

j=1

cjej)


=

n∑
j=1

∑
α∈Γm,n

cjaαTχ(e⊗α ⊗ ej).

Therefore, since Γm+1,n = Γm,n × {1, . . . , n}, we get,

Tχ(z ⊗ u) =
∑

γ∈Γm+1,n

cγ(m+1)aγm+1Tχ(e⊗γ ).

As Gm+1,n is a system of distinct representatives of the orbits for the action
of Sm+1 on Γm+1,n and due to (10) and (11) we obtain, from the previous
equalities,

Tχ(z ⊗ u) =
∑

γ∈Gm+1,n

sγ∑
l=1

cγ(l)(m+1)aγ
(l)
m+1

Tχ(e⊗
γ(l))
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=
∑

γ∈Gm+1,n

sγ∑
l=1

cγ(l)(m+1)aγ
(l)
m+1

sγ∑
k=1

cγ,k,le
⊗
γ(k)

=
∑

γ∈Gm+1,n

sγ∑
k=1

(
sγ∑
l=1

cγ,k,lcγ(l)(m+1)aγ
(l)
m+1

)
e⊗

γ(k) .

�

Lemma 6.4 can be restated in view of definition of λ-Plücker polynomial
as follows:

Corollary 2 If ν ∈ Γm−1,n and t ∈ {1, . . . ,m}, we have the following equal-
ity

Tχ(z ⊗ ut,ν) =
∑

γ∈Gm+1,n

sγ∑
k=1

fγ,ν,t,k(aα : α ∈ Γm,n)e⊗
γ(k) .

Definition 6.9 Let γ be an element of Γm+1,n. Let ν be an element of
Γm−1,n, and t and k positive integers respectively in {1, . . . ,m} and {1, . . . , sγ}.
We denote by Fγ,ν,t,k the polynomial of C[Xα : α ∈ Γm,n],

Fγ,ν,t,k :=
∑

σ∈Sm

λ(σ)fγ,ξ
ν,σ,t,γ(l)(m+1)

,σ−1(t),k ,

where ξν,σ,t,j := [(ν
t←↩ j)σ]σ−1(t).

We denote by Dα the polynomial of C[Xα : α ∈ Γm,n],

Dα(Xβ : β ∈ Γm,n) :=
∑

σ∈Sm

λ(σ)Xασ .

Proposition 6.9 Let γ ∈ Γm+1,n, ν ∈ Γm−1,n, t ∈ {1, . . . ,m} and k ∈
{1, . . . , sγ}. Then, we have

Fγ,ν,t,k =

sγ∑
l=1

cγ,k,lD
ν

t
←↩γ(l)(m+1)

X
γ
(l)
m+1

.
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Proof

By definitions, we have

Fγ,ν,t,k =
∑

σ∈Sm

λ(σ)f
γ,[(ν

t
←↩γ(l)(m+1))σ]σ−1(t),σ

−1(t),k

=
∑

σ∈Sm

λ(σ)

sγ∑
l=1

cγ,k,lX
[(ν

t
←↩γ(l)(m+1))σ]σ−1(t)

σ−1(t)
←↩ γ(l)(m+1)

X
γ
(l)
m+1

=

sγ∑
l=1

cγ,k,l(
∑

σ∈Sm

λ(σ)X
(ν

t
←↩γ(l)(m+1))σ

)X
γ
(l)
m+1

=

sγ∑
l=1

cγ,k,lD
ν

t
←↩γ(l)(m+1)

X
γ
(l)
m+1

.

�
Next lemma makes the connection between the polynomials Dα and the

generalized matrix functions as it was done in [2].

Lemma 6.5 Let A = (aij) ∈ Cm×n and

xi =
n∑

j=1

aijej i = i, ...,m.

Let z be the decomposable tensor

z = x1 ⊗ · · · ⊗ xm =
∑

β∈Γm,n

aβe⊗β .

Then the following equality holds

Dα(aβ : β ∈ Γm,n) = dλ(A[η|α]) .

Proof

Since aβ = h(A[η|β]), ∀β ∈ Γm,n, then
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Dα(aβ : β ∈ Γm,n) =
∑

σ∈Sm

λ(σ)h(A[η|ασ])

=
∑

σ∈Sm

λ(σ)
m∏

t=1

at,ασ(t)

= dλ(A[η|α]) .

�
A special linearly independent family of vectors is constructed in the

following proposition.

Proposition 6.10 Let A = (aij) ∈ Cm×n,

xi =
n∑

j=1

aijej i = i, ...,m.

Assume that z∗ = Tλ(x1 ⊗ · · · ⊗ xm) 6= 0. Let ω ∈ supp(z∗) such that
M(ω) is maximal for the majorization order of {M(α) : α ∈ supp(z∗)}.
Let ω({1, . . . ,m}) = {p1, . . . , pl}, (|ω−1(p1)| ≥ · · · ≥ |ω−1(pl)|) and ri =
min ω−1(pi), i = 1, . . . , l. Then

vi := u(z∗)
ri,ωri

=
n∑

j=1

λ(id)

m!
dλ(A[η|ωri

ri←↩ j])ej , i = 1, . . . , l

is a linearly independent family.

Proof

We begin by proving the following

Fact
If j < i, then M(ωri

ri←↩ pj) � M(ω) .

Proof
If j < i, we have,

M(ωri

ri←↩ pj) = (|ω−1(p1)|, . . . , |ω−1(pj−1)|, |ω−1(pj)|+ 1, . . . , |ω−1(pl)|) .

Therefore,
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M(ωri

ri←↩ pj) � M(ω) .

Then, we have

vi =
n∑

j=1

λ(id)

m!
dλ(A[η|ωri

ri←↩ j])ej

=
λ(id)

m!
(dλ(A[η|ωri

ri←↩ p1])ep1 + · · ·+ dλ(A[η|ωri

ri←↩ pl])epl
+

+
∑

j /∈{p1,...,pl}

dλ(A[η|ωri

ri←↩ j])ej).

Since for j < i, we have M(ωri

ri←↩ pj) � M(ω), we can conclude that

ωri

ri←↩ pj /∈ supp(z∗) if j < i. Then

vi =
λ(id)

m!
(dλ(A[η|ωri

ri←↩ pi])epi
+ · · ·+ dλ(A[η|ωri

ri←↩ pl])epl
+

+
∑

j /∈{p1,...,pl}

dλ(A[η|ωri

ri←↩ j])ej).

But, by definition, ωri

ri←↩ pi = ω, so we have that (v1, . . . , vl) is linearly
independent.

�

Lemma 6.6 Let ν be an element of Γm−1,n and t ∈ {1, . . . ,m}.
Let A = (aij) ∈ Cm×n and

xi =
n∑

j=1

aijej i = i, ...,m.

Then, if

z = x1 ⊗ · · · ⊗ xm =
∑

α∈Γm,n

aαe⊗α ,

we have
ut,ν ∈ 〈xt〉 .
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Proof

It is well known [6] that the coeficient of x1 ⊗ · · · ⊗ xm in e⊗α is the value of
the Hadamard function on the matrix A[η|α], i.e.,

x1 ⊗ · · · ⊗ xm =
∑

α∈Γm,n

h(A[η|α])e⊗α .

Therefore taking k = a1,ν(1) . . . at−1,ν(t−1)at+1,ν(t) . . . am,ν(m−1), we have

ut,ν =
n∑

j=1

h(A[η|ν t←↩ j])ej

=
n∑

j=1

(
t−1∏
r=1

ar,ν(r)

)
atj

(
m∏

r=t+1

ar,ν(r−1)

)
ej

=

(
t−1∏
r=1

ar,ν(r)

m∏
r=t+1

ar,ν(r−1)

)
n∑

j=1

atjej

= k
n∑

j=1

atjej

= kxt .

�

Lemma 6.7 Let A = (aij) ∈ Cm×n. Let α ∈ Γm,n, such that α 6∈ Ω. Then

dλ(A[η|α]) = 0 .

Proof

Let θ1, . . . , θsα be a system of distinct representatives of the left coset decom-
position of Hα in Sm. Then, we have

e∗α =
λ(id)

m!

∑
σ∈Sm

λ(σ)e⊗ασ−1 =
λ(id)

m!

sα∑
j=1

(
∑

τ∈Hα

λ(θjτ))e⊗
αθ−1

j

.

Then, since α 6∈ Ω
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∑
τ∈Hα

λ(θjτ) = 0 , j = 1, . . . , sα.

So, as λ is a character of Sm, λ(σ) = λ(σ−1),

dλ(A[η|α]) =
∑

σ∈Sm

λ(σ)
m∏

t=1

at,ασ(t)

=
∑

σ∈Sm

λ(σ−1)
m∏

t=1

at,ασ−1(t)

=
∑

σ∈Sm

λ(σ)
m∏

t=1

at,ασ−1(t)

=
sα∑

j=1

(
∑

τ∈Hα

λ(θjτ))
m∏

t=1

at,αθ−1
j (t)

= 0

�

Theorem 6.6 Let 0 6= z∗ = Tλ(x1 ⊗ · · · ⊗ xm) and

z = x1 ⊗ · · · ⊗ xm =
∑

α∈Γm,n

aαe⊗α .

Then z∗ is critical if and only if (aα : α ∈ Γm,n) is a zero of the λ-Plücker
polynomials associated with (γ, ν, t, k), when γ ∈ Gm+1,n, ν ∈ Γm−1,n, t ∈
{1, . . . ,m} and k ∈ {1, . . . , sγ}.

Proof

Let A = (aij) ∈ Cm×n such that

xi =
n∑

j=1

aijej i = i, ...,m.

Let
z = x1 ⊗ · · · ⊗ xm =

∑
β∈Γm,n

aβe⊗β ,
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such that

z∗ = Tλ(x1 ⊗ · · · ⊗ xm) =
∑
α∈Ωλ

λ(id)

m!
dλ(A[η|α])e⊗α 6= 0 .

Let ω ∈ supp(z∗) such that M(ω) is maximal for the majorization order of

{M(α) : α ∈ supp(z∗)}.

From lemma 6.7, we conclude that |{ω(1), . . . , ω(m)}| ≥ λ′1.
Let

u
(z∗)
t,ν =

n∑
j=1

λ(id)

m!
dλ(A[η|ν t←↩ j])ej .

According to lemma 6.4, lemma 6.5 and proposition 6.9 we have

Tχ(z ⊗ u
(z∗)
t,ν ) =

∑
γ∈Gm+1,n

sγ∑
k=1

sγ∑
l=1

λ(id)

m!
cγ,k,ldλ(A[η|ν t←↩ γ(l)(m + 1)])a

γ
(l)
m+1

e⊗
γ(k)

=
∑

γ∈Gm+1,n

sγ∑
k=1

sγ∑
l=1

λ(id)

m!
cγ,k,lD

ν
t
←↩γ(l)(m+1)

(aα : α ∈ Γm,n)a
γ
(l)
m+1

e⊗
γ(k)

=
λ(id)

m!

∑
γ∈Gm+1,n

sγ∑
k=1

Fγ,ν,t,k(aα : α ∈ Γm,n)e⊗
γ(k)

=
λ(id)

m!

∑
γ∈Gm+1,n

sγ∑
k=1

(
∑

σ∈Sm

λ(σ)fγ,ξ
ν,σ,t,γ(l)(m+1)

,σ−1(t),k(aα : α ∈ Γm,n))e⊗
γ(k)

= 0 . (12)

But, by proposition 6.10, (v1, . . . , vλ′1
) is a linearly independent family of

vectors, and by (12) the vectors belongs to

Ann(x1,...,xm)(z∗) .

Then, by corollary 1 to theorem 5.5, z∗ is critical.
Conversely, assume that z∗ is critical.

Let t ∈ {1, . . . ,m}, ν ∈ Γm−1,n. Then, according to corollary 2 to lemma 6.4,
we have
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Tχ(z ⊗ ut,ν) =
∑

γ∈Gm+1,n

sγ∑
k=1

fγ,ν,t,k(aα : α ∈ Γm,n)e⊗
γ(k) .

But, by lemma 6.6 and theorem 4.3, for all t and all ν, ut,ν ∈ 〈xt〉 ⊆ W (z∗).
Consequently, by theorem 4.4, since z∗ is critical, for all t and all ν,

ut,ν ∈ Ann(x1,...,xm)(z∗).

Then,

Tχ(z ⊗ ut,ν) = 0 .

So, we have that (aα : α ∈ Γm,n) is a root of fγ,ν,t,k, for all γ ∈ Gm+1,n,
ν ∈ Γm−1,n, t ∈ {1, . . . ,m}, k ∈ {1, . . . , sγ}.

�

References

[1] J. A. Dias da Silva, On the µ-colorings of a matroid, Linear and Multi-
linear Algebra 27 (1990) 25-32 .

[2] J. A. Dias da Silva, A note on preservers of decomposability, Linear
Algebra Appl. 186 (1993) 215-225.

[3] J. A. Dias da Silva, Colorings and equality of tensors, Linear Algebra
Appl. 342 (2002) 79-91.

[4] C. Gamas, Conditions for a symmetrized decomposable tensor to be
zero, Linear Algebra Appl. 108 (1988) 83-119.

[5] M. H. Lim, Rank k vectors in symmetry classes of tensors, Canad. Math.
Bull. Vol. 19(1) (1976).

[6] M. Marcus,Finite Dimensional Multilinear Algebra I, Marcel Dekker,
New York, 1973.

[7] M. Marcus,Finite Dimensional Multilinear Algebra II, Marcel Dekker,
New York, 1975.



34

[8] R. Merris, Nonzero decomposable symmetrized tensors, Linear Algebra
Appl. 17 (1977) 287-292.

[9] R. Merris, Multilinear Algebra, Gordon and Breach Science Publishers,
Amsterdam, 1997.


