
Bootstrap Methods for Dependent Data.
Application to Extremal Index Estimation

D. Prata Gomes1?, M. Manuela Neves2 and J. Tiago Mexia1??

1 Departamento de Matemtica, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa, Portugal
e-mail address: dsrp@fct.unl.pt, jtm@fct.unl.pt

2 Departamento de Matemtica, Instituto Superior de Agronomia, Universidade
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1 Introduction

The main objective of statistics of extremes is the estimation of parameters of
rare events. The introduction of a new parameter, the extremal index enables
a straightforward extension of the classic results for the independent case to
stationary processes. Extremal index estimators proposed in the literature
are strongly dependent on the high level un. Our objective is to use and to
compare block bootstrap procedures to estimate the extremal index.

2 The Extremal Index

Let {Xn}n≥1 be a stationary process where random variables have distribution
function F . Assume that for every τ > 0 there exists a sequence {un(τ)} of
constants such that,

n(1− F (un(τ))) → τ as n →∞. (1)

The process {Xn} will have extremal index θ, Leadbetter (1974) [7], if
with Mn = max(Xi : i = 1, · · · , n),

P{Mn ≤ un(τ)} → e−θτ as n →∞. (2)

Moreover, under some conditions the possible limit distribution for the max-
ima from the stationary process is the same as in the independent case.
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We now have the important result,

Theorem 2.1:(Leadbetter (1983) [8]) If, with {X̂n}n≥1 a sequence of
i.i.d. random variables with distribution function F and M̂n = max(X̂i : i =
1, · · · , n), there exist sequences {an > 0} and {bn} of constants such that

P

{
M̂n − bn

an
≤ x

}
→G (x) as n →∞

for a non-degenerate distribution function G, then, under D(un) condition
with un = anx + bn, for each x such that G(x) > 0,

P

{
Mn − bn

an
≤ x

}
→Gθ (x) as n →∞,

whenever {Xn}n≥1 is a stationary process whose random variables also have
distribution F . θ ∈ [0, 1] is the extremal index.

We now point out that the extremal index also rules the clustering of
exceedances for increasing thresholds. Thus, if θ = 1, exceedances occur singly
at the limit, while, if θ < 1, they tend to cluster at the limit. Thus, Leadbetter
(1983) [8] interprets θ as the reciprocal mean cluster size. The identification
of approximately independent clusters of high level exceedances is then a key
issue for the estimation of θ. With Nn(un) and Cn(un) the number of the
level un exceedances and of their clusters in a size n sample, respectively, we
get the estimator:

θ̂n =
Cn(un)
Nn(un)

. (3)

One of the most popular estimators of the extremal index is based on this
characterization. As a first attempt to identify clusters, Cn(un) is measured by
the number of up-crossings of a high threshold un. This gives, Nandagopalan
(1990) [10] and Gomes(1990) [3], the up-crossing estimator,

θ̂UC
n :=

∑n−1
i=1 I(Xi ≤ un < Xi+1)∑n

i=1 I(Xi > un)
. (4)

Nandagopalan (1990) [10] derived, under general conditions, the weak consis-
tency and the asymptotic distribution of the estimator θ̂UC

n of θ. This estima-
tor is also easy to compute and does not require any knowledge of clustering
characteristics of the process.

3 Blocks Bootstrapping

Bootstrap methodology was first introduced by Efron(1979) [2] in the context
of i.i.d. data. Shing(1981) [14] showed the inadequacy of the classic bootstrap
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in the context of dependent data. His idea was to group the observations into
blocks and carrying out the resampling at the block level. The motivation
for this scheme is that the dependence structure of the underlying model
is preserved within each block. Thus, if the block size is allowed to tend
to infinity with the sample size, asymptotically correct inference can ensue.
Several authors studied ways of blocking, Carlstein(1986) [1], Künsch(1989)
[5], Liu and Singh(1992) [9], Politis and Romano(1992, 1994) [12],[13] and
Lahiri(2003) [6].

In what follows we describe the principal blocking methods and discuss
how to choose the block size and exceedance level.

3.1 Moving Block Bootstrap

This method was introduced by Künsch (1989) [5] and Liu and Singh (1982)
[9]. The blocks are constituted by b contiguous observations so that they may
be identified by the index of their first observation. From the population of
nb = n−b+1 blocks, a sample of size [n/b] is taken with replacement. Since the
underling model is stationary, the [n/b] vectors constituted by the observations
in the chosen blocks, may be considered as identically distributed. Moreover,
if (X∗

1 , . . . , X∗
b ) are the observations in a chosen block,

P

{
b⋂

i=1

(X∗
i = Xj−1+i)

}
= n−1

b , for 1 ≤ j ≤ nb, (5)

since n−1
b is the probability of observation with index j being chosen as first

observation of a chosen block.

3.2 Non-overlapping Block Bootstrap

Carlstein (1986) [1] considered to extract, from the original sample divided
into nb = [n/b] non-overlapping blocks of b contiguous observations, a sample
of nb blocks. The observations in the chosen blocks are rewrite into a sequence.

We point out that the vectors of observations contained in the chosen
blocks are i.i.d.. Now, the first observations in the blocks have indexes (j −
1)b + 1, j = 1, . . . , nb. Thus, if (X∗

1 , . . . , X∗
b ) are the observations in a chosen

block

P

{
b⋂

i=1

(X∗
i = X(j−1)b+i)

}
= n−1

b , for 1 ≤ j ≤ nb. (6)

3.3 The Circular Block Bootstrap

Both the previous methods assign less weights to the first and last observations
in the sample than to those in the middle. To overcome this problem Poli-
tis and Romano (1992, 1994) [12] [13] put forward two resampling schemes:
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circular block bootstrap and the stationary bootstrap. We will only consider
the first one. The main idea is to wrap the sample around a circle. The origi-
nal sample Xn = (X1, X2, . . . , Xn) is replaced by (X1, X2, . . . , Xn+b−1) with
Xn+j = Xj , j = 1, . . . , b − 1 . We thus will have nb = n blocks identified by
the index of their first observation. From this population of blocks, a sample
of size [n/b] is taken with replacement. Each observation belongs to b blocks
and once all blocks have the same probability of being chosen, the weights are
the same for all observations. A problem arises in applying these methods:
the choice of the block size, b.

3.4 Block Size choice

Let θ̂∗(n, b) be the bootstrap block estimator of θ obtained from the sample of
size n with block length b. Following Hall et al. (1995) [4] we take a sequence
{sn}n≥1 of sub-sample sizes such that,

s−1
n + n−1sn = o(1) as n →∞. (7)

With θ̂∗i (sn, h) the block bootstrap estimator derived from the i-th chosen sub-
sample, i = 1, . . . , n− sn + 1, with block length h < b, we get the estimator

M̂SE
∗
(sn, h) = (n− sn + 1)−1

n−sn+1∑

i=1

[θ̂∗i (sn, h)− θ̂∗(n, b)]2, (8)

of the mean squared error of θ̂(sn, h). In (8), b will be the block pilot size. Let

ĥopt,sn = arg min{M̂SE
∗
(sn, h)}

in a suitable range of block sizes, h. Rescaling it, Hall et al. (1995) [4] propose
the estimate b̂opt,n given by

b̂opt,n = ĥopt,sn [n/sn]
1

C+2 . (9)

where C = 1 for estimation of bias or variance, C = 2 for one-sided distribu-
tion function and C = 3 for two-sided distribution function. Hall et al. (1995)
[4] suggest iterating this algorithm, taking in the next iteration as pilot size
the result obtained in the previous one.

3.5 Exceedance Level

After having chosen the block size we must choose the exceedance level. The
level un for which (1) holds depends on the distribution so, as usual, we will
consider an upper order statistic, i.e., un := Xk:n, then, the choice is made
over k. To do this we:
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• consider an auxiliary threshold kaux from a suitable range (small values)
of thresholds and compute θ̂UC

n (kaux);
• divide the sample into blocks of size b̂opt,n; resample B times from the

sample and for 1 ≤ k ≤ n− 1, compute the bootstrap estimator θ̂UC∗
n (k);

• select the threshold which minimize bootstrap estimate of mean squared
error of θ̂∗(k) over the previous set of thresholds, i.e,

M̂SE
∗
(k) = B−1

B∑

j=1

[θ̂UC∗
n (k)− θ̂UC

n (kj−1)]2, where k0 = kaux,

replacing in second iteration the kaux by the threshold selected in the first
iteration.

• The process stop in k0(kaux) = kj when either kj = kj−1 or

E
{

[θ̂UC∗
n (kj+1)− θ̂UC

n (kj)]2
}

> E
{

[θ̂UC∗
n (kj)− θ̂UC

n (kj−1)]2
}

.

4 Simulation study

Here we consider some of the simulation study for the block bootstrap meth-
ods presented above. This simulation study is carried out for three different
models:

Model A - Max autoregressive process
Let {Yn}n≥1 be independent unit Fréchet random variables, θ ∈ (0, 1] and

X1 = Y1/θ and Xn = max{(1− θ)Xn−1, Yn}, for n ≥ 2.

Then {Xn} is a strictly stationary process with extremal index θ.

Model B - Markovian max-autoregressive sequence
Let X0 be a random variable with distribution function H0(x) and {Yn}

an independent and identically distributed sequence, independent of X0, with
common distribution function F (x). We consider H0(x) = exp(−x−α/β−α−1)
and F (x) the Fréchet distribution function with parameter α. The stationary
process is defined by

Xn = β max(Xn−1, Yn), n ≥ 1, 0 < β < 1.

and has extremal index θ = 1− βα.

Model C - Max two-dependent sequence
Let {Yn}n≥1 be independent unit exponential random variables and let

Xn = max(Yn−1, Yn), n ≥ 1.
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{Xn} is a stationary process with extremal index θ = 1/2.

Fig 1. shows a simple path of n = 1000 sample size for the estimator θ̂UC
n . For

models A and B we used θ = 0.1, 0.5 and 0.9. For level k we considered up
to 20% of the sample size.
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Fig. 1. One sample path

For illustration, two different subsample sizes, (sn = 200, 400), were con-
sidered for each model. For several block pilot size (b = 10, 20, 25, 40, 50, 100)
the optimal h (h < b) was calculated using 500 Monte -Carlo replicates.
We will present some results for the Moving Block Bootstrap and the Non-
overlapping Block Bootstrap. Tables 1., 2. and 3. give the optimal block size
b̂opt,n for the estimation of θ computed by (9) (we present the divisor of n

nearest to b̂opt,n =
[
(ĥopt,sn [n/sn]

1
3 )

]
). It seems that b̂opt,n depends on sn.

Model A
θ = 0.1 θ = 0.5 θ = 0.9

sn = 200 sn = 400 sn = 200 sn = 400 sn = 200 sn = 400

Non-overlapping Bootstrap 20 20 10 10 10 20

Moving Bootstrap 25 25 10 10 10 10

Table 1. Optimal block sizes for some values of θ – model A.
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Model B
θ = 0.1 θ = 0.5 θ = 0.9

sn = 200 sn = 400 sn = 200 sn = 400 sn = 200 sn = 400

Non-overlapping Bootstrap 10 20 10 10 10 25

Moving Bootstrap 10 25 10 10 10 25

Table 2. Optimal block sizes for some values of θ - model B.

Model C
sn = 200 sn = 400

Non-overlapping Bootstrap 100 100

Moving Bootstrap 100 100

Table 3. Optimal block sizes for some values of θ – model C

Model A - Non-overlapping Bootstrap

θ = 0.1 θ = 0.5 θ = 0.9

kaux kopt estboot niter kopt estboot niter kopt estboot niter

10 890 0.0281 7 766 0.1723 21 140 0.7714 4
11 890 0.0281 6 766 0.1723 21 193 0.7047 7
12 890 0.0281 6 766 0.1723 21 33 0.9091 2
13 890 0.0281 6 766 0.1723 21 26 0.9231 3
14 890 0.0281 6 766 0.1723 21 26 0.9231 3
15 885 0.0282 6 766 0.1723 22 26 0.9231 2
16 885 0.0282 6 766 0.1723 22 26 0.9231 2
17 896 0.0268 6 766 0.1723 22 26 0.9231 2
18 900 0.0256 6 766 0.1723 23 26 0.9231 2
19 890 0.0281 5 766 0.1723 23 26 0.9231 2
20 890 0.0281 5 766 0.1723 23 140 0.7714 4
21 878 0.0273 5 766 0.1723 24 193 0.7047 7
22 878 0.0273 5 766 0.1723 24 193 0.7047 7
23 878 0.0273 5 766 0.1723 23 33 0.9091 2
24 878 0.0273 5 766 0.1723 23 33 0.9091 2
25 878 0.0273 5 766 0.1723 23 33 0.9091 2
26 900 0.0256 6 766 0.1723 22 26 0.9231 3
27 885 0.0282 5 766 0.1723 22 26 0.9231 3
28 895 0.0279 5 766 0.1723 22 26 0.9231 3
29 885 0.0282 5 766 0.1723 22 26 0.9231 2
30 890 0.0281 5 766 0.1723 22 26 0.9231 2

Table 4. Values of kopt corresponding to kaux, bootstrap estimate and number of
iterations, for some values of θ.

Using the value for the block size given in tables 1.,2. and 3. (if it is not
the same for sn = 200 and sn = 400, we choose one of them), we considered a
set of values for kaux, (kaux = 10, 11, ..., 30) to use in the iterative procedure
described above. Tables 4., 5. 6., 7. and 8. show the results of the simulation
procedure.



Model A - Moving Bootstrap

θ = 0.1 θ = 0.5 θ = 0.9

kaux kopt estboot niter kopt estboot niter kopt estboot niter

10 659 0.0349 6 126 0.4524 5 359 0.6017 5
11 687 0.0378 7 126 0.4524 4 359 0.6017 5
12 659 0.0349 6 135 0.4519 3 359 0.6017 5
13 653 0.0352 5 126 0.4524 4 359 0.6017 5
14 687 0.0378 5 126 0.4524 4 359 0.6017 5
15 653 0.0352 6 126 0.4524 5 359 0.6017 5
16 653 0.0352 7 126 0.4524 6 359 0.6017 5
17 653 0.0352 7 126 0.4524 4 359 0.6017 6
18 687 0.0378 7 126 0.4524 4 359 0.6017 6
19 687 0.0378 7 126 0.4524 6 359 0.6017 6
20 687 0.0378 7 109 0.4862 3 359 0.6017 5
21 653 0.0352 7 109 0.4862 3 359 0.6017 5
22 687 0.0378 7 126 0.4524 7 359 0.6017 5
23 687 0.0378 7 109 0.4862 3 359 0.6017 5
24 687 0.0378 7 126 0.4524 4 359 0.6017 5
25 687 0.0378 7 126 0.4524 4 359 0.6017 5
26 659 0.0349 6 126 0.4524 4 359 0.6017 5
27 659 0.0349 6 126 0.4524 4 359 0.6017 5
28 617 0.0373 6 126 0.4524 5 359 0.6017 5
29 659 0.0349 6 126 0.4524 4 359 0.6017 5
30 859 0.0349 6 126 0.4524 5 359 0.6017 5

Table 5. Values of kopt corresponding to kaux, bootstrap estimate and number of
iterations, for some values of θ

Model B - Non-overlapping Bootstrap

θ = 0.1 θ = 0.5 θ = 0.9

kaux kopt estboot niter kopt estboot niter kopt estboot niter

10 799 0.0375 3 33 0.5455 2 10 0.9 3
11 796 0.0389 3 27 0.6296 2 10 0.9 3
12 799 0.0375 3 22 0.7273 2 10 0.9 2
13 809 0.0358 3 27 0.6296 2 13 0.7692 3
14 809 0.0358 3 27 0.6296 2 13 0.7692 2
15 816 0.0355 3 22 0.7273 2 13 0.7692 2
16 816 0.0355 3 20 0.7 2 13 0.7692 2
17 809 0.0358 3 27 0.6296 3 10 0.9 2
18 822 0.0353 3 27 0.6296 3 10 0.9 2
19 796 0.0389 2 27 0.6296 3 10 0.9 2
20 799 0.0375 2 27 0.6296 3 10 0.9 2
21 809 0.0358 2 33 0.5455 3 9 0.8889 2
22 796 0.0389 3 33 0.5455 3 9 0.8889 2
23 799 0.0375 3 27 0.6296 3 9 0.8889 2
24 799 0.0375 3 27 0.6296 3 9 0.8889 2
25 799 0.0375 3 27 0.6296 3 9 0.8889 2
26 809 0.0358 3 22 0.7273 3 9 0.8889 3
27 822 0.0353 4 20 0.7 2 10 0.9 2
28 799 0.0375 3 21 0.7143 2 9 0.8889 2
29 816 0.0355 4 20 0.7 2 9 0.8889 2
30 809 0.0358 4 22 0.7273 2 9 0.8889 2

Table 6. Values of kopt corresponding to kaux, bootstrap estimate and number of
iterations, for some values of θ



Model B - Moving Bootstrap

θ = 0.1 θ = 0.5 θ = 0.9

kaux kopt estboot niter kopt estboot niter kopt estboot niter

10 900 0.0222 10 899 0.0779 38 54 0.8519 3
11 900 0.0222 10 607 0.2356 12 54 0.8519 3
12 900 0.0222 10 607 0.2356 12 404 0.5297 21
13 900 0.0222 9 607 0.2356 12 404 0.5297 18
14 900 0.0222 9 607 0.2356 12 404 0.5297 19
15 900 0.0222 9 607 0.2356 13 404 0.5297 19
16 900 0.0222 9 607 0.2356 13 404 0.5297 20
17 900 0.0222 8 607 0.2356 13 404 0.5297 20
18 900 0.0222 8 607 0.2356 14 404 0.5297 21
19 900 0.0222 10 607 0.2356 14 65 0.8462 2
20 900 0.0222 10 607 0.2356 15 404 0.5297 23
21 900 0.0222 9 607 0.2356 15 60 0.85 2
22 900 0.0222 9 607 0.2356 15 59 0.8475 2
23 900 0.0222 9 607 0.2356 15 54 0.8519 2
24 900 0.0222 9 607 0.2356 14 54 0.8519 2
25 900 0.0222 9 607 0.2356 14 46 0.8696 2
26 900 0.0222 8 607 0.2356 14 46 0.8696 2
27 900 0.0222 8 607 0.2356 13 404 0.5297 23
28 900 0.0222 8 607 0.2356 13 60 0.85 2
29 900 0.0222 8 607 0.2356 13 60 0.85 2
30 900 0.0222 9 607 0.2356 13 59 0.8475 2

Table 7. Values of kopt corresponding to kaux, bootstrap estimate and number of
iterations, for some values of θ

Model C
NOB MB

kaux kopt estboot niter kopt estboot niter

10 10 0.5 1 21 0.5 2
11 10 0.5 2 21 0.5 2
12 10 0.5 2 21 0.5 2
13 10 0.5 2 21 0.5 2
14 10 0.5 2 21 0.5 2
15 10 0.5 2 21 0.5 2
16 10 0.5 2 21 0.5 2
17 10 0.5 2 21 0.5 2
18 10 0.5 2 21 0.5 2
19 10 0.5 2 21 0.5 2
20 10 0.5 2 21 0.5 2
21 10 0.5 2 21 0.5 1
22 10 0.5 2 21 0.5 2
23 10 0.5 2 21 0.5 2
24 10 0.5 2 21 0.5 2
25 10 0.5 2 21 0.5 2
26 10 0.5 2 21 0.5 2
27 10 0.5 2 21 0.5 2
28 10 0.5 2 21 0.5 2
29 10 0.5 2 21 0.5 2
30 10 0.5 2 21 0.5 2

Table 8. Values of the kopt corresponding to kaux, bootstrap estimate and number of
iterations for Non-overlapping Block Bootstrap (NOB) and Moving Block Bootstrap
(MB)
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It seems that there is still a lot of work that needs to be done in order
to choose the optimal block size for resampling (it seems to depend on the
subsampling sample although, as much as we know, nothing is considered in
the literature). The iterative procedure used for choosing k, converges quickly
although for some values of θ we have not obtained pretty good values for
the estimates. Once again it seems that it depends on the block size. Only as
an example, here we considered the same block size for different values of θ
within each model.
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