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Abstract

The part families with precedence constraints problem (PFP) arises in industry, when flexible

manufacturing systems are designed within a group technology approach. The aim of this problem

is to group N parts into K families by imposing capacity constraints, concerning both the number

of parts and processing times, besides precedence constraints in the building of families.

Mixed binary linear programming formulations for the PFP are presented. In endeavoring to

strengthen the linear relaxations for the formulations, and hence generating better lower bounds

for the optimal value of PFP, some valid inequalities based on the properties of the problem.

The lower bounds obtained by the strengthened linear relaxations significantly improved through

the very weak, frequently null, bounds resulting from the original linear relaxation. Moreover, one

may conclude that these models can be a useful methodology to enforce the performance of branch-

and-bound for this very important problem in flexible manufacturing systems.

Keywords: flexible manufacturing systems; part families problem; precedence constraints;

mixed binary linear formulations; valid inequalities.
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1 Introduction

The part families with precedence constraints problem arises in industrial plants that operate with

flexible manufacturing systems (Stecke [21], Ng [15]). A flexible manufacturing system is designed to

manufacture a wide range of products ordered, denoted by parts, each produced in small quantities.

In the manufacturing of each part various types of operations are required, executed by a tool

machine, following a specific sequence. For this reason, one must know the N parts (or N lots of

parts) ordered and for each one, let i be the part, what tools are used to produce it, its execution

time pi, considered independent of the machine, and which parts have production priority over it. In

this organization of the production process, one assumes the formation of K (2 ≤ K ≤ N) disjoint

families of parts, with the purpose of setting up families with similar manufacturing features. The

part families are processed in one or more machines whose tools are stored in magazine tools.

The machines may be different or otherwise, but their tool magazines always have clearly defined

capacities. These specific features lead to capacity restrictions in the formation of families. One

also accepts precedence restrictions in the attribution of parts to the families, insofar as, in the

production of certain parts, other parts are incorporated which should already have been produced

beforehand.

The optimization criterion that directs the grouping of the parts into families consists in min-

imizing the sum of dissimilarities among parts to be found in the same family. The dissimilarity

between two parts i and j, represented by dij , results from the ratio between the number of different

tools and the total number of tools involved in the production of these parts.

In short, the problem of part families with precedence constraints (PFP) requires the grouping

of N parts into K or less disjoints families, subject to capacity constraints as to the number of

parts and the processing time, as well as the constraints that impose precedence relationships in

the formation of families, minimizing the total dissimilarity among parts within the same family.

It should be noted that the optimal solution of a PFP instance may have a number of non

empty families less than K due to efect of the capacity and precedence constraints. However,

should these constraints be redundant then there is at least one optimal solution formed by K non

empty families (Lourenço [9]).

Part of the PFP characterization was inspired by a problem due to Kusiak [8] for which this
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author presented a p-median formulation. Precedence constraints were mentioned in [4] by Finke

and Kusiak and in [14] by Moon, Lee and Seo. Viswanathan [23] refers to the capacity constraints

imposed by the number of parts to attribute to a machine or cell of machines, noting that this

parameter is indicated by the production design analyst. The PFP was also motivated by the

problem proposed by Gunther et al. [6], in which the objective is to assign to the same work

station operations that use common tools.

Now one exemplifies a feasible solution for the PFP instance with N = 10 parts, K = 4 families,

processing times: p1 = 6, p2 = 6, p3 = 6, p4 = 3, p5 = 10, p6 = 10, p7 = 10, p8 = 10, p9 = 10,

p10 = 10; capacities of each family relative to the number of parts and the processing time: M1 = 4,

M2 = 2, M3 = 7, M4 = 2, T1 = 20, T2 = 5, T3 = 70, T4 = 4; direct precedences among the parts

(figure 1.1): 1 ≺ 2, 1 ≺ 3, 2 ≺ 4, 3 ≺ 4, 1 ≺ 5, 1 ≺ 6, 1 ≺ 7, 1 ≺ 8, 1 ≺ 9, 8 ≺ 9, 1 ≺ 10.
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Figure 1.1: Precedence network.

A feasible solution for this problem is the following grouping: F1 = {1, 2, 3}, F2 = {4}, F3 =

{5, 6, 7, 8, 9, 10} and F4 = {}, represented in figure 1.2.
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Figure 1.2: A feasible solution for the above instance.

This is a very difficult problem. In fact, it was proved to be NP-hard (Lourenço [9]) because the

clustering problem is a particular case of it. It was heuristically solved in Lourenço and Pato [10]

3



and formulations where studied in Lourenço [9]. In order to evaluate the quality of such solutions

and also to improve the performance of branch and bound procedures applied to some of these

formulations, lower bounds were developed and are presented in this paper.

In section 2 one presents a mixed binary linear formulation with aggregated variables for the

PFP, denoted by BF1, followed, in section 3, by some results concerning the linear relaxation of

BF1. In section 4 a preprocessing of the solution is carried out by fixing the value of some of the

variables. Valid inequalities were developed to strengthen the above related mixed binary linear

formulation and one presented in section 5. Section 6 contains a mixed binary linear formulation

with disaggregated variables for the PFP. The proofs for the results presented in this paper may be

consulted in Lourenço [9]. Finally, section 7 describes the computational experiment and section 8

is devoted to the conclusions.

2 Mixed binary linear formulation - BF1

The PFP may be formulated as a mixed binary linear programming problem with aggregated

variables (Lourenço and Pato [11]) with the following indexes, parameters and variables:

i, j - part indexes

k - family index

N - number of parts (N ∈ N)

K - maximum number of families (K ∈ N, 2 ≤ K ≤ N)

Mk - maximum number of parts for family k (Mk ∈ N, Mk ≤ N)

pi - production time of part i (pi ∈ R+
0 )

Tk - maximum production time for family k (Tk ∈ R+)

gij - direct precedence relationships between parts i and j, i < j, (gij ∈ {0, 1})
dij - dissimilarity between parts i and j, element of the symmetric matrix D which diagonal

elements are zero (dij ∈ R+
0 )

xik - binary variable which indicates whether part i is in family k (=1) or not (=0), (i =

1, . . . , N ; k = 1, . . . , K);

yij - binary variable which indicates whether parts i and j are in the same family (=1) or not

(=0), (i < j; i = 1, . . . , N − 1; j = i + 1, . . . , N).
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The formulation, denoted by BF1, follows:

Min
∑N−1

i=1

∑N
j=i+1 dijyij (2.1)

s. to yij ≥ xik + xjk − 1 i = 1, . . . , N − 1; j = i + 1, . . . , N ; k = 1, . . . , K (2.2)
K∑

k=1

xik = 1 i = 1, . . . , N (2.3)

K∑

k=1

kxik ≤
K∑

k=1

kxjk (i, j) : gij = 1 (2.4)

N∑

i=1

xik ≤ Mk k = 1, . . . ,K (2.5)

N∑

i=1

pixik ≤ Tk k = 1, . . . ,K (2.6)

xik = 0, 1 i = 1, . . . , N ; k = 1, . . . , K (2.7)

0 ≤ yij ≤ 1 i = 1, . . . , N − 1; j = i + 1, . . . , N . (2.8)

The objective function (2.1) represents the total dissimilarity, that is, the sum of the values of

dissimilarity between pairs of parts placed in the same family. Constraints (2.2) force each variable

yij in the optimal solution to take the value of 1 if i and j are in the same family. Should these

parts be in different families in the optimal solution, the variable yij contributes with the value 0

to the objective function. The set of constraints (2.3) forces each part to belong to one and only

one family. The precedence constraints (2.4), defined for the whole pair of parts (i, j) such that

i directly precedes j, guarantee that part j cannot be placed in a family whose index is inferior

than that of the family to which part i belongs. Capacity constraints (2.5) and (2.6) do not allow

violation of the limits referring to the number of parts and the processing time of each family,

respectively.

Note that this linear formulation for the problem of the part families with precedence constraints

was used by Aronson and Klein [1] for a classification problem arising in information systems

outlined to support software design.

3 Linear Relaxation

The linear relaxation of BF1, denoted by BF1, is the problem resulting from elimination of the

integrality of the variables xik, that is, by substituting xik ∈ {0, 1} by 0 ≤ xik ≤ 1, with i =

1, . . . , N ; k = 1, . . . , K.
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In some cases, an analysis of the various parameters of an instance of BF1 enables one to verify

that the optimal value of its linear relaxation is null. The three results that follow contain suficient

conditions for the optimal value of linear relaxation to be null.

The first refers to linear relaxation of the particular case of BF1 in which the capacity constraints

are redundant. It also proves that the BF1 has a null optimal value for instances with equal

capacities or, in certain cases, with different capacities.

Result 1. The linear relaxation of any BF1 instance:

a) where the capacity constraints are redundant;

or

b) that is not infeasible and such that the maximum number of parts and the maximum pro-

cessing time is equal for all the families;

or

c) that is not infeasible and such that
∑K

k=1 x̄ik ≥ 1 (i = 1, . . . , N), with vector x̄ defined as

follows:

where mink = min{Mk
N , TkPN

i=1 pi
}

x̄ik =





mink if mink < 0.5

(i = 1, . . . , N ; k = 1, . . . , K)

0.5 if mink ≥ 0.5

has null value.

The following result states a necessary and sufficient condition for the optimal value of the BF1

to be positive.

Result 2. The optimal value of the linear relaxation of a BF1 instance is positive if and only if

in any feasible solution (x̄, ȳ) of BF1 ∃i, j ∈ {1, . . . , N}, where i < j and ∃k ∈ {1, . . . , K} such that

x̄ik + x̄jk > 1 and dij > 0.

It follows, from the previous results, that the linear relaxation lower bounds will be weak and,

in most practical cases, null.

6



4 Preprocessing

Taking advantage of the capacities of families and of the network of PFP precedences, one finds

that, a priori, the value of certain variables in any feasible solution of the BF1 formulation can be

determined.

Let G = (V, E) the oriented network that represents the precedence relationships between the

parts of PFP, where V is the set of vertices (parts) and E the set of arcs defined by the precedence

matrix [gij ]: vertices i and j define the initial and final extremities, respectively, of an arc if there

exists a direct precedence relationship of i in relation to j (i ≺ j), that is, gij = 1. If, in network

G, there is a path of vertex i to j one may say that there is a transitive precedence relationship of

i to j, represented by i ≺≺ j.

In any feasible solution of BF1 (x, y) the following rules can be applied in order to fix a priori

the values of specific variables.

Rule 1. In any feasible solution of BF1 (x, y)

xik = 0 i = 1, . . . , N ; k = 1, . . . , K: pi > Tk (4.1)

xik = 0 and xik′ = 1 i = 1, . . . , N ; k = {1, . . . , K}; ∃k′ : pi > Tk (4.2)

and pi < Tk′

yij = 0 i = 1, . . . , N − 1; j = i + 1, . . . , N : pi + pj > T ∗. (4.3)

Rule 2. Let i and j be a pair of parts such that i ≺≺ j. If |Camij |+ 2 > M∗ or if

(
∑

l∈Camij
pl) + pi + pj > T ∗ then, in any feasible solution of BF1 (x, y)

yij = 0; xiK = 0; xj1 = 0 (4.4)

yir = 0 r : j ≺≺ r (4.5)

ysj = 0 s : s ≺≺ i (4.6)

xik + xjk ≤ 1 k = 1, . . . , K (4.7)

where

Camij = {l ∈ {1, . . . , N} : i ≺≺ l and l ≺≺ j}, M∗ = max{M1,M2, . . . , MK} and

T ∗ = max{T1, T2, . . . , TK}.

Aronson and Klein [1] developed a preprocessing result by imposing in constraint (2.3) a lower
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bound Li and upper bound Ui on the index of the family in which each part can be placed. Next

Rule 3 presents this issue for the BF1.

Rule 3. In any feasible solution of BF1 (x, y) one has

xik = 0 i = 1, . . . , N ; k = 1, . . . , K: k < Li or k > Ui (4.8)

where Ui = min{u1
i , u

2
i } and Li = min{l1i , l2i } with

u1
i = max{g = K, . . . , 1 : pi +

∑

j∈TSuc(i)

pj −
K∑

k=g

Tk ≤ 0}

u2
i = max{g = K, . . . , 1 : 1 + |TSuc(i)| −

K∑

k=g

Mk ≤ 0}

l1i = max{g = 1, . . . , K : pi +
∑

j∈TPred(i)

pj −
K∑

k=g

Tk ≤ 0}

l2i = max{g = 1, . . . , K : 1 + |TPred(i)| −
K∑

k=g

Mk ≤ 0}

and TPred(i) and TSuc(i) are, respectively, the set of transitive predecessors and transitive succes-

sors of part i.

5 Valid Inequalities

The particular characteristics of the BF1 formulation for the PFP, in particular, the different

constraint systems associated with it, allow one to establish different types of valid inequalities.

These constraints, once incorporated in this mixed binary linear formulation, can strengthen the

respective linear relaxation lower bound.

The first valid inequalities presented are deduced from the grouping characteristics and from

the dissimilarity function. There follows a study of the inequalities obtained from the precedence

and from the capacity constraints.

5.1 Inequalities based on the grouping characteristics

Valid inequalities can be deduced because the PFP, regarded as an optimization problem on the

network R, may be considered a partition of a complete graph in no more than K cliques with

minimum total dissimilarity and subject to additional constraints. Here, the convex hull of the
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feasible region of BF1 is represented by conv(F (BF1)), where the feasible region is denoted by

F (BF1).

Result 3. The following constraint is a valid inequality for conv(F (BF1)):

lmin ≤
∑N−1

i=1

∑N
j=i+1 yij (5.1.1)

where

lmin =




bN

K c(N − K
2 (bN

K c+ 1)) if bN
K c ≥ 2 (5.1.2)

N −K if bN
K c < 2.

There follows another type of constraint, which also only concerns variables yij .

Result 4. Considering three parts i, j e t, the following constraints, triangular inequalities, are

valid inequalities for conv(F (BF1)):

yij ≥ yti + ytj − 1 t < i < j (5.1.3)

yij ≥ yit + ytj − 1 i < t < j (5.1.4)

yij ≥ yit + yjt − 1 i < j < t. (5.1.5)

It should be mentioned that Grötschel and Wakabayashi [5] used the triangular inequalities

as constraints to formule the partition problem of a network with N vertices into cliques. These

inequalities are cited in the paper of Park, Lee and Park [17] as facets for the convex hull of the

set of feasible solutions of a formulation for the maximum weight clique problem with a capacity

constraint in the number of vertices.

5.2 Inequalities from precedence constraints

In the next result conditions are imposed which guarantee that, in the optimal solution, either the

index family 1 or the index K family is not empty.

Result 5. Consider a PFP:

a) with at least one feasible solution, where the 1 index family is not empty, the following

constraint is satisfied by at least one optimal solution of BF1:

9



∑

i∈Spred

xi1 ≥ 1 (5.2.1)

b) with at least one feasible solution, where the K index family is not empty, the following

constraint is satisfied by at least one optimal solution of BF1:

∑

i∈Ssuc

xiK ≥ 1. (5.2.2)

The Result 6 was developed by relating parts pairwise and considering the precedence con-

straints between parts

Result 6. Consider five parts i, j, l, t and u such that i ≺≺ j ≺≺ t ≺≺ u and i ≺≺ l ≺≺ t, the

following constraints are valid inequalities for conv(F (BF1)):

xj1 ≤ xi1; xiK ≤ xjK (5.2.3)

(xik + xtk)− xjk ≤ 1 k = 1, . . . , K (5.2.4)

yij ≥ yit; yjt ≥ yit; yit ≤ yjl (5.2.5)

yij + yjt ≥ xik + xjk + xtk − 1 k = 1, . . . , K (5.2.6)

yij + yjt + ytu ≥ xik + xjk + xtk + xuk − 1 k = 1, . . . , K. (5.2.7)

5.3 Inequalities from capacities

The first two groups of inequalities presented in the Result 7 relate one part with all the others,

through the variables yij . Note that these variables yij do not identify the family to which the

parts are assigned, which is why one chooses the capacity of the family possessing with the greatest

capacity. One knows that the lifting operation is performed on the coefficients of the variables of a

constraint with a view to obtaining a valid inequality that dominates the inequality from which it

resulted (Wolsey [24]). In this same result, the following group of inequalities involves the lifting of

the coefficients of variables xik in the capacity constraints (2.6) of the formulation BF1. This type

of inequalities was developed for the generalized assignment problem by Farias and Nemhauser [3].

Result 7. The following constraints are valid inequalities for conv(F (BF1)):

j−1∑

i=1

yij +
N∑

i=j+1

yji ≤ M∗ − 1 j = 1, . . . , N (5.3.1)

j−1∑

i=1

piyij +
N∑

i=j+1

piyji ≤ T ∗ − pj j = 1, . . . , N (5.3.2)
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pi1xi11 + (Tk − pi2)xi12 + . . . + (Tk − pi2)xi1k + . . . +

(Tk − pi2)xi1K + pi2xi21 + (Tk − pi1)xi22 + . . . + (Tk − pi1)xi2k+

+ . . . + (Tk − pi1)xi2K ≤ Tk i1, i2 = 1, . . . , N : pi1 + pi2 ≥ Tk (5.3.3)

with M∗ = max{M1,M2, . . . , MK} and T ∗ = max{T1, T2, . . . , TK}.

6 Mixed binary linear formulation - BF2

The introduction of yet another index in the variables yij disaggregated them, thus allowing one

to inform what the family index is in which the two parts i and j are grouped. In this way, there

appear the variables yijk, ∀i < j, i, j ∈ {1, . . . , N} ∀k ∈ {1, . . . ,K} which characterize an extended

formulation (Pulleyblank [18]) for the PFP. Though it has more variables and more constraints, this

will permit the development of valid inequalities which dominate those obtained by substituting

the yij by the sums of yijk.

The variables used in BF2 and the formulation itself are now defined:

yijk - binary variable which indicates whether parts i and j are in the same family k (=1) or

not (=0) (i = 1, . . . , N − 1; j = i + 1, . . . , N ; k = 1 . . . ,K);

Min
K∑

k=1

N−1∑

i=1

N∑

j=i+1

dijyijk (6.1)

s. to

yijk ≥ xik + xjk − 1 i = 1, . . . , N − 1 (6.2)

j = i + 1, . . . , N ; k = 1, . . . ,K

constraints (2.3) to (2.7)

0 ≤ yijk ≤ 1 i = 1, . . . , N − 1 (6.3)

j = i + 1, . . . , N ; k = 1, . . . ,K.

It is proved that the optimal value of the linear relaxation of BF2 is equal to the optimum

BF1. Hence, in most cases, the linear relaxation bound from BF2 is expected to be null or of very

poor quality, like the linear bound from BF1. Then, valid inequalities were studied in order to

strengthen the optimal value of the linear relaxation of BF2.
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The valid inequalities for the set of feasible solutions of BF1 which involve only variables xik

can be directly included in BF2. As for the valid inequalities developed for BF1 which involve

variables yij , they require an adaptation to BF2, which may consist in substituting yij by
K∑

k=1

yijk

or simply substituting variables yij by yijk or else, in other deductions performed with the purpose

of benefiting the optimum of the linear relaxation of this extended formulation BF2.

Note that, in BF2 one may deduce constraints by making use of the exact values of the capacity

limits as regards the number of parts and processing time for each family k, instead of the maximum

of all the capacities, as in the case of BF1.

Result 8. The following constraints are valid inequalities for conv(F (BF2)):

j−1∑

i=1

yijk +
N∑

i=j+1

yjik ≤ (Mk − 1)xjk j = 1, . . . , N ; k = 1, . . . ,K (6.4)

j−1∑

i=1

piyijk +
N∑

i=j+1

piyjik ≤ (Tk − pj)xjk j = 1, . . . , N ; k = 1, . . . ,K (6.5)

yijk ≤ xik i = 1, . . . , N − 1; j = i + 1, . . . , N ; k = 1, . . . , K (6.6)

yijk ≤ xjk i = 1, . . . , N − 1; j = i + 1, . . . , N ; k = 1, . . . , K (6.7)

N∑

i=1

xik −
j−1∑

i=1
i<j

yijk −
N∑

i=j+1
i>j

yjik ≤ Mk + (1−Mk)xjk j = 1, . . . , N (6.8)

k = 1, . . . ,K
N∑

i=1

pixik−
j−1∑

i=1
i<j

piyijk−
N∑

i=j+1
i>j

piyjik ≤ Tk +(pj −Tk)xjk j = 1, . . . , N (6.9)

k = 1, . . . ,K.

Inequalities similar to (6.4)-(6.5) were deduced for the maximal clique problem with a capacity

constraint in the number of vertices (Park, Lee and Park [17], Macambira and Souza [13], Hunting,

Faile and Kern [7]). These define facets for the polyhedron of the maximal clique problem with

a capacity constraint if and only if b ≤ N − 1, where b is the capacity of the clique and N the

number of vertices of the complete network. It should be noted that the inequalities (6.4)-(6.5)

are an adaptation of the (5.3.3) − (5.3.4) developed for BF1 but these dominate the inequalities
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deduced from the mere introduction of the index k, that is, substitution of yij by yijk.

The last four types of inequalities presented are specifically valid only for F (BF2): in BF2 the

variables xik and yijk are defined for a given family and for this reason it is possible to establish a

relationship between the two types of variables.

Finally, one should mention that the formulation BF2 strengthened by the valid inequalities

(6.4) − (6.9) coincides with the mixed binary linear formulation resulting from application of the

hierarchy linear reformulation technique due to Sherali and Adams [20] to a quadratic formulation

for the PFP given in Lourenço [9].

7 Computational Experiments

Although the formation of part families within flexible manufacturing systems amounts to a prob-

lem whose application is real, and is often mentioned in the literature, it has not been object of

publication in the literature, as far as the authors’ knowledge is concerned. In view of the difficulty

in ascertaining what the dimensions of the instances are and what are the appropriate values for

the parameters for a real application of the problem, the computational experiment is undertaken

with instances that claim to represent different situations.

Two sets, each consisting of 25 instances each, were built partly from the literature concerning

the assembly line balancing problem in industry (Scholl [19] and [16]). This option was made in

view of the fact that data is available on the number of tasks (parts) to be assigned and on the

number of work stations (families), the network of precedences between the tasks and the execution

times for the tasks. The data referring to the capacities of families and the dissimilarities between

parts were randomly generated, using the random function of the Pascal programming language

(Lourenço [9]). In the first set, A - instances I1 to I25 -, each instance has equal capacities for all

the families, as regards the number of parts, and also the processing time. In the second set, B -

instances I26 até I50 -, each instance has different capacities for the various families. The capacities

were generated and then adapted to give rise to feasible problems.

In Table 7.1 the data is displayed. This table also indicates the order strength value, that is,

the ratio between the total number of direct and transitive precedences and N(N−1)
2 , the maximum

number of direct precedences. This value tells us if the network of precedence constraints is sparse
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(0 ≤ orderstrength ≤ 0.5) or dense (0.5 < orderstrength ≤ 1).

Table 7.1: Data regarding the test instances

instances Mertens Bowman Jaeschke Jackson Mansoor

parameters I1;I26 I2;I27 I3;I28 I4; I29 I5;I30

N 7 8 9 11 11

K 2 5 3 4 3

no. of direct precedence relationships 6 8 11 13 11

part’s processing time 1-6 3-17 1-6 1-7 2-45

maximum no. of parts per family 5;4 5-7;2 3-8;3 6-9;3 6-8;4

maximum time per family 14-20;17 23-47;17 15-17;13 15-21;12 125-149;62

dissimilarity between two parts 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0

order strength 0.52 0.75 0.83 0.58 0.60

instances Mitchell Roszieg Heskia Buxey Sawyer

parameters I6;I31 I7;I32 I8;I33 I9;I34 I10; I35

N 21 25 28 29 30

K 5 6 5 7 7

no. of direct precedence relationships 27 32 39 36 32

part’s processing time 1-9 1-13 1-108 19-21 1-25

maximum no. of parts per family 4-10;5 5-7;5 6-10;6 5-10;5 6-8;5

maximum time per family 29-44;21 27-42;21 393-590;205 59-83;47 53-84;47

dissimilarity between two parts 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0

order strength 0.70 0.70 0.22 0.51 0.44

instances Lutz1 Gunther Kilbridge Hahn Warnecke

parameters I11;I36 I12;I37 I13;I38 I14; I39 I15; I40

N 32 35 45 53 58

K 7 8 8 8 10

no. of direct precedence relationships 38 45 62 82 70

part’s processing time 100-1400 1-30 3-29 40-1775 7-52

maximum no. of parts per family 6-9;5 7-11;5 4-12;7 9-12;7 10-12;8

maximum time per family 3585-4644;2096 89-138;54 115-158;69 3604-5153;1907 111-249;155

dissimilarity between two parts 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0

order strength 0.83 0.59 0.45 0.84 0.59

instances Tonge Wee-Mag Arc83 Lutz2 Lutz3

parameters I16;I41 I17;I42 I18;I43 I19;I44 I20; I45

N 70 75 83 89 89

K 23 30 21 15 24

no. of direct precedence relationships 86 87 113 118 118

part’s processing time 1-152 5-27 233-2881 1-10 1-74

maximum no. of parts per family 5-10;4 5-10;4 6-10;5 4-12;8 5-10;5

maximum time per family 324-457;162 55-102;72 7886-10713;4068 21-49;33 152-213;76

dissimilarity between two parts 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0

order strength 0.59 0.23 0.59 0.77 0.77
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instances Mukherje Arc111 Barthold1 Barthold2 Scholl

parameters I21;I46 I22;I47 I23;I48 I24;I49 I25;I50

N 94 111 148 148 297

K 19 27 14 40 50

no. of direct precedence relationships 181 176 175 175 300

part’s processing time 8-123 10-5200 7-811 5-383 9-1386

maximum no. of parts per family 8-11;6 6-11;7 11-19;11 10-19;4 11-19;11

maximum time per family 354-549;549 7702-10172;19413 789-1156;1016 171-268;176 2808-4136;9545

dissimilarity between two parts 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0 0.1-1.0

order strength 0.45 0.40 0.26 0.26 0.04

Besides these instances, four other instances sets were tested (Lourenço [12]), three of which

were randomly generated for a grouping problem in the information systems. The fourth concerns

the assembly line balancing problem (Tonge [22]). The values for the parameters of these instances

were taken from Aronson and Klein [1]. However, the authors opted against presenting the results

of these tests here as the instances had parameters that were very similar to some of the instances

belonging to the sets A and B characterized above, besides the fact that the computational results

were similar.

The computational experiment was performed on a PC with a Pentium 4 processor, with 2,53

GHZ and 512 Mb of RAM memory. To solve the continuous or mixed binary linear models, one

used CPLEX software version 8.1 [2], in which all the parameters assumed pre-defined values, with

the exception of the time limit parameter used in the search for the optimum solution.

The lower bounds obtained from the linear relaxations BF1 and BF2 for all the instances,

except the I26, are null. The optimal value of both linear relaxations for this instance is 0.31, while

the minimum total dissimilarity equals 3.9. One may conclude from this experiment that this linear

lower bound for the PFP is very weak indeed. Hence,So the strengthened formulations were tested

with a view to improving the lower bounds.

As to the effect of the order strength of the instances on the computational results, one found

that the greater the order strength the greater the proportion of variables with a fixed value through

the preprocessing phase, application of the Rules (1), (2), and (3).

Table 7.2 displays data, results and execution times referring to each instance given in column

(1). Column (2) lists the number of parts and column (3) the number of families. In column (4)
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there is information on the optimal value obtained by application of the CPLEX software to the

formulation BF1. As only for the small instances does the CPLEX reach the optimum, in the

remaining instances one points out the upper bound with ** and the lower bound with *. Column

(5) records the results obtained from strengthening formulation BF1 with preprocessing and all

valid inequalities developed - Rules (1)-(3) and Results (3)-(7)-, denoted by BF1cut, and in column

(6) the results of the respective linear relaxation, BF1cut appear. Column (7) was built from BF2

and columns (8) and (9) contain, respectively, the figures obtained from BF2 strengthened by all

the valid inequalities developed (Results (3)-(7) adapted to BF2 and Result (8), BF2cut, and the

results from the respective linear relaxation, BF2cut.

Table 7.2: Results of the computacional experiment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

instances N K BF1 BF1cut BF1cut BF2 BF2cut BF2cut

optimal or optimal or lower optimal or optimal or lower

lower*,upper** lower*,upper** lower*,upper** lower*,upper**

(time) (time) (time) (time) (time) (time)

I1 7 2 3.9 3.9 3.9 3.9 3.9 3.9

(0.0 s) (0.1 s) (0.0 s) (0.0 s) (0.0 s) (0.0 s)

I2 8 5 1.7 1.7 1.7 1.7 1.7 1.7

(0.0 s) (0.0 s) (0.0 s) (0.1 s) (0.0 s) (0.1 s)

I3 9 3 5.5 5.5 5.5 5.5 5.5 5.5

(0.0 s) (0.0 s) (0.0 s) (0.0 s) (0.0 s) (0.0 s)

I4 11 4 3.3 3.3 3.3 3.3 3.3 3.3

(0.3 s) (0.0 s) (0.0 s) (0.3 s) (0.1 s) (0.0 s)

I5 11 3 5.0 5.0 4.0 5.0 5.0 4.2

(34.1 s) (0.5 s) (0.0 s) (0.1 s) (0.3 s) (0.1 s)

I6 21 5 17.0 17.0 14.9 17.0 17.0 16.2

(34.1 s) (4.9 s) (0.3 s) (17.4 s) (5.8 s) (0.9 s)

I7 25 6 18.4 18.4 14.6 12.5*,18.4** 18.4 15.1

(1.6 h) (51.0 s) (1.2 s) (47.1 s) (396.2 s) (4.5 s)

I8 28 5 22.9 19.6*,24.5** 16.1 11.3*,24.6** 16.5*,24.6* 16.2

(7.5 h) (10.0 h) (3.1 s) (1.0 h) (1.0 h) (52.2 s)

I9 29 7 16.0*,18.0** 14.8*,18.6** 11.7 10.1*,19.5** 9.4*,19.5** 11.9

(10.0 h) (10.0 h) (3.0 s) (1.0 h) (1.0 h) (60.0 s)

I10 30 7 11.4*,20.5** 16.1*,22.0** 11.5 5.8*,21.9** 11.4*,20.0** 12.4

(10.0 h) (10.0 h) (1.7 s) (1.0 h) (1.0 h) (56.6 s)

I11 32 7 21.3*,28.5** 27.5,-** 23.2 5.8*,- 27.5 24.3

(10.0 h) (10.0 h) (3.7 s) (1.0 h) (123.9 s) (436.0 s)

I12 35 8 8.7*,24.3** 16.6*,27.0** 14.2 22.6*,26.4** 8.6*,- 14.2

(10.0 h) (10.0 h) (18.5 s) (1.0 h) (1.0 h) (453.0 s)

I13 45 8 3.8*,48.3** 26.3*,- 23.9 11.6*,55.1** 19.1*,- 24.7

(10.0 h) (10.0 h) (10.7 s) (1.0 h) (1.0 h) (0.8 h)
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I14 53 8 4.8*,- 65.8*,78.6** 60.0 0.3*,- 44.9*,83.2** 62.7

(10.0 h) (10.0 h) (557.6 s) (1.0 h) (1.0 h) (1234.5 s)

I15 53 10 -,- 37.8*,- 35.9 3.7*,- -,- 36.7

(10.0 h) (10.0 h) (175.7 s) (1.0 h) (1.0 h) (3.8 h)

I26 7 2 3.9 3.9 3.9 3.9 3.9 3.9

(0.0 s) (0.1 s) (0.0 s) (0.0 s) (0.0 s) (0.0 s)

I27 8 5 1.3 1.3 0.7 1.3 1.3 0.7

(0.0 s) (0.1 s) (0.0 s) (0.0 s) (0.0 s) (0.0 s)

I28 9 3 5.5 5.5 5.5 5.5 5.5 5.5

(0.1 s) (0.0 s) (0.0 s) (0.1 s) (0.0 s) (0.0 s)

I29 11 4 3.3 3.3 2.9 3.3 3.3 3.1

(0.3 s) (0.1 s) (0.0 s) (0.3 s) (1.0 s) (0.1 s)

I30 11 3 4.4 4.4 3.9 4.4 4.4 3.9

(0.1 s) (0.5 s) (0.1 s) (0.1 s) (1.0 s) (0.1 s)

I31 21 5 15.4 15.4 13.7 15.4 15.4 13.8

(33.1 s) (96.3 s) (1.7 s) (17.7 s) (119.0 s) (6.3 s)

I32 25 6 17.4 17.4 13.7 17.4 14.4*,18.6** 13.8

(0.6 h) (0.9 h) (3.2 s) (1854.5 s) (1.0 h) (5.5 s)

I33 28 5 13.6*,23.3** 20.5*,22.2** 15.9 12.9*,24.2** 16.0*,27.8** 15.9

(10.0 h) (10.0 h) (27.6 s) (1.0 h) (1.0 h) (47.6 s)

I34 29 7 15.9*,17.8** 13.8*,18.5** 11.3 9.9*,18.9** 8.6*,19.8** 11.4

(10.0 h) (10.0 h) (4.7 s) (1.0 h) (1.0 h) (136.0 s)

I35 30 7 14.8*,18.4** 13.2*,19.4** 10.3 8.7*,19.9** 8.6*,22.6** 10.4

(10.0 h) (10.0 h) (4.2 s) (1.0 h) (1.0 h) (98.0 s)

I36 32 7 17.1*,24.1** 23.7 20.0 22.4*,23.7** 11.1*,31.1** 20.0

(10.0 h) (7.7 h) (18.0 s) (1.0 h) (1.0 h) (109.4 s)

I37 35 8 11.1*,25.0** 14.9*,30.1** 13.7 24.5*,48.4** 8.1*,29.7** 13.7

(10.0 h) (10.0 h) (45.4 s) (1.0 h) (1.0 h) (418.4 s)

I38 45 8 6.1*,46.1** 24.2*,66.0** 22.6 1.9*,48.0** 15.2*,- 22.7

(10.0 h) (10.0 h) (102.6 s) (1.0 h) (1.0 h) (1487.7 s)

I39 53 8 4.9*,- 57.0*,118.1** 56.5 0.6*,- 26.5*,- 56.8

(10.0 h) (10.0 h) (1054.0 s) (1.0 h) (1.0 h) (7.1 h)

I40 53 10 -,- 33.3*,80.5** 31.9 22.1*,- 24.4*,- 33.6

(10.0 h) (10.0 h) (467.0 s) (1.0 h) (1.0 h) (4.1 h)

Firstly, one began by testing the formulations without and with strengthening, using the branch-

and-bound algorithm of the CPLEX software and verified that the strengthened formulations

(BF1cut and BF2cut in columns (6) and (9) of table 7.2), for the medium size instances, generated

bounds for the optimum of PFP that are significantly better than those given by the corresponding

basic formulations BF1 and BF2 (columns (5) and (8)). However, for the larger instances it is the

non-strengthened formulation that manages to obtain better bounds for the same computational

time. This is due to the excess of variables and constraints of the formulations with strengthening
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which require an additional computational effort.

Moreover, in Table 7.2 one may see that the optima given by the linear relaxations of the

strengthened formulations (columns (8) and (10)) significantly improve the initial null values (which

do not appear in the table). Additionally, one finds that the BF2cut produces lower bounds that

are appreciably better than those obtained from BF1cut, and this difference between the lower

bounds is slightly more marked and frequent in the case of instances with equal capacity for the

families (for instance (I6)). Note that the strengthening includes in BF2cut inequalities which have

no correspondent in BF1cut, hence forcing a best lower bound from BF2cut.

In the computational experiments it was found that, of the various valid inequalities studied,

the one that has greatest importance in the improvement of the lower bounds is valid inequality

(5.1.1). This inequality is also beneficial, in relation to the remaining ones, in that it can be adapted

to any problem of grouping elements, with or without constraints.

8 Conclusions

An analysis of the PFP and of its properties lead to perform a preprocessing of the solution, by fixing

the value of a large number of variables. In the experimentation undertaken, this preprocessing

benefits the application of the CPLEX software to the strengthened formulations BF1 and BF2,

specially, in the case of the higher dimension instances.

Several valid inequalities were also developed to strength the formulations. For the smaller

instances one may conclude that the strengthened formulations enable the ILP algorithm of CPLEX

to perform better in determining the optimum, as they require less time. For the medium-sized

instances these formulations found bounds (upper and lower) for the optimum in relatively short

time. Finally, for the larger instances, the BF1 with strengthening obtains better lower bounds

than the BF2, which is not appropriate due to it has an excessive consumption of computational

resources.

The experiments indicate that, by using more computational resources and, possibly, with a

more discerning study of the constraints to include for strengthened, the disaggregated formula-

tion, duly strengthened with valid inequalities will be the basis of a solution methodology for this

important, though difficult problem that may be used within the flexible manufacturing systems.
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