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Abstract

We study the shock wave problem for the Cabannes 14-velocity model of the Boltz-
mann equation in one space dimension (x-axis) and obtain a non-trivial explicit
solution which asymptotically connects two particular Maxwellian states. We prove
that such a solution exists provided that a suitable condition on the differential
elastic cross sections hold.
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1 Introduction

In kinetic theory of gases, Discrete Velocity Models (dvms) of the Boltzmann Equa-
tion (be) describe the time-space evolution of a gas whose particles can only attain a
finite number of selected velocities and are subjected to a binary collision mechanism.
The discretization of the velocity space allows to replace the integral collision operator of
the be by a finite sum over all admissible velocities. The resulting kinetic equations con-
stitute an hyperbolic system of semilinear partial differential equations for the unknown
number densities linked to the selected velocities. Due to their mathematical simplicity,
after the pioneer work by Broadwell [1], dvms have been used by several authors in the
study of some relevant thermodynamical problems as shock wave propagation, Couette
and Rayleigh flows, sound waves, etc. (see Ref.[2] for a detailed and systematic treatment
of general dvms and fluid dynamical applications for particular models).
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Certainly one of the more interesting dvm is known in literature as the Cabannes
14-velocity model, proposed by Cabannes in Ref.[3]. The admissible velocities are defined
joining the centre of a cube at the origin of the velocity space to its vertices and to the
centres of its faces. The inclusion of two different velocity moduli probably constitutes
the novelty of this model since collisions among particles with different moduli of veloci-
ties can also occur and the temperature of the gas becomes an independent macroscopic
variable. The Cabannes’ model is simple enough to be mathematically tractable and, at
the same time, contains enough physics to derive interesting hydrodynamic equations as
the Euler or Navier-Stokes equations for the fluid density, mean velocity and total energy.
The problem of shock wave propagation can then be treated by means of the Cabannes
model using the Euler or Navier-Stokes equations as well as the kinetic model Boltzmann
equations.

Within discrete kinetic theory, the problem of shock wave propagation has been stud-
ied by several authors. We quote for example Ref. [1], related to the Broadwell model,
and Ref. [4] which gives a systematic treatment of the general problem and present some
results for a particular model with six coplanar velocities. Moreover, paper [5] gives
an exhaustive analysis on the existence of shock profile solutions to the discrete be in
unbounded domains by means of Euler and Navier-Stokes equations as well as model
Boltzmann equations. Some recent contributions [7], [8] investigate the existence and sta-
bility of stationary wave solutions to the discrete Boltzmann equation in the half-space,
considering, in particular, reflective boundary conditions.

In this paper, we consider the one space dimensional version of the Cabannes model
and derive an explicit expression for the shock profile solution of the kinetic equations,
traveling with constant velocity and connecting two limiting Maxwellian equilibrium
states. The Euler equations are integrated across the shock and the resulting Rankine-
Hugoniot conditions are derived. The solution is assured when a suitable condition on
the differential elastic cross sections is verified. A pertinent choice of the Maxwellian
parameters defining the state behind the shock is crucially used to obtain the above said
exact solution.

In fact, the general equations can not be solved exactly, but this choice allows to in-
troduce a particular change of variables and an explicit solution comes out. Accordingly,
it seems natural that the content of the present paper can be used to develop numerical
simulations and establish comparisons with approximate solutions. To our knowledge,
explicit travelling wave solutions of the Cabannes 14-velocity model did not exist so far
in the literature.

The paper is organized as follows: After this introduction, in section 2, we briefly recall
the kinetic and the corresponding conservation equations of the Cabannes 14-velocity
model reduced to the case of one space dimension. In section 3, steady profile solutions of
plane shock wave are characterized after integrating the conservation equations between
asymptotic states.
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2 The model equations

The Cabannes 14-velocity model proposed in Ref.[3] assumes six velocities directed
from the centre of a cube at the origin of the velocity space to the centre of each face and
eight velocities directed from the centre of the cube to each vertex. The number densities
associated to seleted velocities are represented by (Fi)i∈{1,...,14}. In one space dimension
( x–axis), they reduce to five independent, F1 and F2 for particles moving with positive
x–velocity directed to the face and vertices of the cube, F3 and F4 for particles moving
in the opposite directions, and F5 for those particles moving with velocities at right angle
with the x-axis.

The kinetic equations, describing the space-time evolution of the number densities Fi,
can be written in the form





∂tF1 + ∂xF1 = σ1q1(F ) + σ2q2(F )
4∂tF2 + 4∂xF2 = −σ2q2(F )

∂tF3 − ∂xF3 = σ1q1(F ) − σ2q2(F )
4∂tF4 − 4∂xF4 = σ2q2(F )

4∂tF5 = −2σ1q1(F )

(1)

where (x, t) ∈ R×R
+, σ1 and σ2 are positive constants depending on differential cross sec-

tions, collision frequencies and relative velocity of the colliding particles, and the nonlinear
collision terms on the r.h.s. of Eqs.(1) are given by

q1(F ) := F 2

5 − F1F3 and q2(F ) := F2F3 − F1F4. (2)

Introducing the new variables ρ, m, m̃, z, ρ̃ defined by

ρ = F1 + 4F2 + F3 + 4F4

m = F1 + 4F2 − F3 − 4F4

m̃ = 4(F2 − F4)

z = 4(F2 + F4)

ρ̃ = 4F5

(3)

where ρ + ρ̃ is the total mass density of the gas, m the total x–momentum component,
z the mass density of particles with velocities directed to the vertices of the cube, m̃ its
x-flux and ρ̃ the mass density of particles with zero velocity along x-axis. From Eqs.(3)
we obtain

F1 =
1

2
(ρ + m + m̃ − z) F2 =

1

8
(m̃ + z) F3 =

1

2
(ρ − m − z + m̃)

F4 =
1

8
(z − m̃) F5 =

1

4
ρ̃

(4)
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and the system (1) can be re-written as

∂t(ρ + ρ̃) + ∂xm = 0 (5a)

∂tm + ∂xρ = 0 (5b)

∂tz + ∂xm̃ = 0 (5c)

∂tm̃ + ∂xz = −1

4
σ2Q2 (5d)

∂tρ̃ = −1

8
σ1Q1, (5e)

where

Q1(ρ, m, z, m̃, ρ̃) = ρ̃2 − 4(ρ− z)2 + 4(m− m̃)2 , Q2(ρ, m, z, m̃, ρ̃) = m̃ρ− zm . (6)

Equations (5a-c) express conservation of total mass density, total x-momentum and
mass density of particles with velocities directed to the vertices of the cube.

A local Maxwellian state to Eqs.(5a-e) is characterized by equilibrium functions (a, b, c, d, e)
such that Qi(a, b, c, d, e) = 0, for i=1,2. Therefore

e2 = 4(a − c)2 − 4(b − d)2 , ad = bc. (7)

3 Shock profile solutions

We are interested in steady shock profile solutions to Eqs.(5a−e) of the form

(ρ(x, t), m(x, t), z(x, t), m̃(x, t), ρ̃(x, t)) = (A(ξ), B(ξ), C(ξ), D(ξ), E(ξ)) , (8)

where
ξ = x − vt , (9)

traveling with constant velocity v in the direction of the x-axis and connecting, asymp-
toticaly in space, two Maxwellian states (a, b, c, d, e) and (α, β, γ, δ, ǫ), that is

lim
ξ→−∞

(A(ξ), B(ξ), C(ξ), D(ξ), E(ξ)) = (a, b, c, d, e)

lim
ξ→+∞

(A(ξ), B(ξ), C(ξ), D(ξ), E(ξ)) = (α, β, γ, δ, ǫ)
(10)

Solutions of type (8-9) with limiting conditions (10) correspond to state variables such
that, far from the shock at x = vt , are close to their local equilibrium.

Now we write system (5a-e) in terms of the new variable ξ. Partial derivatives trans-
form to

∂

∂t
= −v

d

dξ
,

∂

∂x
=

d

dξ
(11)
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and (5a-e) becomes the system of ordinary differential equations:

−v(A + E)′ + B′ = 0 (12a)

−vB′ + A′ = 0 (12b)

−vC ′ + D′ = 0 (12c)

−vD′ + C ′ = −σ2(AD − BC)/4 (12d)

−vE ′ = −σ1

(
E2 − 4(A − C)2 + 4(B − D)2

)
/8 (12e)

where the primes indicate total derivative with respect to ξ.
The two Maxwellian states introduced in (10) are not independent and need to be

expressed one in terms of the other through the so called Rankine-Hugoniot conditions.
At this end we integrate the conservation equations (12a-c) with limiting conditions (10),
resulting

−v(a + e) + b = −v(α + ǫ) + β (13a)

−vb + a = −vβ + α (13b)

−vc + d = −vγ + δ (13c)

which constitute the Rankine-Hugoniot conditions and express a relation between the
properties of the gas in the limiting Maxwellian states.

If we assume a Maxwellian state behind the shock of type (a, b, c, d, e) = (a, b, a, b, 0),
we get the solutions

α =
(a − vb)(2v2 −

√
3v2 + 1)

(1 − v2)
√

3v2 + 1
, β =

v(a − vb)(2 −
√

3v2 + 1)

(1 − v2)
√

3v2 + 1
,

γ =
(va − b)(−

√
3v2 + 1 + 2v2)

2v(v2 − 1)
, δ =

(va − b)(−
√

3v2 + 1 + 2))

2(v2 − 1)
,

ǫ =

√
3v2 + 1(va − b) + 2v|a − vb|

v
√

3v2 + 1
.

(14)

Again, integration of the conservation laws (12a-c), now from −∞ to ξ, leads to

A(ξ) = a + v(B(ξ) − b) (15a)

D(ξ) = b + v(C(ξ) − a) (15b)

E(ξ) =
1 − v2

v
(B(ξ) − b) (15c)

Inserting conditions (15a-c) into Eqs.(12d-e), we obtain the following system of ordinary
differential equations





(1 − v2)C̃ ′ =
σ2

4

(
(1 − v2)B̃C̃ − (vb − a)B̃ − (va − b)C̃

)

B̃′ =
σ1

8

(
1 + 3v2

v2
B̃2 − 4C̃2

)
,

(16)
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where B̃ = B̃(ξ) := B(ξ) − b and C̃ = C̃(ξ) := C(ξ) − a.

In the particular case that the Maxwellian state (a, b, c, d, e) = (a, b, a, b, 0) ahead the
shock verifies a = vb, the system (16) has an exact solution. In fact, the two limiting
Maxwellian states can be written as

(a, b, c, d, e) = b(v, 1, v, 1, 0) , (17)

and

(α, β, γ, δ, ǫ) = b

(
0 , 0 ,

2v2 −
√

3v2 + 1

2v
,

2 −
√

3v2 + 1

2
,

v2 − 1

v

)
(18)

as it follows from Eqs.(14).

From Eqs.(17) and (18), system (16) transform to





C̃ ′ =
σ2

4

(
B̃C̃ + bC̃

)

B̃′ =
σ1

8

(
1 + 3v2

v2
B̃2 − 4C̃2

)

and, if in addition, we consider

1

2

(
σ1

8
(3 +

1

v2
)

)
=

σ2

4
:= θ , (19)

system (16) finally transforms to






C̃ ′ = θB̃C̃ + bθC̃

B̃′ = 2θB̃2 − σ1

2
C̃2

(20)

System (20) can be solved explicitly. In fact, if we set F(ξ)= B̃(ξ) and G(ξ)= C̃(ξ)e−bθξ,
it becomes 




G′ = θGF

F ′ = 2θF2 − σ1

2
G2e2θbξ

(21)

Assuming now that G does not vanish, we get F =
1

θ

G′

G and from (21) it results

1

θ

(G′

G

)′

=
2

θ

(G′

G

)2

− σ1

2
G2e2θbξ . (22)

6



Finally, putting A(ξ) =
1

G2(ξ)
, (22) states exacly that A′′(ξ) = σ1θe

2θbξ , and integrating

twice Eqs.(22), it results

A =
σ1

4b2θ
e2θbξ + c1(ξ − c2) .

Therefore, Eqs.(20) has the following exact solutions

B̃(ξ) = ± b(c1b + 2e2θbξσ1)

2(e2bθξσ1 + θb2c1(ξ − c2))
, C̃(ξ) = ∓ 2bθ

1

2 eθbξ

√
e2bθξσ1 + θb2c1(ξ − c2)

.

where c1, c2 ∈R . Taking into account the Maxwellian states assigned in (10) as limiting
conditions, the signs must be correctly chosen, and we finally obtain

B(ξ) = b − b(c1b + 2e2θbξσ1)

2(e2bθξσ1 + θb2c1(ξ − c2))
(23a)

C(ξ) = vb − 2bθ
1

2 ebθξ

√
e2bθξσ1 + θb2c1(ξ − c2)

(23b)

Remark 1

As mentionned in the introduction, the solution (23a-b) exists when the following condition
holds true

∀ξ ∈ R , e2bθξσ1 + θb2c1(ξ − c2) > 0 . (24)

Constraint (24) can be assured by taking, for example, c2 = 0, c1 < 0 and
b|c1|
σ1

< 2e .

Remark 2

The expressions for A, D and E come directly from Eqs.(15a-e).

Remark 3

From expressions (23a-b) it is easy to verify that, as it is expected, the following limiting
conditions hold true

lim
ξ→−∞

B(ξ) = b , lim
ξ→−∞

C(ξ) = vb = a ,

lim
ξ→+∞

B(ξ) = 0 = β , lim
ξ→+∞

C(ξ) = b
2v2 −

√
3v2 + 1

2v
= γ .

From the exact solution obtained from (23a-b) together with (15a-e), we can compute,
for example, the total mass density ρ + ρ̃ through definitions (3).

In Figure 1 we have drawn two shock profiles for the gas density versus ξ . (with v = 1,
c = −1, b = 1, σ1 = 12 in the left frame and with v = 1, c = −3, b = 1, σ1 = 12 in the
right frame). Each profile corresponds to a continuous solution to the model Boltzmann
equation interpolating the corresponding limit Maxellian states and showing a finite and
nonzero wave thickness.
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Figure 1: Exact shock profile solutions for the gas density.
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