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Abstract

For a given connected (undirected) graph G, the minimum rank of G =
(V (G), E(G)) is defined to be the smallest possible rank over all hermitian
matrices A whose (i, j)th entry is non-zero whenever i 6= j and {i, j} is an
edge in G ({i, j} ∈ E(G)). For each vertex x in G (x ∈ E(G)), Γ(x) is the set
of all neighbors of x. Let R be the equivalence relation on V (G) such that

∀x,y∈V (G) xRy ⇔ Γ(x) = Γ(y).

Our aim is define connected graphs G = (V (G), E(G)) such that the minimum
rank of G is equal to the number of equivalence classes for the relation R on
V (G).

AMS classification: 15A18; 05C50
Key words: Graphs; Hermitian matrices; Minimum rank

1 Introduction

Let G = (V (G), E(G)) be an undirected connected graph on n vertices. With G we associate
a matrix A = [aij ] such that for i 6= j, aij = 0 if, and only if, {xi, xj} /∈ E(G), and a set
S(G) of all hermitian matrices that we can associate with this graph, i. e.

S(G) = {A = [aij ] hermitian : aij 6= 0 whenever i 6= j and {xi, xj} ∈ E(G)} .

*This research was done within the activities of ”Centro de Estruturas Lineares e Combinatórias” .
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With G we consider:
M(G) =the maximum multiplicity occurring for an eigenvalue of an A ∈ S(G);
P (G) = the minimum number of vertex disjoint paths, occurring as induced subgraphs

of G that cover all the vertices of G;
m(G) = n−minA∈S(G)rank(A).
Several authors have been interested on multiplicity of eigenvalues of matrices whose

graph is a tree, e.g. [4], [5].
When G is a tree (a connected graph without cycles) we denote G by T . Johnson and

Leal Duarte [3] proved that, if T is a tree, we have

P (T ) = m(T ) = M(T ).

Let x ∈ V (G). We denote by Γ(x) the set of all neighbors of x in G, i.e., Γ(x) =
{z ∈ V (G) : {x, z} ∈ E(G)}. If we consider the equivalence relation R on V (G) such that

∀x,y∈V (G) xRy ⇔ Γ(x) = Γ(y),

we obtain the result:
n−M(G) ≤

∣∣∣∣V (G)
R

∣∣∣∣ ,
where

∣∣∣V (G)
R

∣∣∣ is the number of equivalence classes for the relation R.
Let X1, . . . , Xp be the equivalence classes for the relation R on V (G). In Section 2 we

define the equivalence classes graph G = (V (G), E(G)) of G where V (G) = {X1, . . . , Xp} and
{Xi, Xj} ∈ E(G) if, and only if, there are x ∈ Xi and y ∈ Xj such that {x, y} is an edge in
G. In section 3 we will study the previous inequality for all graphs whose equivalence graph
is a path.

In section 4 we define the ”star tree”, a tree T = (V (T ), E(T )) such that if x ∈ V (T )
and the degree of x is greater than or equal to two, dT (x) ≥ 2, than there exist at least two
neighbors of x with degree one. Finally in this section we prove that these trees are the only
trees that verify

n−M(G) =
∣∣∣∣V (G)

R

∣∣∣∣ .
2 The equivalence relation R

Let G = (V (G), E(G)) be a graph on n vertices. All graphs discussed in this paper are
connected and undirected.

Firstly, in this section, we are going to see some properties of the relation R on V (G).
Next we are going to construct thr equivalence classes graph of G. The main result of this
section is the Proposition 2.3. This Proposition enables us to know graphs that verify

minA∈S(G) rank(A) =
∣∣∣∣V (G)

R

∣∣∣∣.
The first result that we can prove is the following:
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Proposition 2.1 Let G = (V (G), E(G)) be a graph, then

minA∈S(G) rank(A) ≤
∣∣∣∣V (G)

R

∣∣∣∣.
Proof Let X1, X2, ..., Xp be the distinct equivalence classes for the relation R. Then
X1∪̇X2∪̇ . . . ∪̇Xp = V (G). Let A be the adjacency matrix of G considering the ordering
(X1, . . . , Xp), i. e., first we consider the vertices of X1, after we consider the vertices of X2

and so one. It is easy to prove that A ∈ S(G). Since the submatrices of A corresponding
to the rows

∑i
l=0 |Xl| + 1, . . . ,

∑i+1
l=0 |Xl|, for i = 0, . . . , p − 1, where |X0| = 0, are matrices

of rank one, then rank(A) ≤ p =
∣∣∣V (G)

R

∣∣∣. Thus

minA∈S(G)rank(A) ≤
∣∣∣∣V (G)

R

∣∣∣∣ .
2

Proposition 2.2 Let G = (V (G), E(G)) be a graph. If X1 is an equivalence class for the
relation R on V (G), then the subgraph of G induced by the vertices of X1 is isomorphic to
N|X1|, the null graph with |X1| vertices.

Proof Let H be the subgraph of G induced by the vertices of X1. Suppose that there are
two vertices x, y ∈ X1 such that {x, y} is an edge of H. Then y ∈ Γ(x) and x ∈ Γ(y). Since
G is an undirected graph we have x 6∈ Γ(x) and y 6∈ Γ(y). Thus Γ(x) 6= Γ(y). But this is
impossible because x, y ∈ X1 and Γ(x) = Γ(y). So, for all vertices x, y ∈ X1, we have {x, y}
isn’t an edge of H i.e., H ∼= N|X1|. 2

Let G = (V (G), E(G)) be a graph and X1, . . . , Xp be the equivalence classes for the
relation R on V (G). We define the equivalence classes graph G = (V (G), E(G)) of G where
V (G) = {X1, . . . , Xp} and {Xi, Xj} ∈ E(G) if, and only if, there are x ∈ Xi and y ∈ Xj

such that {x, y} is an edge in G.
In a similar way of that we have defined S(G) for the graph G , we can also define the

set, S(G), of all hermitian matrices B = [bij ] that verify:
For i 6= j we have bij 6= 0, if, and only if, {Xi, Xj} ∈ E(G) and for i = j, bii = 0 whenever

|Xi| > 1.

Remark that |V (G)
R | = |V (G)|. So, minB∈S(G)rank(B) ≤

∣∣∣V (G)
R

∣∣∣ .
Now we can establish a relation between the rank of the matrices of S(G) and of the

matrices of S(G).

Proposition 2.3 Let G = (V (G), E(G)) be a graph and G the equivalence classes graph of
G. If minA∈S(G)rank(A) =

∣∣∣V (G)
R

∣∣∣ then minB∈S(G)rank(B) =
∣∣∣V (G)

R

∣∣∣ i.e., all B ∈ S(G) are
non-singular.
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Proof Let X1, . . . , Xp be the equivalence classes for R. Suppose that minB∈S(G)rank(B) =

k <
∣∣∣V (G)

R

∣∣∣. Let C ∈ S(G), considering the ordering (X1, . . . , Xp), such that rankC = k.
Consider A = [aij ] the matrix of G, considering the ordering first the vertices of X1, after
the vertices of X2, ..., and last the vertices of Xp, and such that if xi ∈ Xr, xj ∈ Xl then
aij = crl. It is easy to prove that A ∈ S(G) and the rows of A corresponding to vertices in
the same equivalent class Xi, are equal.

Consequently, rank(A) = rank(B) = k <
∣∣∣V (G)

R

∣∣∣ which is impossible. Thus

minB∈S(G)rank(B) =
∣∣∣∣V (G)

R

∣∣∣∣ .
2

3 Equivalence classes graph

In this section we are going to search graphs G = (V (G), E(G)) such that

minA∈S(G) rank(A) =
∣∣∣∣V (G)

R

∣∣∣∣ .
Using the Proposition 2.3 we know that if G = (V (G), E(G)) is the equivalence classes graph
of G and there exists B ∈ S(G) singular, then minA∈S(G) rank(A) <

∣∣∣V (G)
R

∣∣∣.
The main result of this section is Theorem 3.6 where we describe all the graphs G whose

equivalence classes graph is a path and verify the condition

minA∈S(G) rank(A) =
∣∣∣∣V (G)

R

∣∣∣∣.
For this we have to define:

Definition 3.1 Let G = (V (G), E(G)) be a graph and x ∈ V (G). We call a branch

incident with x to a path of G which first vertex is adjacent to x,( x doesn’t belong to this
path), all the path vertices, except the last one, are vertices of degree two in G and the last
one is a vertex of degree one in G.

Observation: Remember that the length of a path is the number of edges of the path.

If x, y ∈ V (G) we denote by d(x, y) the minimum length of the paths between the
vertices x and y and we denote by dG(x) the degree of x in G.

Proposition 3.2 Let G = (V (G), E(G)) be a graph such that all B ∈ S(G) are invertible,
and let x ∈ E(G) be a vertex such that dG(x) ≥ 2. Then there exists, at most, one branch
incident with x of even length.
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Proof Suppose that there are two branches incident with x of even length which are y− z

and w − t. Let B be the adjacency matrix of G. Then B ∈ S(G). The submatrix B′ of B

whose rows and columns correspond to the vertex x, the vertices of the branch y − z and
the vertices of the branch w − t is the matrix

B′ =

x
y

...

z
w

...

t



0 1 0 · · · 0 0 1 0 · · · 0 0
1 0 1 · · · 0 0 0 0 · · · 0 0
0 1 0 · · · 0 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 0 0 · · · 0 0
0 0 0 · · · 1 0 0 0 · · · 0 0
1 0 0 · · · 0 0 0 1 · · · 0 0
0 0 0 · · · 0 0 1 0 · · · 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 0 · · · 0 1
0 0 0 · · · 0 0 0 0 · · · 1 0


If r is the length of the branch y − z, p is the length of the branch w− t and Ri denote the
i-row of B′, then B′ is a matrix with r + 1 + p + 1 + 1 = r + p + 3 rows. We can see easily
that

r+2
2∑

k=1

(−1)k+1R2k +

p+2
2∑

l=1

(−1)lRr+1+2l = 0.

So, B′ is singular and B either. That is impossible. Then G has, at most, an even length
branch incident with x. 2

Corollary 3.3 If G is a path such that all B ∈ S(G) are nonsingular, then G isn’t an even
length path. This is equivalent to say that there aren’t any even length path G such that all
B ∈ S(G) are nonsingular.

Proof Suppose that G is an even length path. If G is the null graph, N1, then the matrix
B = [0] ∈ S(G) and is nonsingular. So G is a non null even length path. If X1, X2, . . . , Xp is
a non null even length path (p is odd and p ≥ 3) then dG(X2) = 2 and X1 and X3 −Xp are
two branches incident with X2 of even length. By Proposition 3.2 we have a contradiction.
2

Now, we can ask: ”All graphs G = (V (G), E(G)) such that the equivalence classes graph
G of G is an odd length path verify

minA∈S(G)rank(A) =
∣∣∣∣V (G)

R

∣∣∣∣?”
The answer is no.

Example 3.4 The graph G ∼= K2 is a graph such that G ∼= G ∼= K2. Therefore G is an odd
length path, however

A =

[
1 1
1 1

]
∈ S(G)
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and rank(A) = 1 < 2 =
∣∣∣V (G)

R

∣∣∣ .

Lemma 3.5 Let G be a graph such that G is a path of length p− 1. Then

minA∈S(G)rank(A) ≥ p− 1.

Proof Let C ∈ S(G) such that rank(C) = minA∈S(G)rank(A).

If we reorder the rows and the columns of C in such way that the matrix C1 that we obtain
is the matrix C when we consider the ordering x11, · · · , x1r1 , x21, · · · , x2r2 , · · · , xp1, · · · , xprp

where Xi = {xi1, · · · , xiri} for i = 1, · · · , p are the equivalence classes for the relation R.
The submatrix C2 that corresponds to the rows 1, r1 +1, r1 +r2 +1, r1 +r2 +r3 +1, · · · , r1 +
r2 + r3 + · · ·+ rp + 1 of C is

C2 =


b1 a1 0 0 · · · 0 0
c2 b2 a2 0 · · · 0 0
0 c3 b3 a3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cp bp



where bi = [ di 0 · · · 0 ] ∈M1×ri , di ∈ lC, i = 1, . . . , p

ai = [ ai1 · · · airi+1 ] ∈M1×ri+1 , aij ∈ lC \ {0}, i = 1, . . . , p− 1
ci = [ ci1 · · · ciri−1 ] ∈M1×ri−1 , cij ∈ lC \ {0}, i = 2, . . . , p.

Easily, we can see that the rows 2, . . . , p of C2 are linearly independent. So rank(C2) ≥
p− 1. Consequently, rank(C) ≥ p− 1. 2

Theorem 3.6 Let G = (V (G), E(G)) be a graph such that G is an odd length path X1, . . . , Xp.
Then

minA∈S(G)rank(A) =
∣∣∣∣V (G)

R

∣∣∣∣ = p,

if, and only if, there aren’t two distinct vertices in G Xi and Xj such that i < j and
|Xi| = |Xj | = 1, d(Xi, Xj) is odd and d(X1, Xi) is even.

Proof

Necessity Suppose there exist two vertices Xi and Xj in V (G) such that |Xi| = |Xj | = 1,
i < j, d(Xi, Xj) is odd and d(X1, Xi) is even.
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Consider the matrix

B =

X1

...

Xi

...

Xj

...

Xp



0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 1 1 1 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 1 1 1 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1
0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0


Then B ∈ S(G). Since d(X1, Xp), d(Xi, Xj) are odd, d(X1, Xi) is even and d(X1, Xp) =

d(X1, Xi) + d(Xi, Xj) + d(Xj , Xp), then d(Xj , Xp) is even. Consequently, p is even, i is odd
and j is even. Let Rl be the l-row of B. Then

R1 =

i−1
2∑

k=1

(−1)k+1R2k+1 +

j−i−1
2∑

u=1

(−1)u+ i+1
2 (Ri+2u−1 + Ri+2u) +

p−j+2
2∑

t=1

(−1)t+ j
2 R2k+j−2.

So B is not invertible and by the Proposition 2.3 we have minA∈S(G)rank(A) <
∣∣∣V (G)

R

∣∣∣ =
p, which is impossible.

Consequently, there aren’t two distinct vertices of G Xi and Xj such that i < j and
|Xi| = |Xj | = 1, d(Xi, Xj) is odd and d(X1, Xi) is even.
Sufficiency

Suppose that there is a graph G = (V (G), E(G)) such that G = (V(G), E(G)) is a path
of odd length X1, · · · , Xp where does not exist two vertices Xi and Xj in G with i < j and
|Xi| = |Xj | = 1, d(Xi, Xj) is odd and d(X1, Xi) is even but minA∈S(G)rank(A) <

∣∣∣V (G)
R

∣∣∣ = p.

Let C ∈ S(G) such that rank(C) = minA∈S(G)rank(A) < p.
Using the Lemma 3.5, rank(C) ≥ p − 1. But by hypothesis, rank(C) < p, then

rank(C) = p− 1. Since G is a path of length p− 1 it is easy to prove that

minB∈S(G)rank(B) ≥ p− 1.

If we reorder the rows and the columns of C in such way that the matrix C1 that we obtain
is the matrix C when we consider the ordering x11, · · · , x1r1 , x21, · · · , x2r2 , · · · , xp1, · · · , xprp

where Xi = {xi1, · · · , xiri} for i = 1, · · · , p are the equivalence classes for the relation R.
The submatrix C2 that corresponds to the rows 1, r1 +1, r1 +r2 +1, r1 +r2 +r3 +1, · · · , r1 +
r2 + r3 + · · ·+ rp + 1 of C is

C2 =


b1 a1 0 0 · · · 0 0
c2 b2 a2 0 · · · 0 0
0 c3 b3 a3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cp bp


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where bi = [ di 0 · · · 0 ] ∈M1×ri , di ∈ lC, i = 1, . . . , p

ai = [ ai1 · · · airi+1 ] ∈M1×ri+1 , aij ∈ lC \ {0}, i = 1, . . . , p− 1
ci = [ ci1 · · · ciri−1 ] ∈M1×ri−1 , cij ∈ lC \ {0}, i = 2, . . . , p.

So, rank(C2) = p − 1, i.e., if Rl is the l-row of C2 then there exist α1, . . . , αp ∈ lC, not
all zeros , such that

R1 = α2R2 + . . . + αpRp.

Now we have to consider several cases:
Case 1: |X1| = r1 = 1.

If rp = 1 as though d(X1, Xp) is odd and d(X1, X1) is even, we have a contradiction. So,
|Xp| = rp > 1. For the same reason, all classes of even indices verify |X2| > 1, . . . , |Xp−2| > 1.

If we have dp 6= 0, as we have ap−1,rp 6= 0, and if we look to the elements that are
immediately above of the principal diagonal elements of C2,we can conclude that rank(C2) =
p, which is impossible. So dp = 0 and bp = 0 ∈M1×rp .

Since R1 = α2R2 + . . . + αpRp, ap−1 6= 0 and bp = 0 then p > 2, αp−1 = 0,

R1 = α2R2 + . . . + αp−2Rp−2 + αpRp

and αp−2ap−2 + αpcp = 0.

If we consider

C3 =


b1 a1 0 0 · · · 0 0
c2 b2 a2 0 · · · 0 0
0 c3 b3 a3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cp−2 bp−2


and R′

l denotes the l-row of C3, we will have

R′
1 = α2R

′
2 + . . . + αp−2R

′
p−2.

For the reason that we have previous mentioned dp−2 = 0 and also bp−2 = 0. Therefore,
p > 4 and αp−3 = 0.

In a same way we will conclude that b2 = 0, b4 = 0, . . . bp−2 = 0, bp = 0 and α3 = . . . =
αp−1 = 0. So

R1 = α2R2 + α4R4 + . . . + αpRp

which is impossible.
Case 2: |X1| = r1 > 1
In this case, d1 = 0, (if it isn’t, as we have c2r1 6= 0 then the equality R1 = α2R2 + . . . +

αpRp will be impossible). So b1 = 0 and α2 = 0. Consequently, p > 2 and a1 = α3c3. If we
consider

C4 =


b3 a3 0 0 · · · 0 0
c4 b4 a4 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cp bp


and R′

l denotes the l-row of C4, we will have

R′
1 = α4R

′
2 + . . . + αpR

′
p−2.
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If |X3| = r3 = 1 (pay attention that d(X1, X3) = 2 is even then d(X3, Xp) is odd)
and if we think analogously to the prior form (case 1) we conclude that is impossible. So,
|X3| = r3 > 1 and using a similar argument used before (case 2), we conclude that b3 = 0
and α4 = 0. If we repeat this process we obtain an absurd. Then,

minA∈S(G)rank(A) ≥ p.

Since the adjacency matrix of G is a matrix of rank p, then

minA∈S(G)rank(A) = p =
∣∣∣∣V (G)

R

∣∣∣∣ .

2

Example 3.7 Let G = (V (G), E(G)) be the graph
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u
u
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The equivalence classes for the relation R on V (G), vertices in G, are X1 = {x1, x2, x3},
X2 = {x4}, X3 = {x5, x6}, X4 = {x7, x8}, X5 = {x9} and X6 = {x10, x11}.

We have |X2| = |X5| = 1, d(X1, X2) is odd and d(X2, X5) is odd. There aren’t
another classes with cardinal one, then G verifies the previous Theorem conditions, so
minA∈S(G)rank(A) = 6.

Example 3.8 If G = (V (G), E(G)) is the graph
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As we can see, G is an even length path whose vertices are X1 = {x1}, X2 = {x2, x3, x4}
and X3 = {x5}, so by Corollary 3.3 minA∈S(G)rank(A) < 3. But, by Lemma 3.5, minA∈S(G) rank(A) ≥
2 then

minA∈S(G)rank(A) = 2.

Example 3.9 If G = (V (G), E(G)) = (X1∪X2, E(G)) is a complete bipartite graph differ-
ent from K1,1, G is the graph

u
uX1

X2

where |X1| > 1 or |X2| > 1, thus, by the previous Theorem we have

minA∈S(G)rank(A) = 2.

Corollary 3.10 Let G = (V (G), E(G)) be a graph such that G is the path X1, . . . , Xp. Then
minA∈S(G)rank(A) = p − 1 if, and only if, G is an even length path or G is an odd length
path and there are two distinct vertices in G Xi and Xj such that i < j and |Xi| = |Xj | = 1,
d(Xi, Xj) is odd and d(X1, Xi) is even.

Proof
Necessity

By Proposition 2.1, minA∈S(G)rank(A) ≤ p. If minA∈S(G)rank(A) = p − 1 and G is a
path then by Theorem 3.6, G is an even length path or G is an odd length path and there
are two distinct vertices in G, Xi and Xj such that i < j and |Xi| = |Xj | = 1, d(Xi, Xj) is
odd and d(X1, Xi) is even.
Sufficiency

10



If G is an even length path or G is an odd length path and there are two distinct vertices
in G, Xi and Xj such that i < j and |Xi| = |Xj | = 1, d(Xi, Xj) is odd and d(X1, Xi) is even
then using the Lemma 3.5, minA∈S(G)rank(A) ≥ p− 1. By the Corollary 3.3 and Theorem
3.6, minA∈S(G)rank(A) < p. Thus, minA∈S(G)rank(A) = p− 1.

2

Example 3.11 Consider G the path P4

u u u ux1 x2 x3 x4

Then we have G ∼= G. We also see that |X3| = 1, |X4| = 1, d(X3, X4) is odd and
d(X1, X3) is even. Then, for the previous Corollary,

minA∈S(G)rank(A) = 3 < 4.

4 Star Trees

Let T = (V (T ), E(T )) be a tree. We can ask what kind of trees T = (V (T ), E(T )) verify
the condition minA∈S(G)rank(A) =

∣∣∣V (T )
R

∣∣∣. In this section we are going to describe all trees
that verify the condition.

We define the following subsets of V (T ):

1) V2(T ) = {x ∈ V (T ) : dT (x) ≥ 2} whose subsets are

1.1) T0 = {x ∈ V2(T ) : ∀y ∈ Γ(x), dT (y) 6= 1}
1.2) T1 = {x ∈ V2(T ) : ∃1y ∈ Γ(x) such that dT (y) = 1}
1.3) T2 = V2(T ) \ (T0 ∪ T1)

2) V1(T ) = {z ∈ V (T ) : dT (z) = 1} whose subsets are

2.1) S1 = {z ∈ V1(T ) : Γ(z) ⊆ T1}
2.2) S2 = {z ∈ V1(T ) : Γ(z) ⊆ T2}
2.3) S0 = V1(T ) \ (S1 ∪ S2)

Observation: It is easy to see that

1) V (T ) = V1(T ) ∪ V2(T ) = S1 ∪ S2 ∪ S0 ∪ T0 ∪ T1 ∪ T2.

2) |S1| = |T1| .

Definition 4.1 A Star Tree is a tree T = (V (T ), E(T )) such that V2(T ) 6= ∅ and T0 =
T1 = ∅.

11



Observation 1: If T = (V (T ), E(T )) is a tree, there are three types of equivalence
classes for the relation R on V (T )

1− Singular classes whose element is a vertex of V2(T )

2− Singular classes whose element is a vertex of V1(T ) and it neighbor is a vertex of
(T1 ∪ S0).

3− Classes with more than one element where each element is a vertex of V1(T ) and all
are neighbors of the same vertex of V2(T ). The number of these classes is |T2|.

Observation 2: If T is a star tree there are not equivalence classes of type 2 and
|T2| = |V2(T )|.

Lemma 4.2 Let T = (V (T ), E(T )) be a star tree. Then

P (T ) = |V1(T )| − |V2(T )|.

Proof We will prove the result by induction in the number of elements of V2(T ).
If |V2(T )| = 1 then T is a star.
In this case, if we suppose that |V (T )| = k, we can easily see that P (T ) = (k− 3) + 1 =

(k − 1)− 1 = |V1(T )| − |V2(T )|. Thus the result holds for |V2(T )| = 1.
Suppose that the result is true for all star trees with |V2(T )| = t ≥ 1.
Let T be a star tree with |V2(T )| = t + 1.
Let z be a vertex of V2(T ) such that |Γ(z) ∩ V2(T )| = 1 (this vertex exists because T

doesn’t have cycles). Let T ′ be the subgraph induced by the vertices V (T )\({z}∪(Γ(z)∩S2))
and T ′′ be the subgraph induced by the vertices of ({z} ∪ (Γ(z) ∩ S2)). It is easy to see
that T ′ is a star tree, T ′′ is a star and |V2(T ′)| = t. By induction hypothesis, P (T ′) =
|V1(T ′)|−|V2(T ′)|. Consequently, P (T ) ≤ P (T ′)+P (T ′′) = |V1(T ′)|−|V2(T ′)|+|V1(T ′′)|−1 =
|V1(T )| − |V2(T )|.

Since T ′′ is a star with more than two vertices then P (T ′) ≤ P (T )− (|Γ(z)∩V1(T )|−1).
If P (T ) < |V1(T )| − |V2(T )| then

P (T
′
) < |V1(T )| − |V2(T )| − (|Γ(z) ∩ V1(T )| − 1) = |V1(T ′)| − |V2(T ′)|.

But by the induction hypothesis this is equal to P (T
′
). So we have a contradiction and

consequently, P (T ) = |V1(T )| − |V2(T )|.
2

Lemma 4.3 Let T = (V (T ), E(T )) be a tree, T2 = {x1, . . . , x|T2|} 6= ∅ and {yi, zi} ⊆
(Γ(xi)∩S2), |{yi, zi}| = 2, i ∈ {1, 2, . . . , |T2|}.There exists a path tree of T that realizes P (T ),
D1, . . . , D|T2|, D|T2|+1, . . . , DP (T ), such that Di is the path yi, xi, zi for i ∈ {1, 2, . . . , |T2|}.
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Proof Let E1, . . . , EP (T ), be a path tree of T that realizes P (T ) and suppose that x1 ∈ E1.
We can verify that dE1(x1) = 2. If dE1(x1) ≤ 1, since x1 ∈ T2 there is y1 ∈ Γ(x1) such that
dT (y1) = 1, that implies an existence of j, 2 ≤ j ≤ P (T ) such that Ej is the singular path
with the only vertex y1.

But, in these conditions, E1∪Ej , E2, . . . , Ej−1, Ej+1, . . . , EP (T ), is steel a path tree of T

with P (T )− 1 paths, which is impossible. So, dE1(x1) = 2. Let u, v vertices of E1 adjacent
to x1. If u /∈ S2 (adjacent to x1 with degree one in T ), then, since x1 ∈ T2, there are
y1, z1 ∈ (Γ(x1) ∩ S2) with |{y1, z1}| = 2.

Suppose that y1 6= v (otherwise we can do the same with z1). There is 2 ≤ r ≤ P (T ) such
that Er is the path y1. If E1\x1 = G1∪G2 then {G1∪{x1}∪{y1}}, G2, E2, . . . , Er−1, Er+1, . . . , EP (T )

is a path tree of T with P (T ) paths. If we think analogously with v we conclude that there
is F1, F2, . . . , FP (T ) a path tree of T such that F1 is the path y1, x1, z1. If we do the same
with each element of T2, we obtain the result.

2

Lemma 4.4 Let T = (V (T ), E(T )) be a tree such that V2(T ) = ∅ or T2 ⊂ V2(T ) 6= ∅, then

P (T ) > |S2| − |T2|.

Proof If T2 = ∅ then S2 = ∅ and trivially we have P (T ) > |S2| − |T2| = 0. Suppose that
T2 =

{
x1, . . . , x|T2|

}
6= ∅. Using the Lemma 4.3 there is D1, . . . , D|T2|, D|T2|+1, . . . , DP (T ), a

path tree of T such that, for i = 1, . . . , |T2|, Di is the path yi, xi, zi, with yi, zi ∈ (S2∩Γ(xi))
and |{yi, zi}| = 2.

Let M = S2\{y1, . . . , y|T2|, z1, . . . , z|T2|}. It’s easy to see that each t ∈ M is a path of the
previous tree path of T , D1, . . . , DP (T ). So, we can suppose that D|T2|+1, . . . , D|T2|+|M | are
these paths.

Since ∅ 6= T2 ⊂ V2(T ), by hypothesis, then T0 6= ∅ or T1 6= ∅. Thus

|T2|+ |M | < P (T ).

But, |M | = |S2| − 2|T2| which implies that

P (T ) > |S2| − |T2|.

2

Theorem 4.5 Let T = (V (T ), E(T )) be a tree. Then minA∈S(T ) rank(A) =
∣∣∣V (T )

R

∣∣∣ if, and
only if, T is a star tree.

Proof
Necessity

If minA∈S(T ) rank(A) =
∣∣∣V (T )

R

∣∣∣ then, by [3], we know that

minA∈S(T ) rank(A) = n− P (T ) =
∣∣∣∣V (T )

R

∣∣∣∣.
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If T is not a star tree then T2 ⊂ V2(T ) or V2(T ) = ∅ and P (T ) > |S2| − |T2|.
But, using the observation 1 we have∣∣∣∣V (T )

R

∣∣∣∣ = |T0|+ |T1|+ 2|T2|+ |S1|+ |S0|,

n = |T0|+ |T1|+ |T2|+ |S1|+ |S2|+ |S0|

and
P (T ) = n−minA∈S(T ) rank(A) = |S2| − |T2|.

By the Lemma 4.4, if T2 ⊂ V2(T ) or V2(T ) = ∅ then P (T ) > |S2| − |T2|. But we have
P (T ) = |S2| − |T2| then T2 = V2(T ) 6= ∅. So T is a star tree.
Sufficiency

Let T be a star tree with n vertices. By [3], we know that minA∈S(G)rank(A) = n−P (T ).
Using the Lemma 4.2 we have

minA∈S(G)rank(A) = n− |V1(T )|+ |V2(T )|.

Using the observation 2, ∣∣∣∣V (T )
R

∣∣∣∣ = |V2(T )|+ |V2(T )|

and
n = |V2(T )|+ |V1(T )|.

Thus
minA∈S(G)rank(A) = |V2(T )|+ |V1(T )| − |V1(T )|+ |V2(T )| =

∣∣∣∣V (T )
R

∣∣∣∣ .
2
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