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Abstract: W-Y. Ding proved a generalization of the Poincaré-Birkhoff
fixed point Theorem not requiring that the boundary curves of the anular
region to be circles and invariant. However the inner boundary is required
to be star-shaped with respect to the origin. We construct a counterexample
that shows that the star-shaped condition is necessary.

1 Introduction

The well known Poincaré-Birkhoff theorem states that any area-preserving
homeomorphism T of the annulus {(x, y) ∈ R

2 : 0 < R2
1 ≤ x2 + y2 ≤ R2

2} to
itself, keeping invariant both boundary circles, and rotating them in opposite
directions, has at least two fixed points. Poincaré stated this theorem [11]
and gave a proof for some particular cases. The theorem was subsequently
proved in its full generality by Birkhoff [1, 2] (see also [3]). In order to
make the theorem more suitable for applications, Ding [7] generalized it,
allowing the boundary curves not to be circles or invariant. More precisely,
he considered an annular region A bounded by an inner boundary C1 and
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an outer boundary C2, two simple closed curves. We denote by D1 and D2

to the open, simply connected regions of the plane bounded respectively by
C1 and C2, which are assumed to contain the origin. Consider the universal
covering space H = R×]0,+∞[= {(θ, r) ∈ R

2 : r > 0} of R
2\{(0, 0)}, and

the covering map P : H → R
2\{(0, 0)} provided by the polar coordinates

P (θ, r) = (r cos θ, r sin θ) , (θ, r) ∈ H .

Given a continuous map T : A ⊂ R
2\{(0, 0)} → R

2\{(0, 0)}, a second contin-
uous map T̃ : Ã = P−1(A) → H is said to be a lifting of T if P ◦ T̃ = T ◦P .

Theorem 1.0 (Ding, [7]). Let T : A ⊂ R
2 → T (A) ⊂ R

2\{(0, 0)} be an
area-preserving homeomorphism. Suppose that:

(i) the inner boundary C1 is star-shaped about the origin;

(ii) T has a lifting T̃ given by

T̃ (θ, r) = (θ + g(θ, r), f(θ, r))

such that g(θ, r) > 0 on C̃1 = P−1(C1) and g(θ, r) < 0 on C̃2 =
P−1(C2);

(iii) there exists an area-preserving homeomorphism T0 : D̄2 → R
2 which

satisfies T0

∣∣
A

= T and (0, 0) ∈ T0(D1).

Then T̃ has at least two fixed points such that their images under P are two
different fixed points of T .

This theorem has been widely applied, see for instance [4, 5, 6, 8, 9, 12] and
the references therein. All of its assumptions were shown to be necessary in
[7], except condition (i). Quoting Ding [7]: ‘The condition (i) of the theorem
is crucial for our proof. However, we doubt of its necessity for the theorem’.
Subsequently, there have been efforts [10] in the literature to remove this
assumption from Theorem 1.0. The aim of this paper is to construct a
counterexample that shows that this condition is necessary.

As before, we denote by C1 and C2 the inner and outer boundaries of the
annular region A, which are assumed to be simple closed curves. They de-
limit, respectively, simply connected open regions D1 ⊂ D2 ⊂ R

2 containing
the origin.

Theorem 1.1. It is possible to find closed curves C1 and C2 in the conditions
above and an area-preserving C∞ diffeomorphism T : A ⊂ R

2 → T (A) ⊂
R

2\{(0, 0)} verifying (ii) and (iii), which has not fixed points.

2



First of all we would like to show in an intuitive basis why it is rea-
sonable to think that the star-shaped condition is necessary. Consider an
area-preserving homeomorphism T : A ⊂ R

2 → T (A) ⊂ R
2\{(0, 0)} in the

conditions of Ding’s theorem. Denote by Γ to the set of points of A that are
radially moved by T , i.e. Γ = {(x, y) ∈ A : g(θ, r) = 0 if (θ, r) ∈ P−1(x, y)}.
Clearly all fixed points of T are in Γ. On the other hand, the twist condition
(ii) implies that Γ should intersect every continuous curve starting from C1

and ending on C2. It seems reasonable to think that, in some cases, Γ will
be a Jordan curve whose interior region contains the origin, as pictured in
Fig.1 a).

Figure 1:

Assume for a moment that Γ is a star-shaped Jordan curve. In this case,
the inequality

f(θ, r) > r for all (θ, r) ∈ P−1(Γ) , (1)

would imply Γ to be contained into the interior region of its image, which
is not possible because T is area-preserving. Similarly, it cannot happen
that f(θ, r) < r for all (θ, r) ∈ P−1(Γ) and we get at least two points P1 =
P (θ1, r1) and P2 = P (θ2, r2) in Γ with f(θi, ri) = ri, or, what is the same,
two fixed points of T as predicted by Theorem 1.0, see Fig. 1 b).

Observe that the last reasoning was only possible because we assumed
that Γ is star-shaped. If Γ is not star-shaped about the origin, then (1) does
not imply Γ to be contained inside the interior region of its image, and thus,
it does not contradict the area preserving condition of T : A ⊂ R

2 → R
2, see

Fig. 2 a). On the other hand, since g does not vanish outside Γ, condition
(ii) implies that g(θ, r) > 0 for any (θ, r) in the interior region delimited by
this curve, while g(θ, r) < 0 in the exterior, meaning that the restriction of T
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Figure 2:

to some small tubular neighborhood A of Γ in which f(θ, r) > r provides the
example claimed by Theorem 1.1, see Fig. 2 b). We devote the remaining of
the paper to make precise the details of this construction.

Before ending this introduction, we want to express our gratitude to Prof.
Rafael Ortega, who read the first versions of this work, contributed to clarify
it, put us in contact with each other, and encouraged us to write the paper.

2 Proof of Theorem 1.1

The lifting T̃ of the diffeomorphism T of the counterexample will be a time
map of the flux of a suitable autonomous Hamiltonian system. The associated
Hamiltonian will be defined on the universal covering space H = R×]0,+∞[
and 2π periodic in its first variable θ.

It will be convenient to establish some terminology. Given some subset
B ⊂ R

2\{(0, 0)}, we shall denote by B̃ to its lifting to H, i.e., B̃ = P−1(B). It
remains invariant after being translated by the vector (2π, 0) i.e. B̃+(2π, 0) =
B̃, and, throughout this paper, the subsets of H with this property will be
simply called 2π-periodic. Observe that a set is 2π-periodic if and only if it
coincides with the lifting of its image by P .

For instance, one can check that Γ ⊂ R
2\{(0, 0)} is a closed curve for

which the origin (0, 0) belongs to the bounded component of R
2\Γ if and

only if Γ̃ = P−1(Γ) is a connected and 2π-periodic curve in H. This fact
motivates us to consider this class of curves. Given some connected and 2π-
periodic curve Γ̃ ⊂ H, the function h : H → R will be said to change sign
around Γ̃ if there exists a 2π-periodic neighborhood U ⊂ H of Γ̃ such that
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U\Γ̃ has two connected components U1 and U2, and, further, either h > 0 on
U1 and h < 0 on U2, or the reversed inequalities hold. Since Γ̃ = (∂U1)∩(∂U2),
h must be constantly zero on Γ̃.

Lemma 2.1. There exist a C∞(H) function H : H → R with

H(θ + 2π, r) = H(θ, r) , for any (θ, r) ∈ H , (2)

and a connected, smooth, 2π-periodic curve Γ̃ ⊂ H such that

(a) ∂rH changes sign around Γ̃.

(b) ∂θH < 0 on Γ̃.

The construction of such a function H is postponed to Section 3. Let us
rely now on this result to complete the proof of Theorem 1.1.

After multiplying H = H(θ, r) by some cut-off function of r with compact
support contained in ]0,∞[, is not restrictive to assume that H vanishes
outside the horizontal band R×]1/M,M [ for some M > 0. In this case, the
support of H is compact on the cylinder (R/2πZ)×]0,∞[ and the solutions
of the Hamiltonian system {

θ′ = ∂rH(θ, r)
r′ = −∂θH(θ, r)

(3)

are defined, and remain in H, for all time. Given ε > 0 we consider the
associated time map T̃ε : H → H, defined by

T̃ε(θ, r) = (φ1(ε; θ, r), φ2(ε; θ, r)) ,

where (φ1(·; θ, r), φ2(·; θ, r)) denotes the solution of (3) starting from the point
(θ, r) at time t = 0. We recall that, as a consequence of Liouville’s theorem,
these mappings are area-preserving. They are indeed C∞ diffeomorphisms
which verify T̃ε(θ + 2π, r) = T̃ε(θ, r) + (2π, 0) for any (θ, r) ∈ H and co-
incide with the identity outside the horizontal band R×]1/M,M [. Con-
sequently, they can be seen as liftings of area-preserving diffeomorphisms
Tε : R

2\{(0, 0)} → R
2\{(0, 0)} coinciding with the identity on some neigh-

borhood of the origin and on some neighborhood of infinity.
Since, by assumption, ∂rH changes sign around Γ̃, we can find a 2π-

periodic open neighborhood U ⊂ H of Γ̃ such that U\Γ̃ has two connected
components U1 and U2 with ∂rH > 0 on U1 and ∂rH < 0 on U2. After
possibly replacing H by −H , we may further assume that U1 is the lower
connected component of U\Γ̃ and that U2 is the upper one. Elementary
arguments based in the use of tubular neighborhoods of Γ̃ show that it is
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possible to find 2π-periodic and connected curves C̃i ⊂ Ui close enough to Γ̃
so that ∂θH < 0 on the closure of the open region Ã of H bounded by these
curves. They are destined to be the liftings in H of the closed curves Ci and
the annular region A which Theorem 1.1 refers to. Fix now some ε∗ > 0
small enough so that

(c) ∂tφ1(t; θ, r) = ∂rH(φ1(t; θ, r), φ2(t; θ, r)) > 0 for any (θ, r) ∈ C̃1 and
any t ∈ [0, ε∗].

(d) ∂tφ1(t; θ, r) = ∂rH(φ1(t; θ, r), φ2(t; θ, r)) < 0 for any (θ, r) ∈ C̃2 and
any t ∈ [0, ε∗].

(e) ∂tφ2(t; θ, r) = −∂θH(φ1(t; θ, r), φ2(t; θ, r)) > 0 if (θ, r) belong to the
closure of Ã and t ∈ [0, ε∗].

Finally, define

T̃ (θ, r) = T̃ε∗(θ, r) = (φ1(ε∗; θ, r), φ2(ε∗; θ, r)) = (θ + g(θ, r), f(θ, r)),

and observe that

g(θ, r) = φ1(ε∗; θ, r) − φ1(0; θ, r) =

∫ ε∗

0

∂tφ1(t; θ, r) dt ,

which, by virtue of (c) and (d), is positive if (θ, r) ∈ C̃1 and negative if (θ, r) ∈
C̃2, meaning that T̃ rotates both boundary curves in opposite directions.
Finally, condition (e) implies

f(θ, r) − r = φ2(ε∗; θ, r) − φ2(0; θ, r) =

∫ ε∗

0

∂tφ2(t; θ, r) dt > 0 ,

for any (θ, r) in the closure of Ã, and we deduce that neither T̃ has fixed
points on this set nor the diffeomorphism T : R

2\{(0, 0)} → R
2\{(0, 0)}

from which it is the lifting, has fixed points on the closure of the annular
region A = P (Ã).

3 Constructing the Hamiltonian

We devote this Section to construct the function H : H → R and the curve
Γ̃ ⊂ H whose existence was stated in Lemma 2.1. Observe that Γ̃ cannot be
the graph of a function of θ, since (a) and (b) would imply H to be strictly
decreasing along Γ̃, contradicting its periodicity in the variable θ. What is
the same, the projection Γ = P (Γ̃) of this curve on R

2\{(0, 0)} cannot be
star-shaped with respect to the origin.
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We consider the following 2π-periodic subsets of the covering space H
(see Fig. 3):

L− :=
(
{−2π/3}×]0, 2] ∪ [−2π/3, π/3] × {2}

)
+ (2π, 0)Z ,

L+ := {(−t, 1/r) : (t, r) ∈ L−} .

Observe that they do not disconnect H i.e. the open set W := H\(L−∪L+)

Figure 3:

is still connected. Consequently, it is arcwise connected i.e. each two points
of W may be joined by means of a curve. Lemma 3.1 states the existence of
a smooth curves Γ̃ travelling through W (see Fig. 3):

Lemma 3.1. There exists a C∞, connected and simple curve Γ̃ ⊂ W which
is 2π-periodic.

The construction of such a curve is elementary and will not be needed
in our subsequent arguments, so that it will be skipped. Choose now some
smooth parametrization γ : R → Γ̃ ⊂ H with γ′ 
= 0 on R and γ(t + 2π) =
γ(t) + (2π, 0) for any t ∈ R. It can be seen as chart from the circumference
R/2πZ into the projection of Γ̃ on the cylinder (R/2πZ)×]0,+∞[. Now,
the compactness of R/2πZ makes it possible to construct uniform tubular
neighborhoods for this chart. This means that, if ε > 0 is small enough, the
function ψ : R×] − ε, ε[→ R

2 defined by

ψ(t, x) := γ(t) + x

(
0 −1
1 0

)
γ′(t) ,
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is a C∞ diffeomorphism into its image, which, after possibly replacing ε by
some smaller number, we may assume contained in W . We define

U = ψ(R×] − ε/2, ε/2[) , (4)

which is a 2π-periodic and open subset of H. Moreover, Ū ⊂ H. Observe
that Γ̃ = γ(R) = {ψ(t, 0) : t ∈ R} is connected and U\Γ̃ has two connected
components,

U1 := {ψ(t, x) : t ∈ R, x ∈] − ε/2, 0[} , U2 := {ψ(t, x) : t ∈ R, x ∈]0, ε/2[} .

We shall start by showing ‘half’ of Lemma 3:

Lemma 3.2. There exists a C∞ function H1 : H → R such that

1. H1(θ + 2π, r) = H1(θ, r) for any (θ, r) ∈ H.

2. ∂rH1 > 0 on U1 and ∂rH1 < 0 on U2 .

Proof. Choose some C∞, cut-off function m : R → R with

m ≡ 1 in [−1/2, 1/2], m ≡ 0 on some neighborhood of R\] − 1, 1[ , (5)

and define h1 : R × [0,+∞[→ R by

h1(ψ(t, x)) := −xm(x/ε) if (t, x) ∈ R×] − ε, ε[ ,

h1(θ, r) := 0 if (θ, r) 
∈ ψ(R×] − ε, ε[) .

Observe that h1 is a C∞ function on the upper half plane R × [0,+∞[
which is 2π-periodic in its first variable and verifies h1 > 0 on U1 and h1 < 0
on U2. Now, it suffices to define

H1(θ, r) :=

∫ r

0

h1(θ, s) ds , (θ, r) ∈ H .

Observe that no horizontal straight line R × {r} is contained in W . For
this reason, it is possible to find functions H2 : W → R which combine the
periodicity with respect to θ with the positivity of the partial derivative ∂θH .
We show it below:

Lemma 3.3. There exists a C∞ function H2 : W → R such that

1. H2(θ + 2π, r) = H2(θ, r) for any (θ, r) ∈W .
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2. ∂θH2 ≥ 1 on W .

3. ∂rH2 ≡ 0 on W .

Proof. We start by defining H2 on the set

S+ :=] − 4π/3,−2π/3[×]0,+∞[∪[−2π/3, 2π/3[×]2,+∞[∪{−4π/3}×]0, 1/2[

by the rule H2(θ, r) := θ, see Fig. 4 a).
Choose next some C∞ function q : [−2π/3, 2π/3] → R with q′ ≥ 1 and

q(θ) =

{
θ − 2π if − 2π/3 ≤ θ ≤ −π/3 ,
θ if π/3 ≤ θ ≤ 2π/3 ,

(see Fig. 4 b)), and defineH2 on S0 :=]−2π/3, 2π/3[×]1/2, 2[∪]π/3, 2π/3[×{2}
by H2(θ, r) := q(θ).

Figure 4:

Finally, let H2 be defined on

S− :=] − 2π/3, 2π/3[×]0, 1/2[∪] − 2π/3,−π/3[×{1/2}
by the rule H2(θ, r) := θ − 2π.

Observe that S+ ∪ S0 ∪ S− = W ∩ (
[−4π/3, 2π/3[×]0,+∞[

)
and H2 can

be uniquely extended to H in such a way that 1. holds. Moreover, this
extension is C∞ and it satisfies 2. and 3. because these conditions do hold
in S+, S0, and S−.
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Of course, Lemma 3.3 does not hold if the set W is replaced by H. How-
ever, multiplying H2 by a convenient cut-off function, we may get a similar
result on H if 2. and 3. are required only locally near Γ̃. In the next corollary
U denotes the tubular neighborhood of Γ̃ constructed in (4):

Corollary 3.4. There exists a C∞ function H3 : H → R such that

1. H3(θ + 2π, r) = H3(θ, r), for any (θ, r) ∈ H .

2. ∂θH3 ≥ 1 on U .

3. ∂rH3 ≡ 0 on U .

Proof. Let the C∞ function m : R → R be chosen as in (5), and consider the
C∞ mapping ρ : H → R defined by

ρ(ψ(t, x)) = m(x/ε) if (t, x) ∈ R×] − ε, ε[ ,

ρ(θ, r) = 0 if (θ, r) 
∈ ψ(R×] − ε, ε[) .

Now, observe that H3(θ, r) := H2(θ, r)ρ(θ, r) is a C∞ function on H which
coincides with H2 on U . Conditions 1., 2. and 3. follow.

We are now ready to prove Lemma 2.1. Together with the discussion
carried out in Section 2, this will complete the proof of Theorem 1.1:

Proof of Lemma 2.1. Let the function H1 : H → R be given by Lemma 3.2.
When seen on the cylinder (R/2πZ) × R, the curve Γ̃ becomes compact, so
that ∂θH1 is bounded there. Accordingly, we can find a constant k > 0 such
that ∂θH1 < k on Γ̃. Let the function H3 : H → R be as given by Corollary
3.4 and define H := H1 − kH3. Then, ∂θH = ∂θH1 − k∂θH3 < 0 on Γ̃, while
∂rH = ∂rH1 changes sign around this curve. The result follows.
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