On divisors of pseudovarieties generated by some classes of full transformation semigroups Vítor H. Fernandes* Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Monte da Caparica 2829-516 Caparica Portugal E-mail: vhf@fct.unl.pt #### **Abstract** In this paper we present a division theorem for the pseudovariety of semigroups OD [OR] generated by all semigroups of order-preserving or order-reversing [orientation-preserving or orientation-reversing] full transformations on a finite chain. **2000** Mathematics Subject Classification: 20M20, 20M07. **Keywords:** transformations, order-preserving, orientation-preserving, order-reversing, orientation-reversing, pseudovarieties. ## 1 Introduction and preliminaries In the 1987 "Szeged International Semigroup Colloquium" J.-E. Pin asked for an effective description of the pseudovariety (i.e. an algorithm to decide whether or not a finite semigroup belongs to the pseudovariety) of semigroups O generated by all semigroups of order-preserving full transformations on a finite chain. This problem only had essential progresses after 1995. First, Higgins [23] proved that O is self-dual and does not contain all \Re -trivial semigroups (and so O is properly contained in A, the pseudovariety of all finite aperiodic semigroups), although every finite band belongs to O. Next, Vernitskii and Volkov [28] generalised Higgins's result by showing that every finite semigroup whose idempotents form an ideal is in O and in [11] the author proved that the pseudovariety of semigroups ^{*} The author was (partially) supported by FCT and FEDER whithin the project POCTI-ISFL-1-143 of the Centro de Álgebra da Universidade de Lisboa. POI generated by all semigroups of injective order-preserving partial transformations on a finite chain is a (proper) subpseudovariety of O. On the other hand, Almeida and Volkov [1] showed that the interval [O,A] of the lattice of all pseudovarieties of semigroups has the cardinality of the continuum and Repnitskii and Volkov [27] proved that O is not finitely based. In fact, moreover, Repnitskii and Volkov proved in [27] that any pseudovariety of semigroups V such that $POI \subseteq V \subseteq O \vee R \vee L$, where R and L are the pseudovarieties of semigroups of all \mathcal{R} -trivial semigroups and of all \mathcal{L} -trivial semigroups, respectively, is not finitely based. Another contribution to the resolution of Pin's problem was given by the author [17] who showed that O contains all semidirect products of a chain (considered as a semilattice) by a semigroup of injective order-preserving partial transformations on a finite chain. Nevertheless, Pin's question is still unanswered. The pseudovariety OP generated by all semigroups of orientation-preserving full transformations on a finite chain was studied by Catarino and Higgins in [6]. They showed that OP is self-dual and contains the join of O with the pseudovariety of all finite commutative monoids. Moreover, Catarino and Higgins also proved in [6] that the interval between these two pseudovarieties contains a chain of pseudovarieties isomorphic to the chain of real numbers. A division theorem for OP was presented by the author in [16]. He proved that the pseudovariety POPI generated by all semigroups of injective orientation-preserving partial transformations on a finite chain is a (proper) subpseudovariety of OP. Semigroups of order-preserving transformations have long been considered in the literature. In 1962, Aĭzenštat [2] and Popova [26] exhibited presentations for \mathcal{O}_n , the monoid of all order-preserving full transformations on a chain with n elements, and for \mathcal{PO}_n , the monoid of all order-preserving partial transformations on a chain with n elements. Some years later, in 1971, Howie [24] studied some combinatorial and algebraic properties of \mathcal{O}_n and, in 1992, Gomes and Howie [22] revisited the monoids \mathcal{O}_n and \mathcal{PO}_n . More recently, the injective counterpart of \mathcal{O}_n , i.e. the monoid \mathcal{POI}_n of all injective members of \mathcal{PO}_n , has been object of study by the author in several papers [11, 12, 14, 15, 17] and also by Cowan and Reilly [8]. On the other hand, the notion of an orientation-preserving transformation was introduced by McAlister in [25] and, independently, by Catarino and Higgins in [5]. The monoid \mathcal{OP}_n , of all orientation-preserving full transformations on a chain with n elements, was also considered by Catarino in [4] and by Arthur and Ruškuc in [3]. The injective counterpart of \mathcal{OP}_n , i.e. the monoid \mathcal{POPI}_n of all injective orientation-preserving partial transformations on a chain with n elements, was studied by the first author in [13, 16]. Recently, the author together with Gomes and Jesus [18] exhibited presentations for the monoids \mathcal{PODI}_n of all injective order-preserving or order-reversing partial transformations on a chain with n elements, and for the monoid \mathcal{PORI}_n of all injective orientation-preserving or orientation-reversing partial transformations on a chain with n elements. The same authors in [19] also gave presentations for the monoid \mathcal{OD}_n of all order-preserving or order-reversing full transformations on a chain with n element; for the monoid \mathcal{POD}_n of all order-preserving or order-reversing partial transformations on a chain with n elements; for the monoid \mathcal{POP}_n of all orientation-preserving partial transformations on a chain with n elements; and for the monoid \mathcal{POR}_n of all orientation-preserving or orientation-reversing partial transformations on a chain with n elements. The lattice of the congruences of some of these monoids were studied in [20, 21] by the same authors. Together with Delgado the author [9, 10] have computed the abelian kernels of the monoids \mathcal{POI}_n , \mathcal{POPI}_n , \mathcal{PODI}_n and \mathcal{PORI}_n . More recently, the same authors together with Cordeiro determined all relative abelian kernels of these four monoids [7]. Next, we will introduce or precise some definitions. Denote by \mathcal{PT}_n [\mathcal{T}_n] the monoid of all partial [full] transformations of a set with n elements, say $X_n = \{1, 2, ..., n\}$, and by \mathcal{I}_n the symmetric inverse monoid, i.e. the submonoid of \mathcal{PT}_n of all injective (partial) transformations of X_n . From now on, we consider X_n as a chain with the usual order: $X_n = \{1 < 2 < \cdots < n\}$. We say that a transformation s in \mathcal{PT}_n is order-preserving [order-reversing] if, for all $x, y \in \text{Dom}(s), x \leq y$ implies $xs \leq ys$ [$xs \geq ys$]. Clearly, the product of two order-preserving transformations or of two order-reversing transformations is order-preserving and the product of an order-preserving transformation by an order-reversing transformation is order-reversing. Denote by \mathcal{O}_n [\mathcal{POI}_n] the submonoid of \mathcal{T}_n [\mathcal{I}_n] whose elements are order-preserving and by \mathcal{OD}_n [\mathcal{PODI}_n] the submonoid of \mathcal{T}_n [\mathcal{I}_n] whose elements are either order-preserving or order-reversing. Next, let $a=(a_1,a_2,\ldots,a_t)$ be a sequence of t $(t\geq 0)$ elements from the chain X_n . We say that a is cyclic [anti-cyclic] if there exists no more than one index $i\in\{1,\ldots,t\}$ such that $a_i>a_{i+1}$ $[a_i< a_{i+1}]$, where a_{t+1} denotes a_1 . Let $s\in\mathcal{PT}_n$ and suppose that $Dom(s)=\{a_1,\ldots,a_t\}$, with $t\geq 0$ and $a_1<\cdots< a_t$. We say that s is an orientation-preserving [orientation-reversing] transformation if the sequence of its images (a_1s,\ldots,a_ts) is cyclic [anti-cyclic]. It is also clear that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an orientation-preserving transformation by an orientation-reversing transformation is orientation-reversing. Denote by \mathcal{OP}_n [\mathcal{POPI}_n] the submonoid of \mathcal{T}_n [\mathcal{I}_n] whose elements are orientation-preserving and by \mathcal{OR}_n [\mathcal{PORI}_n] the submonoid of \mathcal{T}_n [\mathcal{I}_n] whose elements are either orientation-preserving or orientation-reversing. The following diagram, with respect to the inclusion relation, clarifies the relationship between these various monoids: (1 denotes the trivial monoid, C_n the cyclic group of order n and S_n the symmetric group on X_n). Recall that a pseudovariety of semigroups is a class of finite semigroups closed under formation of finite direct products, subsemigroups and homomorphic images. Let S and T be two semigroups. A division of semigroups $\tau: S \longrightarrow T$ is a relation from S into T (i.e. a function from S into the power set of T) such that: - For all $s \in S$, $(s)\tau \neq \emptyset$, i.e. s is totally defined; - For all $s_1, s_2 \in S$, $(s_1)\tau(s_2)\tau \subseteq (s_1s_2)\tau$, i.e. s is a relation of semigroups; and - For all $s_1, s_2 \in S$, $(s_1)\tau \cap (s_2)\tau \neq \emptyset \implies s_1 = s_2$, i.e. s is injective. We say that S divides T if there exists a division of semigroups $\tau: S \longrightarrow T$. Notice that, given a family \mathcal{X} of finite semigroups, it is easy to show that the pseudovariety of semigroups generated by \mathcal{X} is the class of all semigroups that divide a finite direct product of members of \mathcal{X} . With the above notation, we have that: - O is the pseudovariety of semigroups generated by $\{\mathcal{O}_n \mid n \in \mathbb{N}\};$ - POI is the pseudovariety of semigroups generated by $\{\mathcal{POI}_n \mid n \in \mathbb{N}\};$ - OP is the pseudovariety of semigroups generated by $\{\mathcal{OP}_n \mid n \in \mathbb{N}\}$; and - POPI is the pseudovariety of semigroups generated by $\{\mathcal{POPI}_n \mid n \in \mathbb{N}\}$. Next, also define: - OD as the pseudovariety of semigroups generated by $\{\mathcal{OD}_n \mid n \in \mathbb{N}\};$ - PODI as the pseudovariety of semigroups generated by $\{\mathcal{PODI}_n \mid n \in \mathbb{N}\}$; - OR as the pseudovariety of semigroups generated by $\{\mathcal{OR}_n \mid n \in \mathbb{N}\}$; and - PORI as the pseudovariety of semigroups generated by $\{\mathcal{PORI}_n \mid n \in \mathbb{N}\}.$ Now, we can state the main results of this paper, which are the analogues of the result presented by the author in [11] (and in [16]). **Theorem 1** Every semigroup of injective order-preserving or order-reversing partial transformations on a finite chain belongs to OD. **Theorem 2** Every semigroup of injective orientation-preserving or orientation-reversing partial transformations on a finite chain belongs to OR. ## 2 The proofs Let X be a finite set and let Y be a subset of X. Denote by $\mathcal{PT}(X)$ $[\mathcal{PT}(Y)]$ the monoid of all partial transformations of X [Y]. Let S be a subsemigroup of $\mathcal{PT}(Y)$ and let T be a subsemigroup of $\mathcal{PT}(X)$. Define a relation $\tau: S \longrightarrow T$ by $$(s)\tau = \{t \in T \mid Yt^{-1} \subseteq Y \text{ and } t|_{Yt^{-1}} = s\},\$$ for all $s \in S$. Notice that, Yt^{-1} denotes the set $\{x \in Dom(t) \mid (x)t \in Y\}$ and $t|_{Yt^{-1}}$ the restriction of the map t to the set Yt^{-1} . Hence, we have: **Proposition 2.1** With the foregoing, $\tau: S \longrightarrow T$ is an injective relation of semigroups. Moreover, if τ is completely defined then S divides T. **Proof.** First, notice that τ is clearly an injective relation. Indeed, given $s_1, s_2 \in S$ such that $(s_1)\tau \cap (s_2)\tau \neq \emptyset$, we can take $t \in (s_1)\tau \cap (s_2)\tau$ and so, in particular, we have $s_1 = t|_{Yt^{-1}} = s_2$. Now, let $s_1, s_2 \in S$. We will prove that $(s_1)\tau(s_2)\tau \subseteq (s_1s_2)\tau$. If $(s_1)\tau = \emptyset$ or $(s_2)\tau = \emptyset$ then this inclusion is obvious. Thus, we can suppose that $(s_1)\tau \neq \emptyset$ and $(s_2)\tau \neq \emptyset$. Let $t_1 \in (s_1)\tau$ and $t_2 \in (s_2)\tau$. Then $Yt_1^{-1} \subseteq Y$, $Yt_2^{-1} \subseteq Y$, $t_1|_{Yt_1^{-1}} = s_1$ and $t_2|_{Yt_2^{-1}} = s_2$. In order to prove that $t_1t_2 \in (s_1s_2)\tau$, we must show that $Y(t_1t_2)^{-1} \subseteq Y$ and $(t_1t_2)|_{Y(t_1t_2)^{-1}} = s_1s_2$. Regarding the first condition, let $x \in Y(t_1t_2)^{-1}$. Then $(x)(t_1t_2) \in Y$, i.e. $((x)t_1)t_2 \in Y$, whence $(x)t_1 \in Yt_2^{-1} \subseteq Y$, i.e. $(x)t_1 \in Y$. It follows that $x \in Yt_1^{-1} \subseteq Y$ and so $x \in Y$. Hence, $Y(t_1t_2)^{-1} \subseteq Y$. Next, we want to show that $(t_1t_2)|_{Y(t_1t_2)^{-1}} = s_1s_2$. We begin by proving that $(t_1t_2)|_{Y(t_1t_2)^{-1}}$ and s_1s_2 have the same domain. Let $x \in \text{Dom}(s_1s_2)$. Then $x \in \text{Dom}(s_1) = \text{Dom}(t_1) \cap Yt_1^{-1}$ and $(x)s_1 \in \text{Dom}(s_2) = \text{Dom}(t_2) \cap Yt_2^{-1}$. Thus $(x)t_1 = (x)s_1$, whence $(x)t_1 \in \text{Dom}(t_2) \cap Yt_2^{-1}$ and so $((x)t_1)t_2 \in Y$, i.e. $x \in Y(t_1t_2)^{-1}$. Hence $x \in \text{Dom}(t_1t_2) \cap Y(t_1t_2)^{-1}$ and so $((x)t_1)t_2 \in Y$, i.e. $(x)(t_1t_2)^{-1} = \text{Dom}((t_1t_2)|_{Y(t_1t_2)^{-1}})$. Then $(x) \in \text{Dom}(t_1)$, $(x)t_1 \in \text{Dom}(t_2)$ and $(x) \in Y(t_1t_2)^{-1}$, i.e. $(x)(t_1t_2) \in Y$. Hence $(x)t_1 \in Yt_2^{-1} \subseteq Y$ and so $(x)t_1 \in Y$, whence $(x) \in Yt_1^{-1}$. Then, we have $(x) \in \text{Dom}(t_1) \cap Yt_1^{-1} = \text{Dom}(s_1)$, from which it follows that $(x)t_1 = (x)s_1$, and so $(x)s_1 \in \text{Dom}(t_2) \cap Yt_2^{-1} = \text{Dom}(s_2)$. Thus $(x) \in \text{Dom}(s_1s_2)$ and so $(x)t_1 \in Yt_1^{-1} = \text{Dom}(s_1s_2)$. Hence $(x)t_1 \in Yt_1^{-1} = \text{Dom}(s_1s_2)$. Finally, if $(x) \in \text{Dom}(t_1) = (x)t_1^{-1} = \text{Dom}(t_1) = (x)t_1^{-1} (x)t_1^$ ## The proof of Theorem 1 Let us consider the chain $X = \{\overline{0} < 1 < \overline{1} < 2 < \overline{2} < \cdots < n < \overline{n}\}$ (with 2n + 1 elements) and its subchain $Y = \{1 < 2 < \cdots < n\}$. Consider the semigroups \mathcal{OD}_{2n+1} and \mathcal{PODI}_n built over X and Y, respectively, and the relation $\tau : \mathcal{PODI}_n \longrightarrow \mathcal{OD}_{2n+1}$ defined by $$(s)\tau = \{t \in \mathcal{OD}_{2n+1} \mid Yt^{-1} \subseteq Y \text{ and } t|_{Yt^{-1}} = s\},$$ for all $s \in \mathcal{PODI}_n$. We claim that τ is completely defined. Indeed, for an element $s \in \mathcal{PODI}_n$ such that $Dom(s) = \{i_1 < i_2 < \dots < i_k\} \ (1 \le k \le n)$, define $\overline{s} \in \mathcal{OD}_{2n+1}$ by $$(x)\overline{s} = \begin{cases} \overline{0} & \text{if } \overline{0} \leq x < i_1 \\ \frac{(i_p)s}{(i_p)s} & \text{if } x = i_p, \text{ for some } 1 \leq p \leq k \\ \overline{(i_p)s} & \text{if } i_p < x < i_{p+1}, \text{ for some } 1 \leq p \leq k-1 \\ \overline{n} & \text{if } i_k < x \leq \overline{n} \end{cases}$$ if s is order-preserving, and by $$(x)\overline{s} = \begin{cases} \overline{n} & \text{if } \overline{0} \le x < i_1\\ \frac{(i_p)s}{(i_{p+1})s} & \text{if } x = i_p, \text{ for some } 1 \le p \le k\\ \overline{0} & \text{if } i_p < x < i_{p+1}, \text{ for some } 1 \le p \le k-1 \end{cases}$$ if s is order-reversing and $k \geq 2$. If $s \in \mathcal{PODI}_n$ is the empty transformation, then define \overline{s} as the constant transformation of \mathcal{OD}_{2n+1} with image $\{\overline{0}\}$. **Examples 2.2** Let n = 7. Then: • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 1 & 2 & 7 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} \overline{0} & 1 & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \overline{0} & \overline{0} & \overline{0} & \mathbf{1} & \overline{1} & \overline{1} & \overline{1} & \mathbf{2} & \overline{2} & \overline{7} & \overline{7} & \overline{7} & \overline{7} & \overline{7} \end{pmatrix}$; • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 7 & 2 & 1 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} \overline{0} & 1 & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \overline{7} & \overline{7} & \overline{7} & \overline{7} & \overline{2} & \overline{2} & \overline{2} & \overline{2} & \mathbf{2} & \overline{1} & \mathbf{1} & \overline{0} & \overline{0} & \overline{0} & \overline{0} \end{pmatrix}$. It is clear that $\overline{s} \in (s)\tau$, for all $s \in \mathcal{PODI}_n$. Thus, by Proposition 2.1, we have: **Theorem 2.3** The semigroup \mathcal{PODI}_n divides \mathcal{OD}_{2n+1} . Now, as a corollary, we obtain (the following reformulation of) Theorem 1: #### Corollary 2.4 PODI \subset OD. \square Notice that, since PODI is generated by inverse semigroups, all elements of PODI have commuting idempotents. On the other hand, it is clear that, for instance, \mathcal{OD}_2 has non-commuting idempotents. Therefore, the inclusion PODI \subset OD is strict. We remark that, as \overline{s} is order-preserving when s is order-preserving, by simply adapting the definition of τ to order-preserving transformations only, we recover the result presented by the author in [11]: $POI \subset O$. ### The proof of Theorem 2 Now, we consider the chain $X = \{1 < \overline{1} < 2 < \overline{2} < \cdots < n < \overline{n}\}$ (with 2n elements) and its subchain $Y = \{1 < 2 < \cdots < n\}$. Also, we consider the semigroups \mathcal{OR}_{2n} and \mathcal{PORI}_n built over X and Y, respectively, and the relation $\tau : \mathcal{PORI}_n \longrightarrow \mathcal{OR}_{2n}$ defined by $$(s)\tau = \{t \in \mathcal{OR}_{2n} \mid Yt^{-1} \subseteq Y \text{ and } t|_{Yt^{-1}} = s\},$$ for all $s \in \mathcal{PORI}_n$. Again, we will prove that τ is completely defined. Let $s \in \mathcal{PODI}_n$ be such that $Dom(s) = \{i_1 < i_2 < \dots < i_k\}$, with $1 \le k \le n$. If s is orientation-preserving, we define $\overline{s} \in \mathcal{OR}_{2n}$ by $$(x)\overline{s} = \begin{cases} \frac{(i_p)s}{(i_p)s} & \text{if } x = i_p, \text{ for some } 1 \leq p \leq k \\ \frac{\overline{(i_p)s}}{(i_k)s} & \text{if } i_p < x < i_{p+1}, \text{ for some } 1 \leq p \leq k-1 \\ \hline (i_k)s & \text{if } \overline{1} \leq x < i_1 \text{ or } i_k < x \leq \overline{n} \end{cases}.$$ If s is orientation-reversing and $k \geq 3$, we define $\overline{s} \in \mathcal{OR}_{2n}$ by $$(x)\overline{s} = \begin{cases} \frac{(i_p)s}{(i_{p+1})s} & \text{if } x = i_p, \text{ for some } 1 \leq p \leq k \\ \frac{(i_{p+1})s}{(i_1)s} & \text{if } i_p < x < i_{p+1}, \text{ for some } 1 \leq p \leq k-1 \\ \hline (i_1)s & \text{if } \overline{1} \leq x < i_1 \text{ or } i_k < x \leq \overline{n} \end{cases}.$$ Finally, if $s \in \mathcal{PORI}_n$ is the empty transformation, then define \overline{s} as the constant transformation of \mathcal{OR}_{2n} with image $\{\overline{1}\}$. **Examples 2.5** Let n = 7. Then: • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 1 & 2 & 7 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} 1 & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \overline{7} & \overline{7} & 1 & \overline{1} & \overline{1} & \mathbf{2} & \overline{2} & \overline{7} & \overline{7} & \overline{7} & \overline{7} & \overline{7} \end{pmatrix}$; • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 7 & 2 & 1 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} 1 & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & \overline{7} & \overline{7} \\ \overline{7} & \overline{7} & \overline{7} & \overline{2} & \overline{2} & \overline{2} & \overline{2} & \mathbf{2} & \overline{1} & \mathbf{1} & \overline{7} & \overline{7} & \overline{7} & \overline{7} \end{pmatrix}$; • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 7 & 1 & 2 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} \frac{1}{2} & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \overline{2} & \overline{2} & \mathbf{7} & \overline{7} & \overline{7} & \mathbf{1} & \overline{1} & \mathbf{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} \end{pmatrix}$; • If $$s = \begin{pmatrix} 2 & 4 & 5 \\ 2 & 1 & 7 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} \frac{1}{2} & \overline{1} & \mathbf{2} & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \overline{2} & \overline{2} & \mathbf{2} & \overline{1} & \overline{1} & \overline{1} & \overline{1} & \overline{7} & \overline{7} & \overline{2} & \overline{2} & \overline{2} & \overline{2} \end{pmatrix}$; • If $$s = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 6 & 1 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} \mathbf{1} & \overline{1} & 2 & \overline{2} & 3 & \overline{3} & \mathbf{4} & \overline{4} & \mathbf{5} & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ \mathbf{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} & \overline{2} & \mathbf{6} & \overline{6} & \mathbf{1} & \overline{1} & \overline{1} & \overline{1} & \overline{1} \end{pmatrix}$; • If $$s = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 6 & 3 \end{pmatrix}$$ then $\overline{s} = \begin{pmatrix} 1 & \overline{1} & 2 & \overline{2} & 3 & \overline{3} & 4 & \overline{4} & 5 & \overline{5} & 6 & \overline{6} & 7 & \overline{7} \\ 1 & \overline{6} & \overline{6} & \overline{6} & \overline{6} & \overline{6} & \overline{6} & \overline{3} & 3 & \overline{1} & \overline{1} & \overline{1} & \overline{1} & \overline{1} \end{pmatrix}$. It is a routine matter to show that, for all $s \in \mathcal{PORI}_n$, in fact, $\overline{s} \in \mathcal{OR}_{2n}$. On the other hand, clearly $\overline{s} \in (s)\tau$, for all $s \in \mathcal{PORI}_n$. Now, applying Proposition 2.1, we also have: **Theorem 2.6** The semigroup $PORI_n$ divides OR_{2n} . Consequently, we deduce Theorem 2 (reformulated as): #### Corollary 2.7 PORI \subset OR. \square Notice that, likewise for the order case, the inclusion $PORI \subset OR$ is also strict. Observe also that, as \overline{s} is orientation-preserving when s is orientation-preserving, again by simply adapting the definition of τ to just orientation-preserving transformations, we obtain that POPI \subset OP [16]. ## References - [1] Almeida, J., and M.V. Volkov, The gap between partial and full, Int. J. Algebra Comput. Vol. 8, No. 3 (1998), 399-430. - [2] A.Ya. Aĭzenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. 3 (1962), 161-169 (Russian). - [3] R.E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of orderpreserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1-7. - [4] P.M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentations, *Semigroups and Applications*, eds. J.M. Howie and N. Ruškuc, World Scientific, (1998), 39-46. - [5] P.M. Catarino and P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum **58** (1999), 190-206. - [6] P.M. Catarino and P.M. Higgins, The pseudovariety generated by all semigroups of orientation-preserving transformations on a finite cycle, Internat. J. Algebra Comput. 12 (2002), no. 3, 387-405. - [7] E. Cordeiro, M. Delgado and V.H. Fernandes, Relative abelian kernels of some classes of transformation monoids, Submitted. - [8] D.F. Cowan and N.R. Reilly, Partial cross-sections of symmetric inverse semigroups, Int. J. Algebra Comput. 5 (1995) 259-287. - [9] M. Delgado and V.H. Fernandes, Abelian kernels of some monoids of injective partial transformations and an application, Semigroup Forum **61** (2000) 435-452. - [10] M. Delgado and V.H. Fernandes, Abelian kernels of monoids of order-preserving maps and of some of its extensions. Semigroup Forum 68 (2004), 335-356 - [11] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum **54** (1997), 230-236. - [12] V.H. Fernandes, Normally ordered inverse semigroups, Semigroup Forum **58** (1998) 418-433. - [13] V.H. Fernandes, The monoid of all injective orientation preserving partial transformations on a finite chain, Comm. Algebra 28 (2000), 3401-3426. - [14] V.H. Fernandes, The monoid of all injective order preserving partial transformations on a finite chain, Semigroup Forum **62** (2001), 178-204. - [15] V.H. Fernandes, Presentations for some monoids of partial transformations on a finite chain: a survey, *Semigroups*, *Algorithms*, *Automata and Languages*, eds. Gracinda M. S. Gomes & Jean-Éric Pin & Pedro V. Silva, World Scientific, (2002), 363-378. - [16] V.H. Fernandes, A division theorem for the pseudovariety generated by semigroups of orientation preserving transformations on a finite chain, Comm. Algebra 29 (2001) 451-456. - [17] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: another class of divisors, Izvestiya VUZ. Matematika 3 (478) (2002) 51-59 (Russian). - [18] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, *Presentations for some monoids of injective partial transformations on a finite chain*, Southeast Asian Bull. Math. **28** (2004), 903-918. - [19] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, *Presentations for some monoids of partial transformations on a finite chain*, Comm. Algebra **33** (2005), 587-604. - [20] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of order-preserving or order-reversing transformations on a finite chain, Glasgow Mathematical Journal 47 (2005), 413-424. - [21] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, Submitted. - [22] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282. - [23] P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Int. J. Algebra Comput. 5 (1995), 725-742. - [24] J.M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971) 223-236. - [25] D. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra **26** (1998), 515-547. - [26] L.M. Popova, The defining relations of the semigroup of partial endomorphisms of a finite linearly ordered set, Leningradskij gosudarstvennyj pedagogicheskij institut imeni A. I. Gerzena, Uchenye Zapiski 238 (1962) 78-88 (Russian). - [27] V.B. Repnitskii and M.V. Volkov, *The finite basis problem for the pseudovariety* O, Proc. R. Soc. Edinb., Sect. A, Math. 128, No.3 (1998), 661-669. [28] A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins' division theorem for semigroups of order-preserving mappings, Izv.vuzov. Matematika, (1995), No.1, 38-44. Author's second address: Centro de Álgebra da Universidade de Lisboa Av. Prof. Gama Pinto, 2 1649-003 Lisboa Portugal