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Abstract

In this paper we present a division theorem for the pseudovariety of semigroups OD
[OR] generated by all semigroups of order-preserving or order-reversing [orientation-
preserving or orientation-reversing] full transformations on a finite chain.
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1 Introduction and preliminaries

In the 1987 “Szeged International Semigroup Colloquium” J.-E. Pin asked for an effec-
tive description of the pseudovariety (i.e. an algorithm to decide whether or not a finite
semigroup belongs to the pseudovariety) of semigroups O generated by all semigroups of
order-preserving full transformations on a finite chain. This problem only had essential pro-
gresses after 1995. First, Higgins [23] proved that O is self-dual and does not contain all

R-trivial semigroups (and so O is properly contained in A, the pseudovariety of all finite
aperiodic semigroups), although every finite band belongs to O. Next, Vernitskii and Volkov
[28] generalised Higgins’s result by showing that every finite semigroup whose idempotents
form an ideal is in O and in [11] the author proved that the pseudovariety of semigroups
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POI generated by all semigroups of injective order-preserving partial transformations on a
finite chain is a (proper) subpseudovariety of O. On the other hand, Almeida and Volkov
[1] showed that the interval [O, A] of the lattice of all pseudovarieties of semigroups has the
cardinality of the continuum and Repnitskĭı and Volkov [27] proved that O is not finitely
based. In fact, moreover, Repnitskĭı and Volkov proved in [27] that any pseudovariety of
semigroups V such that POI ⊆ V ⊆ O ∨ R ∨ L, where R and L are the pseudovarieties of
semigroups of all R-trivial semigroups and of all L-trivial semigroups, respectively, is not
finitely based. Another contribution to the resolution of Pin’s problem was given by the
author [17] who showed that O contains all semidirect products of a chain (considered as a
semilattice) by a semigroup of injective order-preserving partial transformations on a finite
chain. Nevertheless, Pin’s question is still unanswered.

The pseudovariety OP generated by all semigroups of orientation-preserving full trans-
formations on a finite chain was studied by Catarino and Higgins in [6]. They showed that
OP is self-dual and contains the join of O with the pseudovariety of all finite commutative
monoids. Moreover, Catarino and Higgins also proved in [6] that the interval between these
two pseudovarieties contains a chain of pseudovarieties isomorphic to the chain of real num-
bers. A division theorem for OP was presented by the author in [16]. He proved that the
pseudovariety POPI generated by all semigroups of injective orientation-preserving partial
transformations on a finite chain is a (proper) subpseudovariety of OP.

Semigroups of order-preserving transformations have long been considered in the liter-
ature. In 1962, Aı̌zenštat [2] and Popova [26] exhibited presentations for On, the monoid
of all order-preserving full transformations on a chain with n elements, and for POn, the
monoid of all order-preserving partial transformations on a chain with n elements. Some
years later, in 1971, Howie [24] studied some combinatorial and algebraic properties of On

and, in 1992, Gomes and Howie [22] revisited the monoids On and POn. More recently, the
injective counterpart of On, i.e. the monoid POIn of all injective members of POn, has
been object of study by the author in several papers [11, 12, 14, 15, 17] and also by Cowan
and Reilly [8].

On the other hand, the notion of an orientation-preserving transformation was introduced
by McAlister in [25] and, independently, by Catarino and Higgins in [5]. The monoid OPn, of
all orientation-preserving full transformations on a chain with n elements, was also considered
by Catarino in [4] and by Arthur and Ruškuc in [3]. The injective counterpart of OPn, i.e.
the monoid POPIn of all injective orientation-preserving partial transformations on a chain
with n elements, was studied by the first author in [13, 16].

Recently, the author together with Gomes and Jesus [18] exhibited presentations for
the monoids PODIn of all injective order-preserving or order-reversing partial transforma-
tions on a chain with n elements, and for the monoid PORIn of all injective orientation-
preserving or orientation-reversing partial transformations on a chain with n elements. The
same authors in [19] also gave presentations for the monoid ODn of all order-preserving or
order-reversing full transformations on a chain with n element; for the monoid PODn of
all order-preserving or order-reversing partial transformations on a chain with n elements;
for the monoid POPn of all orientation-preserving partial transformations on a chain with
n elements; and for the monoid PORn of all orientation-preserving or orientation-reversing
partial transformations on a chain with n elements. The lattice of the congruences of some
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of these monoids were studied in [20, 21] by the same authors.

Together with Delgado the author [9, 10] have computed the abelian kernels of the
monoids POIn, POPIn, PODIn and PORIn. More recently, the same authors together
with Cordeiro determined all relative abelian kernels of these four monoids [7].

Next, we will introduce or precise some definitions.
Denote by PT n [Tn] the monoid of all partial [full] transformations of a set with n ele-

ments, say Xn = {1, 2, . . . , n}, and by In the symmetric inverse monoid, i.e. the submonoid
of PT n of all injective (partial) transformations of Xn.

From now on, we consider Xn as a chain with the usual order: Xn = {1 < 2 < · · · < n}.
We say that a transformation s in PT n is order-preserving [order-reversing] if, for all

x, y ∈ Dom(s), x ≤ y implies xs ≤ ys [xs ≥ ys]. Clearly, the product of two order-
preserving transformations or of two order-reversing transformations is order-preserving and
the product of an order-preserving transformation by an order-reversing transformation is
order-reversing.

Denote by On [POIn] the submonoid of Tn [In] whose elements are order-preserving and
by ODn [PODIn] the submonoid of Tn [In] whose elements are either order-preserving or
order-reversing.

Next, let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain
Xn. We say that a is cyclic [anti-cyclic] if there exists no more than one index i ∈
{1, . . . , t} such that ai > ai+1 [ai < ai+1], where at+1 denotes a1. Let s ∈ PT n and
suppose that Dom(s) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at. We say that s is
an orientation-preserving [orientation-reversing] transformation if the sequence of its images
(a1s, . . . , ats) is cyclic [anti-cyclic]. It is also clear that the product of two orientation-
preserving or of two orientation-reversing transformations is orientation-preserving and the
product of an orientation-preserving transformation by an orientation-reversing transforma-
tion is orientation-reversing.

Denote by OPn [POPIn] the submonoid of Tn [In] whose elements are orientation-
preserving and by ORn [PORIn] the submonoid of Tn [In] whose elements are either
orientation-preserving or orientation-reversing.

The following diagram, with respect to the inclusion relation, clarifies the relationship
between these various monoids:
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(1 denotes the trivial monoid, Cn the cyclic group of order n and Sn the symmetric group
on Xn).
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Recall that a pseudovariety of semigroups is a class of finite semigroups closed under
formation of finite direct products, subsemigroups and homomorphic images.

Let S and T be two semigroups. A division of semigroups τ : S −→ T is a relation from
S into T (i.e. a function from S into the power set of T ) such that:

• For all s ∈ S, (s)τ 6= ∅, i.e. s is totally defined;

• For all s1, s2 ∈ S, (s1)τ(s2)τ ⊆ (s1s2)τ , i.e. s is a relation of semigroups; and

• For all s1, s2 ∈ S, (s1)τ ∩ (s2)τ 6= ∅ =⇒ s1 = s2, i.e. s is injective.

We say that S divides T if there exists a division of semigroups τ : S −→ T .
Notice that, given a family X of finite semigroups, it is easy to show that the pseudovariety

of semigroups generated by X is the class of all semigroups that divide a finite direct product
of members of X .

With the above notation, we have that:

• O is the pseudovariety of semigroups generated by {On | n ∈ N};

• POI is the pseudovariety of semigroups generated by {POIn | n ∈ N};

• OP is the pseudovariety of semigroups generated by {OPn | n ∈ N}; and

• POPI is the pseudovariety of semigroups generated by {POPIn | n ∈ N}.

Next, also define:

• OD as the pseudovariety of semigroups generated by {ODn | n ∈ N};

• PODI as the pseudovariety of semigroups generated by {PODIn | n ∈ N};

• OR as the pseudovariety of semigroups generated by {ORn | n ∈ N}; and

• PORI as the pseudovariety of semigroups generated by {PORIn | n ∈ N}.

Now, we can state the main results of this paper, which are the analogues of the result
presented by the author in [11] (and in [16]).

Theorem 1 Every semigroup of injective order-preserving or order-reversing partial trans-
formations on a finite chain belongs to OD.

Theorem 2 Every semigroup of injective orientation-preserving or orientation-reversing
partial transformations on a finite chain belongs to OR.

4



2 The proofs

Let X be a finite set and let Y be a subset of X. Denote by PT (X) [PT (Y )] the monoid
of all partial transformations of X [Y ]. Let S be a subsemigroup of PT (Y ) and let T be a
subsemigroup of PT (X). Define a relation τ : S −→ T by

(s)τ = {t ∈ T | Y t−1 ⊆ Y and t|Y t−1 = s},

for all s ∈ S. Notice that, Y t−1 denotes the set {x ∈ Dom(t) | (x)t ∈ Y } and t|Y t−1 the
restriction of the map t to the set Y t−1. Hence, we have:

Proposition 2.1 With the foregoing, τ : S −→ T is an injective relation of semigroups.
Moreover, if τ is completely defined then S divides T .

Proof. First, notice that τ is clearly an injective relation. Indeed, given s1, s2 ∈ S
such that (s1)τ ∩ (s2)τ 6= ∅, we can take t ∈ (s1)τ ∩ (s2)τ and so, in particular, we have
s1 = t|Y t−1 = s2.

Now, let s1, s2 ∈ S. We will prove that (s1)τ(s2)τ ⊆ (s1s2)τ . If (s1)τ = ∅ or (s2)τ = ∅
then this inclusion is obvious. Thus, we can suppose that (s1)τ 6= ∅ and (s2)τ 6= ∅.

Let t1 ∈ (s1)τ and t2 ∈ (s2)τ . Then Y t−1
1 ⊆ Y , Y t−1

2 ⊆ Y , t1|Y t−1
1

= s1 and t2|Y t−1
2

= s2.

In order to prove that t1t2 ∈ (s1s2)τ , we must show that Y (t1t2)
−1 ⊆ Y and (t1t2)|Y (t1t2)−1 =

s1s2.
Regarding the first condition, let x ∈ Y (t1t2)

−1. Then (x)(t1t2) ∈ Y , i.e. ((x)t1)t2 ∈ Y ,
whence (x)t1 ∈ Y t−1

2 ⊆ Y , i.e. (x)t1 ∈ Y . It follows that x ∈ Y t−1
1 ⊆ Y and so x ∈ Y .

Hence, Y (t1t2)
−1 ⊆ Y .

Next, we want to show that (t1t2)|Y (t1t2)−1 = s1s2. We begin by proving that (t1t2)|Y (t1t2)−1

and s1s2 have the same domain. Let x ∈ Dom(s1s2). Then x ∈ Dom(s1) = Dom(t1) ∩
Y t−1

1 and (x)s1 ∈ Dom(s2) = Dom(t2) ∩ Y t−1
2 . Thus (x)t1 = (x)s1, whence (x)t1 ∈

Dom(t2) ∩ Y t−1
2 and so ((x)t1)t2 ∈ Y , i.e. x ∈ Y (t1t2)

−1. Hence x ∈ Dom(t1t2) ∩
Y (t1t2)

−1 = Dom
(
(t1t2)|Y (t1t2)−1

)
and so Dom(s1s2) ⊆ Dom

(
(t1t2)|Y (t1t2)−1

)
. Conversely,

let x ∈ Dom
(
(t1t2)|Y (t1t2)−1

)
. Then x ∈ Dom(t1), (x)t1 ∈ Dom(t2) and x ∈ Y (t1t2)

−1, i.e.
(x)(t1t2) ∈ Y . Hence (x)t1 ∈ Y t−1

2 ⊆ Y and so (x)t1 ∈ Y , whence x ∈ Y t−1
1 . Then, we

have x ∈ Dom(t1) ∩ Y t−1
1 = Dom(s1), from which it follows that (x)t1 = (x)s1, and so

(x)s1 ∈ Dom(t2) ∩ Y t−1
2 = Dom(s2). Thus x ∈ Dom(s1s2) and so Dom

(
(t1t2)|Y (t1t2)−1

)
⊆

Dom(s1s2). Hence Dom(s1s2) = Dom
(
(t1t2)|Y (t1t2)−1

)
. Finally, if x ∈ Dom(s1s2) then

x ∈ Dom(s1) and (x)s1 ∈ Dom(s2), whence x ∈ Dom(t1) and (x)t1 = (x)s1 ∈ Dom(t2) and
so (x)(t1t2) = ((x)t1)t2 = ((x)t1)s2 = ((x)s1)s2 = (x)(s1s2). Therefore (t1t2)|Y (t1t2)−1 = s1s2,
as required. �

The proof of Theorem 1

Let us consider the chain X = {0 < 1 < 1 < 2 < 2 < · · · < n < n} (with 2n + 1 elements)
and its subchain Y = {1 < 2 < · · · < n}. Consider the semigroups OD2n+1 and PODIn

built over X and Y , respectively, and the relation τ : PODIn −→ OD2n+1 defined by

(s)τ = {t ∈ OD2n+1 | Y t−1 ⊆ Y and t|Y t−1 = s},
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for all s ∈ PODIn. We claim that τ is completely defined.
Indeed, for an element s ∈ PODIn such that Dom(s) = {i1 < i2 < · · · < ik} (1 ≤ k ≤ n),

define s ∈ OD2n+1 by

(x)s =


0 if 0 ≤ x < i1
(ip)s if x = ip, for some 1 ≤ p ≤ k

(ip)s if ip < x < ip+1, for some 1 ≤ p ≤ k − 1
n if ik < x ≤ n ,

if s is order-preserving, and by

(x)s =


n if 0 ≤ x < i1
(ip)s if x = ip, for some 1 ≤ p ≤ k

(ip+1)s if ip < x < ip+1, for some 1 ≤ p ≤ k − 1
0 if ik < x ≤ n ,

if s is order-reversing and k ≥ 2. If s ∈ PODIn is the empty transformation, then define s
as the constant transformation of OD2n+1 with image {0}.

Examples 2.2 Let n = 7. Then:

• If s =

(
2 4 5
1 2 7

)
then s =

(
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 0 1 1 1 1 2 2 7 7 7 7 7 7

)
;

• If s =

(
2 4 5
7 2 1

)
then s =

(
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
7 7 7 7 2 2 2 2 1 1 0 0 0 0 0

)
.

It is clear that s ∈ (s)τ , for all s ∈ PODIn. Thus, by Proposition 2.1, we have:

Theorem 2.3 The semigroup PODIn divides OD2n+1. �

Now, as a corollary, we obtain (the following reformulation of) Theorem 1:

Corollary 2.4 PODI ⊂ OD. �

Notice that, since PODI is generated by inverse semigroups, all elements of PODI have
commuting idempotents. On the other hand, it is clear that, for instance, OD2 has non-
commuting idempotents. Therefore, the inclusion PODI ⊂ OD is strict.

We remark that, as s is order-preserving when s is order-preserving, by simply adapting
the definition of τ to order-preserving transformations only, we recover the result presented
by the author in [11]: POI ⊂ O.
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The proof of Theorem 2

Now, we consider the chain X = {1 < 1 < 2 < 2 < · · · < n < n} (with 2n elements) and
its subchain Y = {1 < 2 < · · · < n}. Also, we consider the semigroups OR2n and PORIn

built over X and Y , respectively, and the relation τ : PORIn −→ OR2n defined by

(s)τ = {t ∈ OR2n | Y t−1 ⊆ Y and t|Y t−1 = s},

for all s ∈ PORIn. Again, we will prove that τ is completely defined.
Let s ∈ PODIn be such that Dom(s) = {i1 < i2 < · · · < ik}, with 1 ≤ k ≤ n. If s is

orientation-preserving, we define s ∈ OR2n by

(x)s =


(ip)s if x = ip, for some 1 ≤ p ≤ k

(ip)s if ip < x < ip+1, for some 1 ≤ p ≤ k − 1

(ik)s if 1 ≤ x < i1 or ik < x ≤ n .

If s is orientation-reversing and k ≥ 3, we define s ∈ OR2n by

(x)s =


(ip)s if x = ip, for some 1 ≤ p ≤ k

(ip+1)s if ip < x < ip+1, for some 1 ≤ p ≤ k − 1

(i1)s if 1 ≤ x < i1 or ik < x ≤ n .

Finally, if s ∈ PORIn is the empty transformation, then define s as the constant transfor-
mation of OR2n with image {1}.

Examples 2.5 Let n = 7. Then:

• If s =

(
2 4 5
1 2 7

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
7 7 1 1 1 1 2 2 7 7 7 7 7 7

)
;

• If s =

(
2 4 5
7 2 1

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
7 7 7 2 2 2 2 1 1 7 7 7 7 7

)
;

• If s =

(
2 4 5
7 1 2

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
2 2 7 7 7 7 1 1 2 2 2 2 2 2

)
;

• If s =

(
2 4 5
2 1 7

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
2 2 2 1 1 1 1 7 7 2 2 2 2 2

)
;

• If s =

(
1 4 5
2 6 1

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
2 2 2 2 2 2 6 6 1 1 1 1 1 1

)
;

• If s =

(
1 4 5
1 6 3

)
then s =

(
1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 6 6 6 6 6 6 3 3 1 1 1 1 1

)
.

It is a routine matter to show that, for all s ∈ PORIn, in fact, s ∈ OR2n. On the other
hand, clearly s ∈ (s)τ , for all s ∈ PORIn. Now, applying Proposition 2.1, we also have:

Theorem 2.6 The semigroup PORIn divides OR2n. �
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Consequently, we deduce Theorem 2 (reformulated as):

Corollary 2.7 PORI ⊂ OR. �

Notice that, likewise for the order case, the inclusion PORI ⊂ OR is also strict.

Observe also that, as s is orientation-preserving when s is orientation-preserving, again
by simply adapting the definition of τ to just orientation-preserving transformations, we
obtain that POPI ⊂ OP [16].
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