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Abstract

Besides the basic model, Kronecker products of rotated models are

used to isolate the variance components as parameters of a linear model.

A characterization of BLUE given by Zmy±lony is applied to the di�erent

models. Generalized least squares are used to complete the estimation.

1 Estimation of Variance in OBS Models

There are many approaches and many references to the problem of variance
components estimation. One of them is the Bayesian approach, for example in
[4] and [12]. Another one is the nonnegative approach. In [2] there were obtained
two classes of invariant quadratic estimators for the �rst variance componen-
twhich are easy to compute and exhibit optimal properties under the mean
squared error.

In our paper we will deal with unbiased estimation for �xed parameters and
variance components in two derived models.

De�nition 1. A linear model has orthogonal block structure � OBS � if the
covariance matrix of the observations vector y has the form

Σ�y =
w∑

i=1

γiPi,

were P1, . . . ,Pw are orthogonal projection matrices such that
∑w

i=1 Pi = In and
PiPj = 0, i 6= j.

Variance components are γ1, . . . , γw will be assumed non-negative, and the
mean vector will have the form

µ = ∆′ν, (1)
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were the lines of ∆ are linearly independent. Let Ω = R(∆′) and T the orthog-
onal projection matrix on Ω.

De�nition 2. If a model as OBS and T commutes with Pi, i = 1, . . . , w, the
model is said to have commutative orthogonal block structure � COBS.

The goal is to estimate variance components and estimable functions a′ν.

De�nition 3. A function g(ν) is estimable if there exists a such that

E[a′ν] .

Besides obtaining conditions for obtaining estimators with optimal proper-
ties, BLUE and even UMVUE, computation techniques will be investigated. It
will be shown that it is possible to obtain, from models with COBS, linear mod-
els in which the expectation has the form Xγ, with γ = (γ1, . . . , γw)′, which
will permit a uni�ed analysis with least squares � LS � and generalized least
squares � GLS � for ν and γ. This is distinct of the usual analysis of models
with OBS in which, according to [7] and [8], in which orthogonal projections of
y on ∇i = R(Pi), i = 1, . . . , w. Although cases in which w = 2 and w = 3 are
presented in [1], the methodology used seems di�cult to apply when w ≥ 4.

2 General Results

The analysis to be presented both for the initial an derived model is �tted in
the approach proposed by [3]. Admit now that the model has the mean vector

µ = Xβ (2)

and that its covariance matrix is a linear combination of known matricesV0,V1, . . . ,Vw,
with R(Vj) ⊆ R(V0), j = 1, . . . , w. Notice that, according to [6], for any linear
model there exists a covariance matrix with maximal column space. It is ad-
mitted that V0 is such a matrix and that it is regular. These conditions will be
veri�ed in the models presented.

Theorem 1 (Zmy±lony 1980). Putting M = I −T, where T is the orthogonal
projection matrix on R(X),

U = X′V−1
0

(
w∑

i=1

ViMVi

)
V−1

0 X

and
Z = I −U+U,

a BLUE for c′β exists if and only if

c ∈ R
(
X′V−1

0 XZ
)
.

Proof. See [11].

The form of such estimator is also achieved.
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Theorem 2. when the conditions on theorem 1 are ful�lled, the BLUE for c′β
has the form

c′β̃ = c′(X′V0X)−1X′V−1
0 y.

When U = 0, Z = I and

R
(
X′V−1

0 X
)

= R(X′) , (3)

BLUE will exist for all estimable functions.

3 Initial Model

The results of the previous section will now be applied to a model with OBS.
As referred in previously, the observations vector y has the mean vector µ = ∆′

and covariance matrix Σ�(y) =
∑w

i=1 γiPi. It is assumed that
∑w

i=1 Pi = I and
so, in particular,

V0 = I. (4)

Considering also Vi = Pi, i = 1, . . . , w, and X = ∆′,

U = ∆

(
w∑

i=1

PiMPi

)
∆′ (5)

and a BLUE c′β̃ exists if and only if

c ∈ R(X′XZ) , (6)

having thus
β̃ = (X′X)−1X′y. (7)

Consider now T1 as the orthogonal projection matrix on R(X′XZ) and
M1 = I −T1. Theorem 1 can be reexpressed as

M1c = 0. (8)

This model will be used further on in GLS estimation.

4 First Derived Model

Lemma 1. OBS is closed for orthogonal transformations.

Proof. It is easily seen that, given a model y with OBS and an orthogonal
matrix K, y∗ = Ky has

∆∗ν = K∆ν

and

Σ�(y∗) =
w∑

i=1

γiKPiK′.

Furthermore, P∗
i = KPiK′, i = 1, . . . , w, are still orthogonal projection matri-

ces, mutually orthogonal, and

w∑
i=1

P∗
i = I.
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Let K be an orthogonal matrix whose �rst n − k line vectors form an or-
thonormal basis for Ω⊥ = R(∆)⊥. Putting

ηj = α′jµ; j = 1, . . . , n (9)

one gets ηj = 0, j = 1, . . . , n− k. With m = n− k, putting

l = l(j, h) =
h(h− 1)

2
+ j; j = 1, . . . , h;h = 1, . . . ,m, (10)

and

y◦l = y′Aj,hy; j = 1, . . . , h;h = 1, . . . ,m; l = 1, . . . ,
m(m+ 1)

2
, (11)

where

Aj,h =
1
2
(αjα

′
h +αhα

′
j); j = 1, . . . , h;h = 1, . . . ,m. (12)

Then, see [9] pg. 352,

µ◦l = E[y◦l ] = tr(Aj,hΣ�(y)) =
w∑

i=1

γitr(Aj,hPi)

=
w∑

i=1

γi

2
tr
(
(αjα

′
h +αhα

′
j)Pi

)
=

w∑
i=1

γi

2
tr
(
α′jPiαh +α′hPiαj

)
=

w∑
i=1

γi

2
(ci,j,h + ci,h,j) =

w∑
i=1

γici,h,j , (13)

where
ci,j,h = α′jPiαh = x◦l,i. (14)

Thus, with
X◦ = [x◦l,i] (15)

one gets the mean vector
µ◦ = X◦γ. (16)

In this way, γ is now the parameter in the mean vector.
In order to obtain the covariance of this model, it will be assumed that y

has normal distribution. Then, with y◦l = y′Aj,hy and y◦l′ = y′Aj′,h′y, see [9]
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pg. 395,

Cov[y◦l ; y◦l′ ] = 2tr(Aj,hΣ�(y)Aj′,h′Σ�(y))

= 2
w∑

i=1

w∑
i′=1

γiγi′tr(Aj,hPiAj′,h′Pi′)

=
1
2

w∑
i=1

w∑
i′=1

γiγi′tr(αjα
′
hPiαj′α′h′Pi′ +αjα

′
hPiαh′α′j′Pi′

+αhα
′
jPiαj′α′h′Pi′ +αhα

′
jPiαh′α′j′Pi′)

=
1
2

w∑
i=1

w∑
i′=1

γiγi′tr(α′hPiαj′α′h′Pi′αj +α′hPiαh′α′j′Pi′αj

+α′jPiαj′α′h′Pi′αh +α′jPiαh′α′j′Pi′αh)

=
1
2

w∑
i=1

w∑
i′=1

γiγi′(ci,h,j′ci′,h′,j + ci,h,h′ci′,j′,j

+ ci,j,j′ci′,h′,h + ci,j,h′ci′,j′,h).

(17)

Theorem 3. There exists a covariance matrix of y◦, Σ�(y◦), that is regular.

Proof. Because

w∑
i=1

ci,j,h = α′jPiαh = α′jαh = δj,h; j, h = 1, . . . , n, (18)

follows
w∑

i=1

w∑
i′=1

ci,j,h′ci′,j′,h = δj,h′δj′,h; j, h, j′, h′ = 1, . . . , n. (19)

Making γ = 1, one gets

Cov[y◦l ; y◦l′ ] =
1
2
(δh,j′δh′,j + δh,h′δj′,j + δj,j′δh′,h + δj,h′δj′,h), (20)

thus  {j, h} 6= {j′, h′}, Cov[y◦l ; y◦l′ ] = 0

{j, h} = {j′, h′},
{
j 6= h, Cov[y◦l ; y◦l′ ] = 1
j = h, Cov[y◦l ; y◦l′ ] = 2

. (21)

Because l = l′ if and only if {j, h} = {j′, h′}, with γ = 1, Σ�(y◦) is a diagonal
matrix with principal elements equal to 1 when j 6= h and 2 when j = h.

On the other hand, from (17), it is possible to obtain a set of generators for
V , the space of covariance matrices of y◦. Take

d = (i− 1)w + i′; i, i′ = 1, . . . , w, (22)

as well as

bd,l,l′ =
1
2
(ci,h,j′ci′,h′,l + ci,h,h′ci′,j′,j + ci,j,j′ci′,h′,h + ci,j,h′ci′,j′,h), (23)
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where

d = 1, . . . , w2;
i, j = 1, . . . , w;

l, l′ = 1, . . . ,
m(m+ 1)

2
;

j = 1, . . . , h;
j′ = 1, . . . , h′;

h, h′ = 1, . . . ,m.

One obtains, then, the set of generators {B0,B1, . . . ,Bw2} for V , allowing the
use of the general results.

5 Second Derived Model

Consider the second derived model as the crossed product between �xed and
random parts of the model, namely the model whose observations are

y◦◦l = y′Aj,hy; j = 1, . . . ,m;h = m+ 1, . . . , n. (24)

Index l must be rede�ned in the following way:{
l = l(j, h) = h(h−1)

2 + j; j = 1, . . . , h;h = 1, . . . ,m
l = l(j, h) = m(m−1)

2 + (h−m)m+ j; j = 1, . . . ,m;h = m+ 1, . . . , n
.

(25)

Lemma 2. For the second derived model,

E[y◦◦l ] =
w∑

i=1

ci,j,hγi

and

Cov[y◦◦l ; y◦◦l′ ] =
1
2

w∑
i=1

w∑
i′=1

γiγi′bd,l,l′ +
w∑

i=1

γiηhci,j,j′ηh′ .

Proof. For the expectation of E[y◦◦l ], see [9], pg. 352, one gets

E[y◦◦l ] = tr(Aj,hΣ�(y)) + µ′Aj,hµ

=
w∑

i=1

ci,j,hγi + µ′(αjα
′
h +αhα

′
j)µ

=
w∑

i=1

ci,j,hγi + ηjηh

=
w∑

i=1

ci,j,hγi,
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with ηj = 0 when j = 1 . . . ,m. As for the covariance, note that because j, j′ ≤ m
and [9], pg. 358,

Cov[y◦◦l ; y◦◦l′ ] = 2tr(Aj,hΣ�(y)Aj′,h′Σ�(y)) + 4µ′Aj,hΣ�(y)Aj′,h′µ

=
1
2

w∑
i=1

w∑
i′=1

γiγi′bd,l,l′

+
w∑

i=1

γiµ
′(αjαh +αhαj)Pi(αj′αh′ +αh′αj′)µ

=
1
2

w∑
i=1

w∑
i′=1

γiγi′bd,l,l′ +
w∑

i=1

γiηhci,j,j′ηh′

Matrices B1, . . . ,Bw2 are sub-matrices of

Gd,i = [bd,l,l′ ]; d = 1, . . . , w2, (26)

with l, l′ = 1, . . . , m
2 (2n−m+ 1). Consider also

Gi,h,h′ = δh(n)δ′h′(n)⊗Ci;h, h′ = m+ 1, . . . , n, (27)

where δh(n) is a vector of size n whose only non-null component is the h-th one,
which is equal to 1 and Ci = [ci,j,j′ ], j, j′ = 1, . . . ,m, i = 1, . . . , w. Therefore,

Σ�(y◦◦) =
w∑

i=1

w∑
i′=1

γiγi′B+ +
w∑

i=1

n∑
h=m+1

n∑
h′=m+1

γiηhηh′Gi,h,h′ . (28)

In this case, β is substituted by η = (ηm+1, . . . , ηn)′.
In order to obtain a regular, and therefore maximal, matrix of covariance

for y◦◦, take γ = 1 and η = 0, thus obtaining

G◦ =
w∑

i=1

w∑
i′=1

B+ =
[

B◦ 0
0 I

]
. (29)

This makes the results shown applicable.

6 Generalized Least Squares

In the previous sections, conditions were described in order to obtain BLUE both
for estimable functions and variance components, as well as linear combinations
of them, but these conditions are not satis�ed most of the times. An interesting
technique is generalized least squares, seen for instance in [5].

In table 1 the three models' parameters and notations are depicted.
Interestingly, the only parameter in the �rst derived model is γ.
As a starting point, consider the estimate

γ̃1,0 = (X′
1X1)−1X′

1y1. (30)
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Table 1: Model Parameter and Notation
Model E Σ� Design Matrix Observations Vector
Base E[y | ν] Σ�(γ) X y

1st derived E[y1 | γ] Σ�1(γ) X1 y1

2nd derived E[y2 | γ] Σ�2(γ,ν) X2 y2

From this estimate one also gets an estimate for the covariance matrix of y2,
which will be denoted has Σ�2(γ̃1,i), i = 0, . . ., rendering possible an improved
estimation

γ̃1,1 =
(
X′

1Σ�1(γ̃1,0

)−1
X1)−1X′

1Σ�1(γ̃1,0)−1y1, (31)

leading to the iterative process

γ̃1,i+1 =
(
X′

1Σ�1(γ̃1,i)−1X1

)−1
X′

1Σ�1(γ̃1,i)−1y1. (32)

A stopping criterion for this process is when ‖γ̃1,i+1 − γ̃1,i‖2 < ε. This method
is similar to MINQUE estimation (see [10]). Let γ̃ be the resulting estimate of
this method.

The estimate γ̃ can also be used in the estimation of ν, taking

ν̃ =
(
X′Σ�(γ̃)−1X

)−1
X′Σ�(γ̃)−1y (33)

Similarly, an alternative estimate for γ can be obtained:

˜̃γ =
(
X′

2Σ�2(ν̃, γ̃)−1X2

)−1
X′

2Σ�2(ν̃, γ̃)−1y2. (34)

Remark. In this case, γ̃ and ˜̃γ should not di�er signi�cantly.

7 Estimable Vectors

Let γ̃ be the estimator obtained in section 6 for γ and Σ�(γ̃) the estimated
covariance matrix for y. Hence, a generalized least squares estimator for ν is(

X′Σ�(γ̃)−1X
)−1

X′Σ�(γ̃)−1y. (35)

This leads easily to the natural assumption that, if y is normally distributed,
then

ν̃∼̇N
(
ν, K̃

)
, (36)

with
K̃ =

(
X′Σ�(γ̃)−1X

)−1
. (37)

Thus comes

Lemma 3. Let A be a matrix with rank s. Then ψ̃ = Aν̃ is an unbiased
estimator of ψ = Aν, with

ψ̃∼̇N
(
ν, K̃

)
,

as well as

(ψ − ψ̃)′
(
AK̃A′

)−1

(ψ − ψ̃)∼̇χ2
(s),

were ∼̇ stands for �approximately distributed�.
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Proof. Taking Σ�(γ̃) as an approximation of Σ�(y) the conclusions are easily
achieved.

Taking xs,q as the quantil of the chi square distribution with s degrees of
freedom for probability q,

(ψ − ψ̃)′
(
AK̃A′

)−1

(ψ − ψ̃) ≤ xs,1−α (38)

de�nes a (1 − α) × 100% con�dence ellipsoid for ψ. Through duality, these
ellipsoids also make possible level α hypothesis tests for

H0 : ψ = ψ0. (39)

Furthermore, one can enunciate

Theorem 4 (Sche�é's Theorem).

P

[ ⋂
d∈Rs

|d′ψ − d′ψ̃| =
√
xs,1−αd′

(
AK̃A′

)
d

]
≈ 1− α.

Proof. A point is contained in an ellipsoid only and only if (see [?], pg. ??) it is
between every two parallel plans tangent to the ellipsoid, each pair of tangent
parallel plans generated by a vector d 6= 0, i. e.,

|d′ψ − d′ψ̃| ≤
√
xs,1−αd′

(
AK̃A′

)
d,

which, along with lemma 3, establishes the thesis.
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