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Abstract. In [SIAM J. Optim., 17 (2006), pp. 188-217] Audet and Dennis proposed the
class of mesh adaptive direct search algorithms (MADS) for minimization of a nonsmooth function
under general nonsmooth constraints. The notation used in the paper evolved since the preliminary
versions and, unfortunately, even though the statement of Proposition 4.2 is correct, its proof is not
compatible with the final notation. The purpose of this note is show that the proposition is valid.
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In [1] Audet and Dennis proposed the class of mesh adaptive direct search algo-
rithms (MADS) for minimization of a nonsmooth function under general nonsmooth
constraints. The paper contains a convergence analysis for this class of methods, and
proposes two variants of an implementable instance called LTMADS.

The proof that LTMADS is indeed an instance of MADS is not compatible with
the notation used in the rest of the paper. We restate the proposition and propose a
consistent proof.

Proposition 0.1 (Proposition 4.2 of [1]). At each iteration k, the procedure
above yields a Dk and a MADS frame Pk such that

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Mk is given by Definition 2.1 and Dk is a positive spanning set such that for
each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ N

nD that may depend on the iteration number k;
• the distance from the frame center xk to a frame point xk + Δm

k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖∞ ≤

Δp
k max{‖d′‖∞ : d′ ∈ D};

• limits (as defined in Coope and Price [2]) of convergent subsequences of the
normalized sets Dk := { d

‖d‖∞

: d ∈ Dk} are positive spanning sets.

Proof. In order to construct the set of directions Dk, the algorithm builds matrices
at iteration k that should be called Lk, Bk and B′

k. To ease the presentation, we omit
the index k in the proof of the two first bullets. The index k reappears in the proof
of the last bullet since this last result involves limits as k goes to infinity.
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By the construction in [1], L is a lower triangular (n− 1)× (n− 1) matrix where
each term on the diagonal is either plus or minus 2�, and the lower components are
randomly chosen from the discrete set {−2� +1,−2� +2, . . . , 2� −1}. It follows that L

is a basis in R
n−1 with |det(L)| = 2�(n−1). {p1, p2, . . . , pn−1} is a random permutation

of the set {1, 2, . . . , n} \ {ι̂} (where {ι̂} is defined in [1]), and B is a matrix such that

Bpi,j = Li,j for i, j = 1, 2, . . . , n − 1
Bι̂,j = 0 for j = 1, 2, . . . , n − 1
Bi,n = bi(�) for i = 1, 2, . . . , n.

It follows that B is a permutation of the rows and the columns of a lower triangular
matrix whose diagonal elements are either −2� or 2�. Therefore B is a basis in R

n

and |det(B)| = 2�n.
B′ is obtained by permuting the columns of B, and therefore the columns of B′

form a basis of R
n. Furthermore, |det(B′)| = |det(B)| = 2�n.

One of the proposed versions of LTMADS uses a minimal positive basis at every
iteration, and the other variant uses a maximal positive basis at every iteration. The
columns of [B′ − b′] with b′i =

∑
j∈N B′

ij define a minimal positive basis, and the
columns of [B′ − B′] define a maximal positive basis [3].

Therefore, if Dk = [B′ −b′] or if Dk = [B′ −B′], then Dk has all integral entries in
the interval [−n2�, n2�] or in the interval [−2�, 2�], respectively

(
with 2� = 1√

Δm

k

and � ∈
N

)
. It follows that each column d of Dk can be written as a nonnegative integer com-

bination of the columns of D = [I − I]. Hence, the frame defined by Dk is on the
mesh Mk.

Two cases must be considered to show the second bullet. If the maximal positive
basis construction is used, then ‖Δm

k d‖∞ = Δm
k ‖d‖∞ =

√
Δm

k = Δp
k. If the minimal

positive basis construction is used, then ‖Δm
k d‖∞ = Δm

k ‖d‖∞ ≤ n
√

Δm
k = Δp

k. The
proof of the second bullet follows by noticing that max{‖d′‖∞ : d′ ∈ [I − I]} = 1.

To show the third bullet, one must now verify that the limit of the normalized
sets Dk := { d

‖d‖∞

: d ∈ Dk} forms a positive basis. Following Coope and Price [2],

we first need to show that |det(B′
k)| is bounded below by a positive constant that is

independent of k. This is true since |det(B′
k)| = 1. Furthermore, since normalized

directions are used, it follows that the limit of B′
k is a basis in R

n. To show that
the limit of Dk is a positive basis we next need to verify one of the conditions (C1)
or (C2) in [2], concerning the columns added to each basis to form a positive basis.
In the case of the maximal bases, condition (C1) is easily satisfied. For the minimal
bases, (C2) holds since all the structure constants ξ (again following the definition of
Coope and Price [2]) satisfy −1 ≤ ξ ≤ − 1

n
.
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