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synoptic abstract

Statistics that are the ratio of two independent linear combinations of
independent chi-squared random variables are used to test hypotheses on pa-
rameters in mixed and random-effects models and to test hypotheses on the
parameters in the joint analysis model of several experiments. We will call
these statistics generalized F statistics and the associated test a generalized
F test. In this paper we first obtain the exact distribution of any statis-
tic that is the ratio of two independent linear combinations of independent
Gamma distributed random variables. Based on this distribution we then ob-
tain asymptotic and near-exact distributions for such statistics. Then, the
exact, asymptotic and near-exact distributions of generalized F statistics are
readily derived, under both the null andthe alternative hypotheses. Given that
the exact distributions are infinite mixtures, they are not much adequate for
practical purposes and thus the development of near-exact distributions is a
desirable goal. Some examples of application are shown.
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1. INTRODUCTION

Generalized F tests were introduced by Michalski & Zmyślony (1996, 1999)

to test for variance compnents. The statistics used in these tests are the ratio

of two independent linear combinations of independent chi-square distributed

random variables. We will call these statistics, generalized F statistics.

Expressions for the exact distribution of generalized F statistics in the

central case were obtained by Fonseca et al. (2002) for the cases where the

chi-squared random variables in the numerator or in the denominator have

even numbers of degrees of freedom. This result was extended by Nunes &

Mexia (2004) to the non-central case.

In this paper we first obtain the exact distribution of statistics that are

the ratio of two independent linear combinations of independent Gamma dis-

tributed random variables, based on the result from Moschopoulos (1985) on

the distribution of sums of independent Gamma random variables. Then from

this exact distributon obtained for the ratio of two independent linear combi-

nations of independent Gamma distributed random variables we easily derive,

as a particular case, the exact distribution of generalized F statistics, as well

as asymptotic and near-exact distributions for such statistics.

2. THE EXACT DISTRIBUTION OF THE RATIO OF TWO INDEPENDENT

LINEAR COMBINATIONS OF INDEPENDENT GAMMA RANDOM

VARIABLES

2.1 The exact distribution of a linear combination of independent Gamma

random variables (Moschopoulos, 1985)

In this subsection we settle some notation and restate a result from

Moschopoulos (1985), using only a more convenient notation for our objec-

tives.

We will say that the random variable X has a Gamma distribution with

shape parameter r > 0 and rate parameter λ > 0 (we will call this parameter,

’rate’ parameter, given its relation, for integer r, with the rate of Poisson

process) if the pdf (probability density function) of X is given by

fX(x) =
λr

Γ(r)
e−λx xr−1 (x > 0) .
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We will denote this fact by

X ∼ Γ(r, λ) .

The cdf (cumulative distribution function) of X is then given by

FX(x) = P (X ≤ x) =
Γ(r, λx)

Γ(r)
,

where

Γ(r, λx) =
∫ ∞

0
λr e−λu ur−1 du

is the incomplete Gamma function. The c.f. (characteristic function) of X is

then

ΦX(t) = λr(λ− it)−r .

Let

Xi ∼ Γ(ri, λi) , i = 1, . . . , n (1)

be n independent distributed random variables. We want expressions for the

exact pdf, cdf and c.f. of the random variable

W =
n∑

i=1

aiXi

where ai > 0, for all i ∈ {1, . . . , n}.
To obtain the expression for the pdf of W we only have to note that from

(1),

aiXi ∼ Γ(ri, µi)

with

µi = λi/ai > 0 (2)

and then use directly the result in Moschopoulos (1985), which, as the author

aknowledges at the end of his paper, is readiy applicable to the distribution

of linear combinations of independent Gamma random variables with positive

coefficients. This way we obtain the pdf of W as

fW (w) =
∞∑

j=0

wj
µr+j

Γ(r + j)
e−µw wr+j−1

= C
∞∑

j=0

δj
µr+j

Γ(r + j)
e−µw wr+j−1
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where

µ = max
1≤i≤n

µi , r =
n∑

i=1

ri

and

wj = C δj

with

C =
n∏

i=1

(
µi

µ

)ri

, δj =
1

j

j∑

k=1

δj−k k γk , (j = 1, 2, . . .)

δ0 = 1

where

γk =
1

k

n∑

i=1

ri

(
1− µi

µ

)k

k = 1, 2, . . . ,

with µi given by (2).

That this distribution is an infinite mixture of Γ(r + j, µ) distributions

(j = 0, 1, . . .) with weights wj is not explicitly aknowledged by Moschopoulos

(1985), but indeed
∑∞

j=0 wj = 1, clearly with wj > 0 (j = 0, 1, . . .).

Once acknowledged the mixture structure of the distribution of W , the

cdf and the c.f. of W are readily obtained respectively as

FW (w) =
∞∑

j=0

wj
Γ(r + j, µw)

Γ(r + j)
= C

∞∑

j=0

δj
Γ(r + j, µw)

Γ(r + j)

and

ΦW (t) =
∞∑

j=0

wj µr+j (µ− it)−r−j = C
∞∑

j=0

δj µr+j (µ− it)−r−j .

2.2 The Gamma-ratio distribution

The Gamma-ratio distribution is the distribution of the random variable

Y = X1/X2

where

X1 ∼ Γ(r1, λ1) and X2 ∼ Γ(r2, λ2)

are two independent random variables.

The pdf of Y is

fY (y) =
kr1

B(r1, r2)
(1 + ky)−r1−r2 yr1−1 (y > 0)
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where

k = λ1/λ2 .

The cdf of Y is

FY (y) =
kr1

B(r1, r2)

yr1

r1
2F1(r1 + r2, r1; r1 + 1;−ky)

and the c.f. of Y is

ΦY (t) = E
(
eitY

)
=

Γ(r1 + r2)

Γ(r2)
Ψ

(
r1, 1− r2;−it

k

)

where

2F1(a, b; c; z) =
∞∑

i=0

Γ(a + i)

Γ(a)

Γ(b + i)

Γ(b)

Γ(c)

Γ(c + i)

zi

i!

=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx

is the Gauss hypergeometric function, and

Ψ(a, b; z) =
1

Γ(a)

∫ ∞

0
e−zt ta−1 (1 + t)b−a−1 dt , (z ∈ /C)

is the Tricomi hypergeometric function.

The h-th moment of Y is given by

E
(
Y h

)
= k−h Γ(r1 + h)

Γ(r1)

Γ(r2 − h)

Γ(r2)
(−r1 < h < r2) .

2.3 The exact distribution of the ratio of two independent linear
combinations of independent Gamma random variables and
of the generalized F statistic

Let

Z = W1/W2

where

W1 =
n1∑

i=1

aiXi and W2 =
n2∑

i=1

biX
∗
i

are two independent random variables, with

Xi ∼ Γ(si, λi) i = 1, . . . , n1 and X∗
i ∼ Γ(s∗i , λ

∗
i ) i = 1, . . . , n2
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being independent random variables.

Then, given the mixture structure of the distributions of W1 and W2 de-

scribed in subsection 2.1, the exact distribution of Z may be easily obtained

as a double mixture of Gamma-ratio distributions with pdf

fZ(z) =
∞∑

j=0

∞∑

l=0

wj w∗
l

kr1+j

B(r1 + j, r2 + l)
(1 + kz)−r1−r2−j−l zr1+j−1

= C1C2

∞∑

j=0

∞∑

l=0

δj δ∗l
kr1+j

B(r1 + j, r2 + l)
(1 + kz)−r1−r2−j−l zr1+j−1

(3)

where

k =
µ1

µ2

, r1 =
n1∑

i=1

si , r2 =
n2∑

i=1

s∗i ,

µ1 = max
1≤i≤n1

λi

ai

, µ2 = max
1≤i≤n2

λ∗i
bi

,

wj = C1δj , w∗
l = C2δ

∗
l ,

with

C1 =
n1∏

i=1

(
λi

ai µ1

)si

, C2 =
n2∏

i=1

(
λ∗i

bi µ2

)s∗i
,

δj =
1

j

j∑

k=1

δj−k k γk , δ∗l =
1

l

l∑

k=1

δ∗l−k l γ∗k with δ0 = δ∗0 = 1 ,

where

γk =
1

k

n1∑

i=1

si

(
1− λi

ai µ1

)k

, γ∗k =
1

k

n2∑

i=1

s∗i

(
1− λ∗i

bi µ2

)k

.

We should note that in (3),
∑∞

j=0

∑∞
l=0 wjw

∗
l = 1. The cdf of Z is given by

FZ(z) =
∞∑

j=0

∞∑

l=0

wj w∗
l

kr1+j

B(r1+j, r2+l)

zr1+j

r1+j

2F1(r1+r2+j+l, r1+j; r1+1+j;−kz)

= C1C2

∞∑

j=0

∞∑

l=0

δj δ∗l
kr1+j

B(r1+j, r2+l)

zr1+j

r1+j

2F1(r1+r2+j+l, r1+j; r1+1+j;−kz)

and the c.f. of Z is

ΦZ(t) =
∞∑

j=0

∞∑

l=0

wj w∗
l

Γ(r1 + r2 + j + l)

Γ(r2 + l)
Ψ

(
r1 + j, 1− r2 − l;−it

k

)

= C1C2

∞∑

j=0

∞∑

l=0

δj δ∗l
Γ(r1 + r2 + j + l)

Γ(r2 + l)
Ψ

(
r1 + j, 1− r2 − l;−it

k

)
.
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From this exact distribution for Z we may even easily derive the exact

moments of Z, using the mixture structure, as

E
(
Zh

)
=

∞∑

j=0

∞∑

l=0

wj w∗
l k−h Γ(r1 + j + h)

Γ(r1 + j)

Γ(r2 + l − h)

Γ(r2 + l)
(−r1−j < h < r2+l) .

(10)

For the generalized F statistic, we have

Xi ∼ χ2
νi
≡ Γ

(
νi

2
,
1

2

)
(i = 1, . . . , n1) (11)

and

X∗
i ∼ χ2

ηi
≡ Γ

(
ηi

2
,
1

2

)
(i = 1, . . . , n2) (12)

so that the exact pdf, cdf and c.f. of

F ∗ =

n1∑
i=1

aiXi

n2∑
i=1

biX∗
i

with Xi and X∗
i given by (11) and (12) are given respectively by (3), (4) and

(5), with

r1 =
1

2

n1∑

i=1

νi , r2 =
1

2

n2∑

i=1

ηi ,

k =
µ1

µ2

with µ1 = max
1≤i≤n1

1

2ai

, µ2 = max 1 ≤ i ≤ n2
1

2bi

and all other parameters defined in a similar way with λi and λ∗i replaced by

1/2, si replaced by νi/2 and s∗i replaced by ηi/2.

3. NEAR-EXACT DISTRIBUTIONS

Asymptotic distributions for both Z and F ∗ may be obtained by simple

truncation of the series in (3), (4) or (5). These distributions will be asymp-

totic in the sense that, as the number of terms in the double summation is

allowed to grow indefinitely, the asymptotic distributions will tend to the exact

distribution. However, given the weights in these asymptotic distributions do

not add up to 1, the computation of large quantiles from these distributions

is not accurate. This difficulty may be overcome and the proximity of the

asymptotic distributions to the exact distribution improved by rescaling the
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weights wj and w∗
l in the double summation to have them adding up to 1, that

is, by replacing wj by

w∗
j =

wj

θ1

where θ1 =
m1∑

j=0

wj , j = 0, . . . , m1 ,

considering that we have truncated the summation over j to m1 + 1 terms,

and by replacing w∗
l by

w∗∗
l =

w∗
l

θ2

where θ2 =
m2∑

l=0

w∗
l , l = 0, . . . , m2 ,

considering that we have truncated the summation over l to m2 + 1 terms.

We should note that the asymptotic distributions obtained by rescaling

the weights are truly asymptotic in the sense that they converge to the exact

distribution not only when the number of terms in the summations increases,

but also, and more important, when the values of the shape parameters si

and s∗i in (3) increase. This feature, that may be better analyzed in the

next section, is really much important, being the one that makes of these

distributions really asymptotic distributions, since the value of the parameters

si and s∗i are really in many applications related with sample sizes, namely

when we deal with distributions of statistics, and namely when we consider

the distribution of generalized F statistics, situation in which, as we will see

in section 5, the values of these shape parameters are directly related with the

number of degrees of freedom of factors involved in the model.

Although the rescaling of the weights improves much the closeness of the

asymtotic distributions, as we will see in the next section, we may still improve

the closeness to the exact distribution by building near-exact distributions,

which, as it will also be seen in section 4, will be much closer to the exact

distribution than the asymptotic distributions, mainly when we consider a

rather small number of terms in the summations.

Near-exact distributions for both Z and F ∗ may then be also derived from

truncations of the c.f. of these random variables. Since the distribution of F ∗

is just a particular case of the distribution of Z, we will only address this

latter one, being then the near-exact distributions for F ∗ easily derived using

the replacements at the end of the previous subsection.
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We may wite the c.f. of Z as

ΦZ(t) =
m1∑

j=0

m2∑

l=0

wj w∗
l

Γ(r1 + r2 + j + l)

Γ(r2 + l)
Ψ

(
r1 + j, 1− r2 − l;−it

k

)
+ Rn(t)

(12)

where

Rn(t) = ΦZ(t)− Φn(t)

=
n∑

j=0

∞∑

l=m2+1

wj w∗
l

Γ(r1+r2+j+l)

Γ(r2+l)
Ψ

(
r1+j, 1−r2−l;−it

k

)

+
n∑

l=0

∞∑

j=m1+1

wj w∗
l

Γ(r1+r2+j+l)

Γ(r2+l)
Ψ

(
r1+j, 1−r2−l;−it

k

)

+
∞∑

j=m1+1

∞∑

l=m2+1

wj w∗
l

Γ(r1+r2+j+l)

Γ(r2+l)
Ψ

(
r1+j, 1−r2−l;−it

k

)
.

Our aim is to obtain near-exact approximations to the distribution of Z

by using an adequate number of terms of the exact c.f. of Z, that is, adequate

values for m1 and m2 in (12), and to replace Rn(t) by

φ1(t) = θ λr(λ− it)−r , (13)

that is the c.f. of a Gamma distribution with shape parameter r and rate

parameter λ afected by an ’external’ weight

θ = 1−
m1∑

j=0

m2∑

l=0

wj w∗
l = 1− C1C2

n∑

j=0

n∑

l=0

δj δ∗l

=
n∑

j=0

∞∑

l=m2+1

wj w∗
l +

n∑

l=0

∞∑

j=m1+1

wj w∗
l +

∞∑

j=m1+1

∞∑

l=m2+1

wj w∗
l .

The approximations will be done in such a way that the near-exact dis-

tributions will have either the first two moments equal to the exact ones, by

requiring that

dh

dth
Rn(t)

∣∣∣∣∣
t=0

=
dh

dth
φ1(t)

∣∣∣∣∣
t=0

h = 1, 2 (14)

what will imply that ΦZ(t), the exact c.f. of Z, and

Φ1(t) = Φn(t) + φ1(t)
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the near-exact c.f. of Z will have the same first two derivatives with respect

to t, at t = 0, equal.

This way, the near-exact distribution obtained for Z is a finite mixture

with n + 1 components, the first n of which are Gamma-ratio distributions

and the remaining one is a Gamma distribution.

According to the objectives settled in obtaining this near-exact distribu-

tion, the parameters r and λ in (13) are given by

r =
µ∗21

µ∗2 − µ∗21
and λ =

µ∗1
µ∗2 − µ∗21

with

µ∗1 =
µ1

iθ
and µ∗2 = −µ2

θ

where µ1 and µ2 are the two first derivetives of Rn(t) with respect to t, at

t = 0, what is equivalent to solve the system of two equations resulting from

(14) above, for r and λ.

The asymptotic behaviour of both the asymptotic and near-exact distri-

butions have their expression in the fact that as the shape parameters si and

s∗i in (3) increase their values, the closeness of those distributions to the ex-

act distribution improves. We should however note that this is only true for

the asymptotic distributions with rescaled weights, since the ones obtained by

simple truncation do not have this behaviour. We should also note that, as it

may also be analyzed in more detail in the next section, the near-exact dis-

tributions also have a much accentuted asymptitc behaviour than the simple

asymptotic distributions.

Although it seems that we might have considered more elaborate approx-

imations to Rn(t) when building the near-exact distributions, by equating a

larger number of moments and likely getting better approximations, with good

candidates for the replacement of Rn(t) being either a mixture of two Gamma

distributions or a Gamma-ratio distribution, the values obtained for the pa-

rameters by equating derivatives of the corresponding characteristic function

and of Rn(t) would not be acceptable. Moreover, as we will see in the numeri-

cal studies section, equating the two first moments leads to high performance

approximations.
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4. AN APPLICATION

We now apply our results to the tests for variance components in random

effects models with balanced cross-nesting. Let there be L groups of u1, . . . , uL

factors. The first factors in the groups will have al(1) (l = 1, . . . , L) levels and,

if ul > 1, each level of the h-th (h = 1, . . . , ul − 1) factor nests al(h + 1) levels

of the following factor. We take cl(0) = 1, while cl(h) =
∏h

k=1 al(k) will be

the number of level combinations for the first h factors in the l-th, each of

them nesting bl(h) = cj(ul)/cl(h) (h = 0, . . . , ul), level combinations of the

remaining factors (l = 1, . . . , L).

Since inside each nesting group factors do not interact, factor effects and

interactions will correspond to sets of at most one factor per group. These

sets of factors correspond to the vectors h with components hl = 0, . . . , ul,

l = 1, . . . , L. When hl = 0 no factor is taken from the l-th group, otherwise hl

will be the factor index. To the vector h corresponds c(h) =
∏L

l=1 cl(hl) level

combinations, each one nesting b(h) = r
∏L

l=1 bl(hl) observations if we take r

replicates.

Representing by ⊗ the Kronecker matrix product the model may be writ-

ten, see Fonseca et al. (2003a), as

y =
∑

h∈Γ

X(h)β(h) + e

where Γ is the set of vectors h,

X(h) =
L⊗

l=1

Xl(hl) ; h ∈ Γ ,

with

Xl(0) = 1bl(0) ; l = 1, . . . , L

and

Xl(h) = Icl(h) ⊗ 1bl(h) , h = 1, . . . , ul; l = 1, . . . , L

while, with µ the general mean, β(0) = µ, the remaining β(h), and e are

assumed to be Normal, independent, with null mean vectors and variance-

covariance matrices σ2(h)Ic(h) (h 6= 0) and σ2In, where n = r
∏L

l=1 cl(ul) is the

number of observations.
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Following Michalski & Zmyślony (1996) we take as test statistic for

H0(h) : σ2(h) = 0, h 6= 0

the ratio of the positive by the negative part of a quadratic unbiased estimator

of σ2(h), h 6= 0. Such an estimator is, see Fonseca et al. (2003a),

σ̃2(h) =
1

b(h)

∑

k∈Θ(h)

(−1)m(h,k) s(k)

g(k)

where Θ(h) is the set of vectors k with components kl such that hl ≤ kl ≤
min(hl + 1, ul), (l = 1, . . . , L), while m(h, k) is the number of the components

of h which are smaller than the corresponding components of k. Moreover,

g(k) =
∏L

l=1 gl(kl) with gl(0) = 1 and gl(k) = cl(k)−cl(k−1), k = 1, . . . , ul; l =

1, . . . , L and

s(k) = ||A(k)y||2 ; k ∈ Γ ,

with

A(k) =
L⊗

l=1

Al(kl) ; k ∈ Γ ,

where




Al(0) =
1√
bl(0)

1T
bl(0) ; l = 1, . . . , L

Al(k) = Icl(k−1) ⊗Kal(k) ⊗

 1√

bl(k)
1T

bl(k)


 ; k = 1, . . . , ul; l = 1, . . . , L ,

Ks being a matrix obtained deleting the first row equal to 1√
s
1T

s of a s×s

orthogonal matrix. Thus, with Θ(h)+ and Θ(h)− being the subsets of Θ(h)

for which m(h, k) is respectively even and odd, the generalized F test statistic

will be

F (h) =

∑

k∈Θ(h)+

s(k)

g(k)

∑

k∈Θ(h)−

s(k)

g(k)

; h 6= 0

Now, see Fonseca et al. (2003a), s(k) is the product of a central chi-square

with g(k) degrees of freedom by

γ(k) = σ2 +
∑

h:k≤h

b(h)σ2(h) ; k ∈ Γ .
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Thus, F (h) will be the ratio of two linear combinations of central chi-squares

with coefficients

a(k) =
γ(k)

g(k)
; k ∈ Γ .

Once given this general presentation it may be interesting to consider a

simple example. If one factor crosses with a second factor that nests a third

factor there will not be, see Khuri et al. (1998), pg. 39, an unbiased estimator

of the variance component for the second factor given by the difference of two

mean squares. To lighten the writting, we replace k by (k1, k2). Then the

first, second and third factors will correspond to the pairs (1, 0), (0, 1) and

(0, 2). Likewise, the interactions between the first and the second factors will

correspond to the pair (1, 1) and the interaction between the first and third

factors to (1, 2). Now, it is easily seen that





Θ+(0, 1) = {(0, 1), (1, 2)}
Θ−(0, 1) = {(1, 1), (0, 2)}

and





γ(0, 1) = σ2 + b(0, 1)σ2(0, 1) + b(1, 1)σ2(1, 1) + b(0, 2)σ2(0, 2) + b(1, 2)σ2(1, 2)

γ(1, 1) = σ2 + b(1, 1)σ2(1, 1) + b(1, 2)σ2(1, 2)

γ(0, 2) = σ2 + b(0, 2)σ2(0, 2) + b(1, 2)σ2(1, 2)

γ(1, 2) = σ2 + b(1, 2)σ2(1, 2)

where, with a1, a2 and a3, the number of levels for the three factors,





b(0, 1) = a1a3r

b(1, 1) = a3r

b(0, 2) = a1r

b(1, 2) = r

and





g(0, 1) = a2 − 1

g(1, 1) = (a1 − 1)(a2 − 1)

g(0, 2) = a2(a3 − 1)

g(1, 2) = (a1 − 1)a2(a3 − 1) .
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5. NUMERICAL STUDIES

In this section we study the behavior of simple truncations of the exact

distribution, asymptotic distributions with rescaled weights and near-exact

distributions described in Section 3, for 4 different simple situations. In order

to make things more easily comparable, in all situations we deal with statis-

tics that are the ratio of two linear combinations of two independent Gamma

random variables. The two first cases are directly taken from the testing pro-

cedure considered in the previous section.

First we consider the case of a generalized F statistic that was used by

Fonseca et all (2003b) in a study of grapevine clones. In this experiment three

clones from two origins were compared. The factors considered were: location

of the experiment, origin, and clone. The first factor crosses with the second

that nests the third. Since there is no unbiased estimator for the variance

component of the second factor (Fonseca et all., 2003a), a generalized F test

was used for the corresponding nulity hypothesis, as described in the previous

section.

In this case the coefficients of the linear combination of two independent

chi-squared random variables in the numerator are much different, with a ratio

around 180, while the raio of the two coefficients of the linear combination

of two chi-squared random variables in the denominator is only around 2.

Although in our numerical studies we have chosen to use always m1 = m2, in

this case we would only have to use quite large values for m1.

In fact, it happens that the distribution of the sum of independent Gamma

random variables with different rate parameters, on which the distributions of

statistics that are the ratio of two independent linear combinations of Gamma

random variables is based, are mixtures, whose weights decrease much slower

when there is unbalance in the values of the ratios of the rate parameters by

the coefficients of the Gamma distributions in the linear combination.

That the values of m1 and m2 we have to consider in order to obtain

a reasonable approximation are really function of the ratios (λ1/a1)/(λ2/a2)

and (λ∗1/b1)/(λ
∗
2/b2), being larger when such ratios get away from 1, may be

stressed since in this first case we would have obtained exactly the same results

if we would have used for m1 the values in Table 2 and m2 = 25.
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In fact, in any case, the value of m1 necessary to attain a reasonable

approximation will be a function of the magnitude of the ratios

max
1≤i≤n1

µ1/µi and min
1≤i≤n1

µ1/µi

where, for i = 1, . . . , n1,

µi = λi/ai and µ1 = max
1≤i≤n1

µi,

with larger values of m1 associated with values of the above ratios far from 1,

while the values of m2 are a function of the ratios

max
1≤i≤n2

µ∗1/µ
∗
i and min

1≤i≤n2

µ∗1/µ
∗
i

where, for i = 1, . . . , n2,

µ∗i = λ∗i /bi and µ∗1 = max
1≤i≤n2

µ∗i ,

once again with larger values of m2 associated with values of the above ratios

far from 1.

The second studied case is derived from the first one just by using co-

efficients for the linear combination of chi-squared random variables in the

numerator and in the denominator that yield exactly ratio of 3/2 and 2, re-

spectively.

In the third and fourth cases we use ratios of two linear combinations of

Gamma random variables to show that our approach also applies to this case.

In Table 1 below are summarized the values of the parameters used in the

4 cases studied.

Table 1. – Parameters for the 4 cases studied (all with n1 = n2 = 2)

a1 a2 s1 s2 λ1 λ2 b1 b2 s∗1 s∗2 λ∗1 λ∗2

Case 1 a∗1 a∗2 1/2 4 1/2 1/2 b∗1 b∗2 1 2 1/2 1/2
Case 2 3/2 1 1/2 4 1/2 1/2 1 2 1 2 1/2 1/2
Case 3 3/2 1 7/3 23/2 9/2 9/2 1 2 9/4 5/2 19/2 19/2
Case 4 7/2 1 7/3 23/2 9/2 9/2 1 2 9/4 5/2 19/2 19/2

a∗1=9.61163×100 a∗2=5.33912×10−2

b∗1=8.61565×10−1 b∗2=3.91407×10−1
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In Tables 2 through 5 we may see the values of the tail probabilities

relative to the exact 0.95 and 0.99 quantiles for each of the cases considered,

for different values of m1 =m2 used in the truncations mentioned in section 3.

We may see how in each case the simple truncation is not an adequate

approximation to the exact distribution as soon as the number of terms used

starts to decline and namely when we try to use a rather small number of

terms. The asymptotic approximations based on truncations with rescaled

weights behave much better than the simple truncations. Anyway, in every

case the near-exact distributions have an even much better performance.

Although for this first case studied the exact distribution is known to

have a concise finite representation (Fonseca et all., 2003b) we used it to

illustrate that in some cases we may need a fairly large number of terms in

the summations in order to obtain an accetable quality of the approximation.

This is due to the fact that in this case the ratio of the values of the coefficients

used in the linear combination in the numerator is far from 1.

Table 2. – Case 1 tail probabilities for the exact truncated (trunc), asymptotic with
rescaled weights (asymp) and near-exact (near-ex) distributions

quantile 0.95
values of m1 = m2

500 300 250 200 150 120

trunc 0.943791 0.911639 0.889635 0.854890 0.799441 0.750602
asymp 0.961267 0.977296 0.982637 0.988069 0.993090 0.995641
near-ex 0.952083 0.950755 0.948678 0.945255 0.940287 0.936649

quantile 0.99
values of m1 = m2

500 300 250 200 150 120

trunc 0.975695 0.930012 0.903401 0.864017 0.804407 0.753552
asymp 0.993761 0.996992 0.997842 0.998617 0.999258 0.999554
near-ex 0.988863 0.985962 0.984932 0.983935 0.983105 0.982884

In this first case we may also see how the asymptotic approximation with

rescaled weights although having a quite good performance for the 0.99 quan-

tile, does have a quite poor performance for the 0.95 quantile, what stresses the

importance of the near-exact approximation, which has the best performance

for both quantiles and for any of the values of m1 and m2 used.
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Table 3. – Case 2 tail probabilities for the exact truncated (trunc), asymptotic with
rescaled weights (asymp) and near-exact (near-ex) distributions

quantile 0.95
values of m1 = m2

25 20 15 10 5 3

trunc 0.950000 0.949995 0.949863 0.946826 0.887249 0.760113
asymp 0.950000 0.950000 0.949993 0.949841 0.946746 0.939234
near-ex 0.950000 0.950000 0.950000 0.950000 0.950079 0.950170

quantile 0.99
values of m1 = m2

25 20 15 10 5 3

trunc 0.990000 0.989995 0.989863 0.986825 0.927180 0.799456
asymp 0.990000 0.990000 0.989999 0.989968 0.989354 0.987847
near-ex 0.990000 0.990000 0.990000 0.990000 0.990023 0.990162

In this second case the near-exact approximation shows a very good per-

formance for both quantiles, even for very small values of m1 and m2 for which

the asymptotic approximation with rescaled weights starts to perform not so

well.

Table 4. – Case 3 tail probabilities for the exact truncated (trunc), asymptotic with
rescaled weights (asymp) and near-exact (near-ex) distributions

quantile 0.95
values of m1 = m2

25 20 15 10 5 3

trunc 0.949999 0.949986 0.949683 0.943649 0.842673 0.647008
asymp 0.950000 0.949999 0.949984 0.949696 0.945279 0.936277
near-ex 0.950000 0.950000 0.950000 0.950016 0.950595 0.950749

quantile 0.99
values of m1 = m2

25 20 15 10 5 3

trunc 0.989999 0.989986 0.989683 0.983637 0.881733 0.682278
asymp 0.990000 0.990000 0.989997 0.989940 0.989095 0.987316
near-ex 0.990000 0.990000 0.990000 0.990004 0.990266 0.991032

In the fourth case we will have to use a larger number of terms to take

care of the greater unbalance of the ratios of the coefficients in the linear

combination of the numerator.
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Table 5. – Case 4 tail probabilities for the exact truncated (trunc), asymptotic with
rescaled weights (asymp) and near-exact (near-ex) distributions

quantile 0.95
values of m1 = m2

50 30 20 10 5 3

trunc 0.950000 0.949698 0.942750 0.821178 0.489308 0.257356
asymp 0.950001 0.950188 0.952014 0.962322 0.970567 0.970832
near-ex 0.950000 0.949979 0.949458 0.944542 0.940024 0.939144

quantile 0.99
values of m1 = m2

50 30 20 10 5 3

trunc 0.989999 0.989543 0.980956 0.847435 0.501586 0.263787
asymp 0.990000 0.990066 0.990596 0.993092 0.994922 0.995095
near-ex 0.990000 0.989977 0.989803 0.989795 0.991384 0.992668

In both these two last cases the simple truncation of the exact distribution

shows a very poor performance, mainly for lower number of terms while the

asymptotic approximation with rescaled weights displays an acceptable behav-

ior as long as the number of terms remains moderately large. Once again, the

near-exact approximation shows an outstanding performance even for quite

small number of terms.

6. CONCLUDING REMARKS

We have shown how through the use of near-exact approximations that

equate the two first moments of the exact distribution we were able to obtain

approximations that almost coincide with the exact distribution. This fact,

largely overcomes the minor drawback that is the requirement of the existence

of the two first moments of the generalized F statistics. Indeed, according to

(10), this happens whenever r2 =
∑n2

i=0 s∗i > 2, which is not a very limitative

requirement.
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