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Abstract. We prove the existence of weak solutions for the forward and back-
ward statistical transport equations associated with the 2D Euler equations.

Such solutions can be interpreted, respectively, as a statistical Lagrangian and

a statistical Eulerian description of the motion of the fluid.

1. Introduction

This article is concerned with the 2D Euler equations for the in-viscous incom-
pressible fluid {

∂v

∂t
= −(v · ∇)v −∇p

div v = 0
(1.1)

subjected to periodic boundary conditions and given initial data

v(x, 0) = v0(x), (1.2)

where v(x, t) = (v1(x1, x2, t), v2(x1, x2, t)) is the velocity field of the fluid, p = p(x, t)
is the pressure.

In the study of such problem two different approaches are possible:
A) (1.1) is considered as an usual P. D. E. with smooth or less smooth initial

data;
B) (1.1) is considered as a statistical equation with very low regularity of the

initial data.
Concerning A), the existence and uniqueness results of the classical weak so-

lutions for the initial data with rot v0 ∈ L∞ have been shown by the different
approaches in [Y], [Ka], [C-S]. The description of less smooth fluctuation of the
fluid, when we have a velocity discontinuity (mixing layers, jets), is related with
the case when rot v0 is a measure (delta function), but v0 ∈ L2. There is a wide
literature on the subject of existence results; we refer to [K], [DiP-M], [D]. All the
solutions of the Euler equations in the mentioned articles have the feature of finite
kinetic energy.

However, many physical problems possess highly unstable structures, whose com-
plete dynamics can not be described by a smooth model. To study such dynamics
of the fluid, when we deal with the velocity field v0 belonging to H−s, s > 0, the
approach B) is more natural. Statistical solutions of (1.1) are defined almost ev-
erywhere with respect to some probability measure, which is associated to physical
quantities, which are invariants of the system. The underlying state space of the
solutions is an infinite dimensional space, where a suitable differential calculus has
to be considered.

For our 2D case, in [A-H.K-M], [A-H.K-R.F], [B-F], [C-D.G] invariant measures
of Gibbs type have been constructed. These Gibbs measures are determined by
quantities such as the enstrophy, the energy and the re-normalized energy and
it has been proved that such measures are infinitesimally invariant with respect
to the Euler equation. The existence of global flows (weak statistical solutions),
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leaving the measures invariant, has been shown in [A-C], [Ci], where point-wise
flows are carried by some families of probability measures. The flows take values
in the support of the Gaussian measures with covariance given by the enstrophy,
therefore such flows can be of infinite kinetic energy. Similar situations have arisen
in Stochastic Analysis and, in particular, within the Malliavin’s stochastic calculus
of variations. In [Cr] (and also in [U-Z], [P]) flows on the classical Wiener space,
associated with vector fields with low regularity, have been defined.

In our present article we develop the approach suggested in [A-C], [Ci] to study
flows with v0 ∈ H−s, s > 0. We introduce the concept of generalized statistical
forward and backward flows. These are solutions of the corresponding Transport
Equations defined on the invariant infinite Gibbs measure. This approach has many
advantages, comparing with the previous results [A-C], [Ci]; using these statistical
transport equations, one can try to develop methods, obtained for the usual PDE
theory for solving important questions:

1) Uniqueness result;
2) Study of regularity of solutions;
3) Develop numerical methods for these statistical differential equations.

As to the more detailed structure of this paper, in Section 2 we formulate our
problem, define the standard Gibbs measure µγ given by the enstrophy integral
and present a very useful Lemma on the integrability of the operator B(U) in L2

µγ
,

associated to the nonlinear part of the Euler equation (1.1). In Sections 4 and 5, we
define the generalized forward and backward flow of (1.1), which are solutions of
the transport equations, and show their existence. In Section 6 we describe how the
generalized forward flow can be interpreted as the statistical Lagrangian viewpoint
for the description of the motion of the fluid and the generalized backward flow as
the corresponding statistical Euler viewpoint

2. Statement of the Problem

Let us return to the Euler equations (1.1), (1.2). Since div v = 0 and div v0 = 0,
there exist functions U = U(x, t), u = u(x), such that

v = ∇⊥U = (−∂x2U, ∂x1U),

v0 = ∇⊥u = (−∂x2u, ∂x1u).

We can eliminate the pressure p in (1.1) by applying the differential operator
rot z = −∂x2z1 + ∂x1z2 to the first equation of (1.1) and obtain

∂t∆U = −∂x2U · ∂x1∆U + ∂x1U · ∂x2∆U. (2.1)
We consider solutions of (1.1), (1.2) on the 2-dimensional torus that we identify
with T 2 = [0, 2π]× [0, 2π] subjected to periodic boundary conditions

U(0, x2, t) = U(2π, x2, t),

U(x1, 0, t) = U(x1, 2π, t), ∀x = (x1, x2) ∈ T 2,∀t ∈ [0, T ].
(2.2)

Let us denote by ek(x) = 1
2π e

k·x, k ∈ Z2 the eigenfunctions for the operator −∆
with eigenvalues k2 = k2

1 + k2
2, where k · x = k1x1 + k2x2. They form a complete

set of orthonormal functions in L2(T 2). We expand the solution U(x, t) of (2.1) in
the form of Fourier serie

U(x, t) =
∑

k

Uk(t)ek(x).

Since U is a real function and we can assume∫
T 2
Udx = 0
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we have U−k = Uk (z is the complex conjugate of z); then

U(x, t) =
∑

k∈Z2
+

Uk(t)ek(x), (2.3)

where Z2
+ denotes the set {k ∈ Z2 : k1 > 0, k2 ∈ Z or k1 = 0, k2 > 0}. For the

initial data u(x) we have

u(x) =
∑

k∈Z2
+

ukek(x). (2.4)

In the sequel by (2.3), (2.4), we can identify the functions U, u with infinite vector
fields with Fourier coefficients

U =
(
Uk

)
k∈Z2

+
and u =

(
uk

)
k∈Z2

+
,

where k ∈ Z2
+. We define

C∞ =
{
u =

(
uk

)
k∈Z2

+
: uk ∈ C

}
.

Substituting (2.3) in equation (2.1) we derive the following system

2πk2 d

dt
Uk = −

∑
h+h′=k

(h⊥ · h′)(h′)2UhUh′

=
1
2

∑
h+h′=k

(h⊥ · h′)[h2 − (h′)2]UhUh′ ,

where h⊥ = (−h2, h1). Hence if we denote the operator B = B(U) : U ∈ C∞ → C∞

by
B(U) =

(
Bk(U)

)
k∈Z2

+

with coefficients Bk = Bk(U) described by the equalities

Bk(U) =
∑
h6=k

h,k∈Z2
+

αh,kUkUk−h,

αh,k =
1
2π
[ 1
k2

(h⊥ · k)(h · k)− 1
2
(h⊥ · k)

]
,

(2.5)

the system (1.1), (1.2), (2.2) will be equivalent to

Problem Find U = U(t), the solution of the infinite dimensional system

d

dt
U(t) = B(U(t)) (2.6)

with the initial conditions
U(0) = u. (2.7)

Now we introduce the Sobolev spaces of order β ∈ R on the torus T 2,

Hβ = {ϕ =
∑

k

ϕkek :
∑

k

k2β |ϕk|2 < +∞, ϕ−k = ϕk}

≡ {ϕ =
(
ϕk

)
k∈Z2

+
∈ C∞ :

∑
k∈Z2

+

k2β |ϕk|2 < +∞}.
(2.8)
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The spaces Hβ are complex Hilbert spaces with inner product and norm given by

< ϕ,ψ >Hβ =
∑

k∈Z2
+

k2βϕkψ̄k, ‖ϕ‖2Hβ =< ϕ,ϕ >Hβ .

The two dimensional Euler equation has an infinite number of invariants of mo-
tion, among which we mention the energy and the enstrophy, defined respectively
by

E(t) =
1
2

∫
T 2
v2dx = −1

2

∫
T 2
u∆udx =

1
2

∑
k

k2u2
k =

1
2
‖u‖2H1 ,

S(t) =
1
2

∫
T 2

(rot v)2dx =
1
2

∫
T 2

(∆u)2dx =
1
2

∑
k

k4u2
k =

1
2
‖u‖2H2 . (2.9)

Lemma 2.1. Let u(t) be a smooth solution of the Euler equation (1.1), (1.2), (2.2).
Then E(t), S(t) are constants of motion, i. e.,

E(t) = E(0),

S(t) = S(0), ∀t ∈ [0, T ].
(2.10)

Proof. It is easy the check from (1.1), (1.2), (2.2) that
d

dt
E(t) = 0 and

d

dt
S(t) = 0.

�

We consider the Gaussian measures with covariance given by the enstrophy mul-
tiplied by a constant γ > 0, namely

dµγ(ϕ) =
∏

k∈Z2
+

dνk
γ (ϕk),

dνk
γ (z) =

γk4

2π
exp(−1

2
γk4|z|2)dxdy

(2.11)

with z = x + iy. Taking into account that µγ(Hβ) = 1 for any β < 1, than, for
simplification of notations, the integral will be written∫

ϕ(u)dµγ(u) instead of
∫

Hβ

ϕ(u)dµγ(u)

for arbitrary function ϕ = ϕ(u) : C∞ → C, which is measurable with respect to µγ .
In the following we will assume that the value of β < 1 is given.

Definition 1. Let ϕ = ϕ(u) : C∞ → C be arbitrary complex function and p > 1.
We define

Lp
µγ

(Hβ) = {ϕ is measurable with respect to µγ :

‖ϕ‖p
Lp

µγ
=
∫

Hβ

|ϕ(u)|pdµγ(u) <∞}.
(2.12)

3. Useful previous results

In this paragraph we state some results that will be needed in next sections.
Let us denote Z2

+,n = {k ∈ Z2
+ : |k| ≤ n} and d(n) = #Z2

+,n. We consider the
finite dimensional approximations of Bk(u) defined as

Bn
k (u) =

∑
h6=k

h,k∈Z2
+,n

αh,kukuk−h. (3.1)
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Lemma 3.1. For any k ∈ Z2
+ we have

Bk(u) ∈ Lp
µγ

(Hβ), ∀p > 1, β < 1

and
B(u) ∈ Lp

µγ
(Hβ ,Hβ), ∀p > 1, β < −1.

Proof. Let us give the idea of the proof for p = 2.∫
|Bn

k |2dµγ ≤ 8γ−2
∑
h6=k

h∈Z2
+,n

(k − h)−4 <∞

Analogously we obtain, for m < n∫
|Bn

k −Bm
k |2dµγ ≤ 8γ−2

∑
h6=k
|h|>m

(k − h)−4 → 0 if m→∞.

This proves that

Bn
k → Bk in L2

µγ
(Hβ).

The functions Bk(u) are measurable as the limit of continuous measurable functions
in L2

µγ
(Hβ). Following [A-C], [Ci], we have

Bn
k → Bk in Lp

µγ
(Hβ), p > 1. (3.2)

The functional B(u) =
∑

k∈Z2
+
Bk(u)ek, defined on the space Hβ , is integrable as

a functional from Hβ to Hβ only if β < −1. More precisely,∫
‖B(u)‖p

Hβdµγ <∞, p > 1

for any β < −1.
�

Definition 2. An arbitrary complex function f = f(u) : C∞ → C is a cylindrical
function if, for some integer N

f = f(u) ≡ F (uα1 , . . . , uαd(N))

where F is a C1
0 (Cd(N)) - smooth function depending only on the components uαi

,
αi ∈ Z2

+,d(N).

Definition 3. The operator δµγ
B : Hβ → C, which satisfies∫

B(u) · ∇f(u)dµγ(u) =
∫
δµγ

B(u) · f(u)dµγ(u)

for any cylindrical function f , is named as the divergence of the field B(u) with
respect to the measure µγ .

Lemma 3.2. For µγ − a. e. u

δµγ
B(u) = 0. (3.3)

Proof. To prove this result we use the approximations Bn
k defined in (3.1). Since

Bn
k does not depend on the component uk, we have

divBn =
∑

k

∂Bn
k

∂uk
= 0.
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Hence for any cylindrical function f = f(u), using integration by parts and (2.11)∫
Bn(u)∇f(u)dµγ(u) = −

∫
< Bn(u), u >H2 f(u)dµγ(u) = 0.

Since

< Bn(u), u >H2=
∑

k∈Z2
+,n

k4Bn
k (u)ūk =

∫
T 2

rot (Un)∇(∆Un) ·∆Undx = 0

for all n fixed. Here Un(x) =
∑

k∈Z2
+,n

ukek(x). Therefore

δµγ
Bn = 0. (3.4)

We deduce (3.3) from (3.2), noting that the definition of δµγB only involves inte-
gration against cylindrical functions. �

4. Euler equations and transport equations

Let us return to the Problem, written as

dUk(t)
dt

= Bk(U(t)), ∀k ∈ Z2
+ (4.1)

with the initial data
Uk(0) = uk. (4.2)

The solution of this system
U = U(t)

can be considered as a function of both the time parameter t ∈ [0, T ] and the initial
data u ∈ C∞, therefore in what follows we consider

U(t, u) = U(t)

for (t, u) ∈ [0, T ]× C∞.
Let us assume, just formally, thatB = B(u) and U = U(t, u) are C1-differentiable

functions; we can write the identity (flow property)

U(t+ s, u) = U(t, U(s, u)), ∀t, s ≥ 0, 0 ≤ t+ s ≤ T. (4.3)

Taking the derivative on the time variable s we obtain

∂

∂t
Uk(t+ s, u) =

∑
l

∂

∂ul
Uk(t, U(s, u))

∂

∂s
Ul(s, u)

=
∑

l

∂

∂ul
Uk(t, U(s, u))Bl(U(s, u))

(4.4)

fo each k ∈ Z2
+. For s = 0 we deduce that the function U = U(t, u) satisfies the

linear transport equation

∂

∂t
Uk(t, u) = B(u) · ∇Uk(t, u), k ∈ Z2

+

with initial condition
Uk(0, u) = uk.

Definition 4. A function U = U(t, u) =
(
Uk(t, u)

)
k∈Z2

+
is called a generalized

forward flow of the Problem if

Uk(t, u) ∈W 1,∞([0, T ], Lp
µγ

(Hβ)), p > 1, ∀k ∈ Z2
+
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and the following identities hold∫
ukΦ(0)f(u)dµγ(u) +

∫ T

0

∫
Uk(t, u)Φ′(t)f(u)dµγ(u)dt

=
∫ T

0

∫
Uk(t, u)

(
B(u) · ∇f(u)

)
Φ(t)dµγ(u)dt

(4.5)

for any cylindrical function f = f(u) and ∀Φ ∈ C1([0, T ]), such that Φ(T ) = 0.

Theorem 4.1. There exists a generalized forward flow U(t, u) for (4.1), (4.2), such
that

Uk(t, u) ∈W 1,∞([0, T ], Lp
µγ

(Hβ)) (4.6)
and ∫

|Uk(t, u)|pdµγ(u) ≤
∫
|uk|pdµγ(u) <∞ (4.7)

for any t ∈ [0, T ] and k ∈ Z2
+.

Proof. From the theory of O. D. E. and the conservation of the energy (Lemma
2.1), there exists a unique solution of{

d

dt
Un

k (t) = Bn
k (Un(t)), ∀k : k ∈ Z2

+,n,

Un(0) = u ∈ Cd(n)
(4.8)

such that
Un(t) = Un(t, u) ∈ C1

(
[0, T ]× Cd(n)

)
. (4.9)

Applying (4.3), (4.4) to each function Un
k (t, u), we deduce that any solution of (4.8)

satisfies the system
∂

∂t
Un

k (t, u) =
∑

l∈Z2
+,n

Bn
l (u)

∂

∂ul
Un

k (t, u)

= Bn(u) · ∇Un
k (t, u),

Un
k (0) = uk.

(4.10)

Let us multiply the first equation in (4.10) by an arbitrary cylindrical function
f = f(u) and arbitrary Φ ∈ C1

(
[0, T ]

)
, such that Φ(T ) = 0. Taking into account

that δµγB
n = 0, we deduce∫

ukΦ(0)f(u)dµγ(u) +
∫ T

0

∫
Un

k (t, u)Φ′(t)f(u)dµγ(u)dt

=
∫ T

0

∫
Un

k (t, u)
(
Bn(u) · ∇f(u)

)
Φ(t)dµγ(u)dt

(4.11)

for any cylindrical function f = f(u) and ∀Φ ∈ C1([0, T ]), such that Φ(T ) = 0.
We also have∫

|Un
k (t, u)|pdµγ(u) =

∫
|uk|pdµγ(u) <∞, (cf. [Ci]) (4.12)

and ∫
|∂tU

n
k (t, u)|pdµγ(u) ≤

∫
|Bk(u)|pdµγ(u) <∞.

Therefore there exists a subsequence of {Un
k , B

n
l } such that, when n→∞,

Un
k (t, u) ⇀ Uk(t, u) (weakly) in W 1,∞([0, T ], Lp

µγ
(Hβ)

)
Bn

l (u) → Bl(u) in Lp
µγ

(Hβ)
(4.13)

for all k, l. This convergence allows to pass to the limit equation (4.11), written
for Un

k (t, u), Bn(u) and conclude that Uk(t, u) satisfies equation (4.5) for every k.
Inequality (4.7) follows from (4.12) and the weak convergence of Un

k (t, u). �



8 N. V. CHEMETOV AND F. CIPRIANO

5. Transport equations and Liouville-type equations

As discussed in [F-M-R-T], in turbulent flow regimes, physical properties are
universally recognized as randomly varying and characterized by suitable probabil-
ity distribution functions. For instance, some turbulent processes, due to technical
difficulties, can not be measured with good precision; measurements are therefore to
be taken with some error estimates. This is why we speak about finding the solution
in some distribution class of initial data. Mathematically this can be formulated as
follows:

If the initial conditions are given according to a measure (distribution)

ν0 = ν0(u) (5.1)
on the phase space C∞, then the solution of the Euler equation (4.1) with ini-
tial distribution ν0 at some later time t will be distributed according to another
distribution

νt = νt(u). (5.2)
How can we determine this time dependent distribution νt = νt(u) with respect to
the initial distribution ν0 = ν0(u)?

Definition 5. A distribution νt = νt(u) is called a generalized backward flow of the
Euler equation (4.1) with initial distribution ν0, if νt(u) is a probability measure
and satisfies the Liouville-type equations∫

f(u)dνt(u) =
∫
f(u)dν0(u) +

∫ t

0

∫
B(u) · ∇f(u)dντ (u)dτ (5.3)

for any cylindrical function f = f(u).

5.1. Existence for initial data absolutely continuous with respect to the
measure µγ. The class of all absolutely continuous probability measures with
respect to the Gaussian measure of the form

v(u)dµγ(u) (5.4)

with v ∈ Lq
µγ

(Hβ), q > 1 will be denoted as Mq
µγ

.

Theorem 5.1. For any initial probabilistic distribution dν0 = v0(u)dµγ(u) ∈Mq
µγ

,
q > 1 there exists a generalized backward flow νt of the Euler equation (4.1) such
that

dνt(u) = V (t, u)dµγ(u) and V (t, u) ∈ L∞
(
[0, T ], Lq

µγ
(Hβ)

)
that is, νt(u) ∈Mq

µγ
, for a. e. t ∈ [0, T ].

Moreover the function V = V (t, u) is a weak solution of the transport equation{
∂tV (t, u) +B(u) · ∇V (t, u) = 0,
V (0, u) = v0(u).

(5.5)

Proof. Let us consider regular initial distributions

dνn
0 (u) = vn

0 (u)dµγ(u),

where vn
0 ∈ C1(Cd(n)),

∫
vn
0 (u)dµγ(u) =

∫
v0(u)dµγ(u) and

vn
0 → v0 in Lq

µγ
(Hβ). (5.6)

Here the function vn
0 can be taken as

(
P 1

n2
v0
)
(Uα1 , . . . , Uαd(n)), αi ∈ Z2

+,d(n), where(
Ptf

)
(u) =

∫
f(e−tu+

√
1− e−2ty)dµγ(y) (5.7)

is the Ornstein-Uhlenbeck operator (see [U-Z]).
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For any cylindrical function f = f(u) we have

d

dt

∫
f
(
Un(t, u)

)
vn
0 (u)dµγ(u) =

∫
∇f
(
Un(t, u)

)
· d
dt
Un(t, u)vn

0 (u)dµγ(u)

=
∫ (

Bn
(
Un(t, u)

)
· ∇f

(
Un(t, u)

))
vn
0 (u)dµγ(u),

here
Un(t, u) ∈ C1

(
[0, T ]× Cd(n)

)
is the solution of problem (4.8). Making a change of variables from u to U = Un(t, u)
we obtain

d

dt

∫
f(u)vn

0

(
Un(−t, u)

)
dµγ(u)

=
∫ (

Bn(u) · ∇f(u)
)
vn
0 (Un(−t, u))dµγ(u)

(5.8)

where we have used (3.4). For the function

V n(t, u) = vn
0

(
Un(−t, u)

)
(5.9)

and according to (3.4), Lemma 2.1 we have∫
|V n(t, u)|qdµγ(u) =

∫
|vn

0

(
Un(−t, u)

)
|qdµγ(u)

=
∫
|vn

0 (u)|qdµγ(u) < C, ∀n.
(5.10)

So there exists a subsequence of V n such that

V n(t, u) ⇀ V (t, u) (weakly) in L∞
(
[0, T ], Lq

µγ
(Hβ)

)
. (5.11)

Hence by (3.2), (5.11) and (5.8) the distribution

dνt(u) = V (t, u)dµγ(u) (5.12)

satisfies (5.3). Since ν0 is a probability measure, convergence (5.11) implies that νt

is also a probability measure.
Let us now show that V (t, U) can be obtained as a weak solution of the transport

equation (5.5). To do it we consider the approximated system ∂tV
n(t, u) +Bn(u) · ∇V n(t, u) = 0,

V n(0, u) = vn
0 (u).

(5.13)

This system has unique regular solution

V n = V n(t, u) ∈ C1
(
[0, T ]× Cd(n)

)
,

which satisfies the identity
d

dt
V n
(
Un(t, u)

)
= 0,

i. e. V n(t, u) verifies (5.9). On the other hand V n(t, u) is a solution of the weak
formulation for the problem (5.13), namely

∫
vn
0 (u)Φ(0)f(u)dµγ(u) +

∫ T

0

∫
V n(t, u)Φ′(t)f(u)dµγ(u)dt

=
∫ T

0

∫
V n(t, u)

(
Bn(u) · ∇f(u)

)
Φ(t)dµγ(u)dt

(5.14)
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for any fixed cylindrical function f = f(u). From (3.2) and (5.11) we deduce that
V (t, U) is a weak solution of (5.5). �

Remark 1. The measure νt = µγ , ∀t ≥ 0 is a particular generalized backward
solution of the Euler Equation (4.1) with initial condition (5.1), a result which has
been proved in paper [A-C].

In the following two paragraphs we study of the evolution of turbulent processes
with the initial data, which are Dirac measures.

5.2. Approximation of the Dirac measure. Since we shall need the results of
Lemma 3.1, in this subsection and in the subsection 5.3, we consider the space Hβ

with a fixed β, such that

β < −1. (5.15)

Let δz0 be the Dirac measure concentrated at a given point z0 ∈ Hβ , that is for
any set A ⊆ Hβ , we have

(a) δz0(A) = 1, if z0 ∈ A;
(b) δz0(A) = 0, if z0 /∈ A.

Now let us consider the Gaussian measure µγ for a fixed constant γ > 0. The
main objective of this subsection is to construct an approximation of the Dirac
measure δz0 with respect of the measure µγ .

Let ε > 0 be a fixed real. If we take an arbitrary z0 ∈ Hβ , we define the set

Bεk
(z0

k) = {zk ∈ C : |zk − z0
k| 6 εk}

with εk =
ε

k3/2
and z0

k being the k-th coordinate of z0. Then for the characteristic

function of the set Bεk
(z0

k)

χεk

z0
k
(zk) =

 1, if zk ∈ Bεk
(z0

k),

0, if zk /∈ Bεk
(z0

k),
(5.16)

we have that the integral

gk,ε(z0
k) :=

∫
C
χεk

z0
k
(zk)dµk

γ(zk) (5.17)

is equal to

γk4

2π

∫
Bεk

(0)

e−
γk4

2 |zk+z0
k|

2
dzk.

Let us compute the integral of gk,ε(z0
k) on C with respect to the measure µk

γ(z0
k)

Sk :=
∫

C
gk,ε(z0

k)dµk
γ(z0

k) =
[γk4

2π

]2 ∫
Bεk

(0)

Ikdzk (5.18)

with

Ik =
∫

C
e−

γk4

2 (|zk+z0
k|

2+|z0
k|

2)dz0
k.

Since

|zk + z0
k|2 + |z0

k|2 =
∣∣∣√2z0

k +
1√
2
zk

∣∣∣2 +
1
2
|zk|2,

introducing the new variable

z0
k =

√
2z0

k +
1√
2
zk,
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we easily find that

Ik =
π

γk4
e−

γk4

4 |zk|2 .

Therefore by (5.18) we obtain

0 < Sk = 1− e−|k|A < 1 (5.19)

with A = γε2

4 .

Let us now define three sequences

Ln : =
n∏

j=1

(1− e−jA)2j ,

Rj : =
∏

k∈Z+
2

|k|=j

Sk ≡
∏

k∈Z+
2

|k|=j

(1− e−jA), j = 1, 2, ..., n,

Tn : =
n∏

j=1

Rj , ∀n = 1, 2, ... (5.20)

By (5.19), (5.20) and #{|k| = j} 6 2j, we have that {Ln}, {Tn} are monotone
decreasing sequences, such that

0 < Ln ≤ Tn < 1, ∀n = 1, 2, ... (5.21)

Using the comparison criteria of convergence of series and the convergence of the

serie
∞∑

j=1

2j · e−jA we see that the monotone increasing sequence

0 < −ln(Ln) =
n∑

j=1

2j ln(1− e−jA)

is bounded above, hence by (5.21)

0 < lim
n→∞

Ln 6 T∞ := lim
n→∞

Tn < 1

or

0 < T∞ < 1. (5.22)

Let us consider the sequence {χ(n,ε)
z0 (z)}∞n=1 of the functions defined as

χ
(n,ε)
z0 (z) :=

∏
k∈Z+

2
|k|≤n

χεk

z0
k
(zk),∀(z0, z) ∈ Hβ ×Hβ (5.23)

that is monotone decreasing in n and bounded

0 6 χ
(n,ε)
z0 (z) 6 1, ∀(z0, z) ∈ Hβ ×Hβ . (5.24)

It is clear that ∀(z0, z) ∈ Hβ ×Hβ

χ
(n,ε)
z0 (z) → χε

z0(z) :=
∏

k∈Z+
2

χεk

z0
k
(zk), when n→ +∞.

Let us introduce the following functions

f (n,ε)(z0) =
∫
χ

(n,ε)
z0 (z) dµγ(z), fε(z0) =

∫
χε

z0(z) dµγ(z).
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By Lebesgue’s theorem of dominated convergence and (5.17), (5.18), (5.20), (5.22),
we have

lim
n→∞

f (n,ε)(z0) = fε(z0), ∀z0 ∈ Hβ

and ∫ ∫
χε

z0(z) dµγ (z) dµγ(z0) =

= lim
n→∞

∫ [ ∫
χ

(n,ε)
z0 (z) dµγ (z)

]
dµγ(z0) =

= lim
n→∞

Tn = T∞ ∈ (0, 1).

Fubini’s theorem implies

0 < fε(z0) for µγ– a.e. z0 and
∫
fε(z0) dµγ(z0) ∈ (0, 1).

Therefore the functions

δ
(n,ε)
z0 (z) :=

1
f (n,ε)(z0)

· χ(n,ε)
z0 (z), δε

z0(z) :=
1

fε(z0)
· χε

z0(z) (5.25)

are well defined and

δ
(n,ε)
z0 (z) → δε

z0(z), when n→∞ (5.26)

for µγ–a.e. z0 and ∀z ∈ Hβ .
Moreover we have

1)
∫
δε
z0(z) dµγ (z) = 1 for µγ–a.e. z0;

2) For µγ–a.e. z0, the function δε
z0(z) has a compact support with respect to

the weak topology in Hβ :

supp(δε
z0) =

{
z ∈ Hβ : |zk − z0

k| 6
ε

k1+1/2
, ∀k ∈ Z+

2

}

⊂ BεD(z0) =

{
z ∈ Hβ : ||z − z0||2Hβ 6

6
∑

k∈Z+
2

|zk − z0
k|2 6 ε2

∑
k∈Z+

2

1
k3

=: ε2D2

}
.

By properties 1), 2) and Prokhorov’s theorem [G-S], there exists a subsequence of
the measures δε

z0(z) dµγ(z) converging weakly to a measure dmz0(z),

δε
z0(z) dµγ(z)⇀dmz0(z) weakly for µγ -a.e. z0,

when ε→ 0. By 1), 2), we have that
a)
∫

1 dmz0 (z) = 1 for µγ -a.e. z0;
b) For any cylindrical function ϕ = ϕ(z), such that z0 /∈ supp(ϕ),we deduce∫

ϕ(z) dmz0(z) = 0.

Therefore mz0 coincides with the Dirac measure δz0
, that is, for ε→ 0

δε
z0(z) dµγ(z) ⇀ dδz0(z) weakly for µγ-a.e. z0. (5.27)

In what follows we use the approximations δ(n,ε)
z0 , δε

z0 to construct the measure
valued solutions of problem (5.1)-(5.2), where the initial data is the Dirac measure.
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5.3. Existence for Dirac measure initial data. In this paragraph we will as-
sume that good measurements of turbulent process can be made. In that case the
evolution of system should be described by a generalized solution associated with
initial Dirac measure.

Let us assume that the initial distribution (5.1) is the Dirac measure, concen-
trated at a given point

u0 ∈ supp(µγ). (5.28)

In the sequel we prove the following theorem.

Theorem 5.2. For µγ-a.e. u0 there exists a generalized backward flow

νt = νt(u), u ∈ Hβ for β < −1

of (4.1), satisfying equality (5.3) with the initial distribution (5.1), such that

ν0 = δu0 .

Proof. The proof will be done in three steps. In the first step we construct ap-
proximated solutions of our problem, satisfying the Liouville-type equations (5.3).
The second step will be devoted to show that this set of approximated solutions is
pre-compact in a corresponding space of measures. In the last step we pass to the
limit integral equations (5.3).

1st step. Let us note that the approximation δ
(n,ε)
u0 of the Dirac measure δu0

satisfies ∫
|δ(n,ε)

u0 (u)|2dµγ(u) =
1

f (n,ε)(u0)
<∞. (5.29)

Then for the regular initial distribution δ(n,ε)
u0 , by Theorem 5.1, the function

v(n,ε)(t, u) = δ
(n,ε)
u0 (Un(−t, u)), (5.30)

where Un = Un(t, u) is the solution of problem (4.8), fulfills the identity

Φ(0) ·
∫

f(u) δ(n,ε)
u0 (u) dµγ(u) +

∫ T

0

Φ′(t)

[∫
f(u) v(n,ε)(t, u) dµγ(u)

]
dt

=
∫ T

0

Φ(t)

[∫
(Bn(u) · ∇f(u)) v(n,ε)(t, u) dµγ(u)

]
dt (5.31)

for any fixed cylindrical function f = f(u) and any Φ(t) ∈ C1([0, T ]), such that
Φ(T ) = 0.

2nd step. We show that this identity converges when n → ∞ and ε → 0.
Namely we prove that the set of measures

dν
(n,ε)
t (u) := v(n,ε)(t, u) dµγ(u) (5.32)

is relatively compact for the weak topology of measures on Hβ .
Let C([0, T ],Hβ) be the space of continuous functions, depending on the param-

eter t ∈ [0, T ], with values in Hβ . We introduce the measure

ν(n,ε)(Γ) :=
∫

SΓ

δ
(n,ε)
u0 (u) dµγ(u), (5.33)

defined for any set Γ ⊂ C([0, T ],Hβ). Here

SΓ := {u ∈ Hβ : Un(·, u) ∈ Γ}. (5.34)

For any integrable functional F : C([0, T ],Hβ) → R, we have∫
Hβ

F (Un(·, u))δ(n,ε)
u0 (u)dµγ(u) =

∫
C([0,T ],Hβ)

F (y)dν(n,ε)(y). (5.35)
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For a fixed time moment t ∈ [0, T ] and a given function f : C(Hβ) → R, we define
the functional F : C([0, T ],Hβ) → R by

F (y) := f(y(t)) for any y ∈ C([0, T ],Hβ).

Then, in this particular case, the right side of the identity (5.35) is equal to∫
f(Un(t, u))δ(n,ε)

u0 (u)dµγ(u) =
∫
f(u)δ(n,ε)

u0

(
Un(−t, u)

)
dµγ(u)

=
∫
f(u)dν(n,ε)

t (u).
(5.36)

Hence by (5.35) and (5.36), the relative compactness of the set of measures {dν(n,ε)(y)}
in the sense of weak convergence of measures on C([0, T ],Hβ) implies the relative
compactness of {dν(n,ε)

t (u)} in the sense of weak convergence of measures on Hβ

for a.e. fixed t ∈ [0, T ].
Then, in the sequel, the objective is to show that the set of measures {dν(n,ε)(y)}

is relatively compact in the sense of weak convergence of measures on C([0, T ],Hβ).
Let us denote by Cc(Hβ) the space of continuous functions on Hβ with a compact
support (in weak topology) on Hβ . We introduce the operator

V (n,ε)(Ψ,Γ) :=
∫

Ψ(u0)

[∫
SΓ

δ
(n,ε)
u0 (u) dµγ(u)

]
dµγ(u0), (5.37)

defined for any function Ψ ∈ Cc(Hβ) and any set Γ ⊂ C([0, T ],Hβ).
We fix an arbitrary function Ψ ∈ Cc(Hβ), put

A := ||Ψ||Cc(Hβ)

and choose a sufficiently large real R > 0, such that

supp (Ψ) ⊂ BR = {u0 ∈ Hβ : ||u0||Hβ < R}.

Let us verify that the set of measures

V n(Ψ, ·) := V (n,εn)(Ψ, ·), n = 1, 2, 3, ..., (5.38)

where the exact value of εn is defined below in (5.43), satisfies the following condi-
tions

a) lim
ρ→+∞

sup
n
V n(Ψ, ||y(0)||Hβ > ρ) = 0;

b) For any fixed ρ > 0, we have that

lim
δ→0

sup
n
V n(Ψ, sup

06t<t16T
t1−t6δ

||y(t)− y(t1)||Hβ > ρ) = 0.

By Prokhorov’s criteria ([Mal], Theorem 2.6) these two conditions guarantee that
the set of measures {V n(Ψ, ·)} is tight (see, for instance, [Mal], Theorems 4.2 and
4.3), therefore this set is relatively compact in the sense of weak convergence of
measures on C([0, T ],Hβ).

Let us start from the proof of condition a). We have

V (n,ε)(Ψ, ||y(0)||Hβ > ρ) 6 A ·
∫

BR

[∫
χ

SΓ
(u) · δ(n,ε)

u0 (u) dµγ(u)

]
dµγ(u0).

Since

SΓ = {u ∈ Hβ : Un(·, u) ∈ Γ = {y(·) ∈ C([0, T ],Hβ) : ||y(0)||Hβ > ρ}}
= {u ∈ Hβ : Un(0, u) = u and ρ < ||u||Hβ},
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using the definition (5.25), we deduce

V (n,ε)(Ψ, ||y(0)||Hβ > ρ) 6
A

ρ

∫
BR

[∫
||u||Hβ · δ(n,ε)

u0 (u)dµγ(u)

]
dµγ(u0).

For any u ∈ Hβ , u0 ∈ BR, which satisfy ||u − u0||Hβ < ε · D, we have ||u||Hβ <
||u0||Hβ + ε ·D < C, hence

V (n,ε)(Ψ, ||y(0)||Hβ > ρ) 6
A · C
ρ

,

that implies condition a).
Now we show that the set of measures {V n(Ψ, ·)} satisfy condition b). We have

V (n,ε)

(
Ψ, sup

06t<t16T
t1−t6δ

||y(t)− y(t1)||Hβ > ρ

)
(5.39)

6 A ·
∫

BR

[∫
S

δ
(n,ε)
u0 (u) dµγ(u)

]
dµγ(u0) = I,

where

S =

{
u ∈ Hβ : sup

06t<t16T
t1−t6δ

||Un(t, u)− Un(t1, u)||Hβ > ρ

}
.

From (4.8)

||Un(t1, u)− Un(t, u)||Hβ 6
∫ t1

t

||Bn(Un(s, u))||Hβds

for any 0 6 t < t1 6 T. Hence, using Lemma 3.1 and (3.2),

I 6
A

ρ
·
∫ t1

t

{∫
BR

∫
||Bn(Un(s, u))||Hβδ

(n,ε)
u0 (u)dµγ(u)dµγ(u0)

}
dt

6
A

ρ
·
∫ t1

t

{∫
BR

||Bn(Un(s, u0))||Hβdµγ(u0)+

+
∫

BR

[∫
||Bn(Un(s, u))−Bn(Un(s, u0))||Hβδ

(n,ε)
u0 (u)dµγ(u)

]
dµγ(u)

}
dt. (5.40)

From (4.9), in the bounded domain M := {(t, u0, u) ∈ [0, T ]× C∞ × C∞ : u0 ∈
BR and ||u − u0||Hβ 6 ε · D} the functions Un(t, u), Un(t, u0) are bounded. By
(3.1), there exists a constant Cn, depending only on the parameter n and satisfying
the inequality

||Bn(Un(s, u))−Bn(Un(s, u0))||Hβ 6 Cn||Un(s, u)− Un(s, u0)||Hβ , (5.41)

Let us note that Cn →∞, when n→∞. By (4.8), (5.41), the function

z(t) := ||Un(s, u)− Un(s, u0)||Hβ

satisfies the Gronwall type inequality dz(t)
dt 6 Cn · z(t) with the initial condition

z(0) = ||u− u0||Hβ , that implies

z(t) 6 z(0) · exp(CnT ) for any t ∈ [0, T ]. (5.42)

In the following considerations, we assume that the parameter ε depends on n and
is equal to

εn := C−1
n · exp(−CnT ). (5.43)
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Considering estimates (5.40)-(5.43) and Lemma 3.1, we deduce the inequality

V n

(
Ψ, sup

06t<t16T
t1−t6δ

||y(t)− y(t1)||Hβ > ρ

)
6

δ ·A
ρ

· C,

with the constant C, which is independent on n. Taking δ → 0, we conclude that
the measures V n(Ψ, ·) fulfill condition (b).

Therefore, for any fixed function Ψ ∈ Cc(Hβ), there exist a measure V (Ψ, ·) on
C([0, T ],Hβ) and a subsequence n = n(Ψ) →∞, such that

V n(Ψ)(Ψ,Γ) →
n(Ψ)→∞

V (Ψ,Γ) (5.44)

for all Γ ⊂ C([0, T ],Hβ).
Let us show that such subsequence can be choosen independently of Ψ ∈ Cc(Hβ).
1) Let P := {Ψi ∈ Cc(Hβ) : i = 1, 2, 3, ...} be a dense set in Cc(Hβ).
2) Since the set P is countable, we can select a subsequence of n→∞, that for

simplicity of notations we still denote by n, such that for any Ψ ∈ P, we have

V n(Ψ,Γ) →
n→∞

V (Ψ,Γ) (5.45)

for all Γ ⊂ C([0, T ],Hβ).
3) Let us now fix an arbitrary Ψ ∈ Cc(Hβ). There exists a subsequence n =

n(Ψ) → ∞ of the sequence {n : n = 1, 2, 3, ...}, constructed in 2), and a measure
V (Ψ, ·), satisfying (5.44). In fact, we can verify that the sequence {V n(Ψ, ·)}∞n=1

itself is convergent. To do it, it is enough to show that {V n(Ψ, ·)}∞n=1 is a Cauchy
sequence. Since there exists a sequence Ψik

∈ P, ik →∞, such that

||Ψik
−Ψ||C(Hβ) →

ik→∞
0,

then by (5.37), the convergence (5.45) and the inequality

|V l(Ψ)− V j(Ψ)| 6 |V l(Ψ)− V l(Ψik
)|+

+|V l(Ψik
)− V j(Ψik

)|+ |V j(Ψik
)− V j(Ψ)|,

we deduce that {V n(Ψ, ·)}∞n=1 is the Cauchy sequence. Hence the sequence {n : n =
1, 2, 3, ...}, constructed in 2), satisfies the convergence (5.45) for any Ψ ∈ Cc(Hβ).

Let us note that for any fixed Γ ⊂ C([0, T ],Hβ), the operator V n(Ψ,Γ) as the
function of the parameter Ψ ∈ Cc(Hβ) is linear, then it is easy to verify that the
operator V (Ψ,Γ) is also linear in Ψ. By Kakutani-Riesz Representation theorem,
if we denote by B the set of all Borel sets in Hβ , there exist a σ-algebra Σ on the
space Hβ , that contains B, and a unique positive measure µΓ on Σ, which represent
the operator V as

V (Ψ,Γ) =
∫

Ψ(u0) dµΓ(u0), Ψ ∈ Cc(Hβ) (5.46)

for any fixed Γ ⊂ C([0, T ],Hβ).
Let us consider the constructed measure µΓ and the measure µγ , which are two

measures on the topological space (Hβ ,B). By the Radon-Nikodym theorem (see,
for instance, [U-Z]) there exists an integrable positive real function ΛΓ(u0) on the
space (Hβ , B, µγ) and a set N of zero measure on the space (Hβ , µγ), such that
for each set A ∈ B we have

µΓ(A) =
∫

A

ΛΓ(u0) dµγ(u0) + µΓ(A ∩N )

for any fixed Γ ⊂ C([0, T ],Hβ). Moreover for any set A ∈ B such that µγ(A) = 0,
using (5.37), ( 5.45) and ( 5.46), we can easily show that µΓ(A) = 0. Therefore
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by the particular case of the Radon-Nikodym theorem ([U-Z], page 3) the set N is
empty, which implies

µΓ(A) =
∫

A

ΛΓ(u0) dµγ(u0)

and

V (Ψ,Γ) =
∫

Ψ(u0) ΛΓ(u0) dµγ(u0),

for any function Ψ ∈ Cc(Hβ) and any set Γ ⊂ C([0, T ],Hβ). Considering (5.37)
and (5.45), we obtain for µγ- a.e. u0

ν(n,εn)(Γ) =
∫

SΓ

δ
(n,εn)
u0 (u) dµγ(u) →

n→∞
Λu0(Γ) := ΛΓ(u0)

for any set Γ ⊂ C([0, T ],Hβ) with the set SΓ, defined by (5.34). The function
Λu0(·) is a probability measure on C([0, T ],Hβ), therefore, taking into account
(5.32), (5.35), (5.36), for µγ-a.e. u0 we get that there exists a probability measure

dνu0

t = dνu0

t (u), for each t ∈ [0, T ]

on Hβ , such that

ν
(n,εn)
t (Γ) →

n→∞
νu0

t (Γ) (5.47)

for any set Γ ⊂ C(Hβ).
3d step. With the help of (3.2), (5.25)-(5.27) and (5.47), passing to the limit

on n → ∞ in equality (5.31) written for ε = εn, we obtain that the measures
{νu0

t , t ∈ [0, T ]} satisfy the equality

Φ(0) · f(u0) +
∫ T

0

Φ′(t)

[∫
f(u)dνu0

t (u)

]
dt =

=
∫ T

0

Φ(t)

[∫
(B(u) · ∇f(u)) dνu0

t (u)

]
dt

for any fixed cylindrical function f = f(u) and any Φ(t) ∈ C1([0, T ]), such that
Φ(T ) = 0.

Hence we have shown that for µγ-a.e. u0 the set of the probability measures
{νu0

t , t ∈ [0, T ]} is the generalized backward flow of the Euler equation (4.1) with
the initial distribution ν0 = δu0 . �

6. Conclusion

From (4.7) we have∫
‖U(t, u)‖2Hβdµγ <∞, t ∈ [0, T ], β < 1.

Hence for µγ - a. e. fixed u, using (2.8), U(t, u) is a function of (t, x)

U(t, x) =
∑

k∈Z2
+

Uk(t, u)ek(x) ∈ L∞
(
[0, T ],Hβ

)
satisfying the periodic conditions (2.2) and the initial data (2.4): U(0, x) = u(x).
The function U(t, x) may not satisfy Euler equation (2.1), because the Fourier
coefficients may not correspond to a solution of the infinite dimensional equation
(2.6).

One possible approach to this open problem is the method of the re-normalized
solutions [DiP-L].
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As is well known, there are two different ways of expressing the behaviour of the
fluid: the Lagrangian and the Eulerian point of view. Their difference lies in the
choice of coordinates to describe flow phenomena.

In the Lagrangian description, the fluid is viewed as a collection of fluid particles
(elements) that are freely translating, rotating, and deforming. To obtain a full
description of the flow we need to identify the initial position of the elements.

In our case, the relationship

U = U(t, u)

is the statistical Lagrangian description of the fluid.
In the Eulerian description, an observed point of the physical space remains un-

changed by time t. Quantities (velocities, temperature, pressure, etc.) are measured
at different instances of t.

Hence, our quantities
µt = µt(U), V = V (t, U)

are determined as functions of Euler parameters: the time t and the observed point
U .

Acknowledgements

The authors are grateful to Prof. A. B. Cruzeiro for her suggestions, very helpful
discussions and corrections.

N.V. Chemetov thanks for support from FCT, project POCTI / MAT / 45700 /
2002. Financial support of FCT, project POCTI / MAT / 55977 / 2004 is gratefully
acknowledged by F. Cipriano.

References
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Math., 2 e série. 112, 3-52, 1988.

[A-H.K-M] S.Albeverio, R. Hoegh-Krohn and D. Merlini, Some remarks on Euler flow, associated
generalized random fields and Coulomb systems, 216-244. In Infinite dimensional analysis and

stochastic processes, S.Albeverio (ed.) London: Pitman 1985.

[A-H.K-R.F] S.Albeverio, M. Ribeiro de Faria and R. Hoegh-Krohn, Stationary measures for the
periodic Euler flow in two dimensions, J. Stat. Phys., 20, 585-595, 1979.

[A-C] S. Albeverio and A. B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler

and Navier-Stokes two dimensional fluids, Commun. Math. Phys., 129, 431-444, 1990.
[B-F] C. Boldrighini, S. Frigio, Equilibrium states for the two-dimensional incompressible Euler

fluid, Atti Sem. Mat. Fis. Univ. Moderna XXVII, 106-125, 1978.
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