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Abstract

A nonlinear equation, similar to the Burgers’ equation with the
usual product replaced by a convolution product, is studied. The ini-
tial condition is a generalized stochastic process. By using the Laplace
transform in a general white noise analysis setting, a general solution
is found in (1 + n)-dimensions.
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1 Introduction

The aim of this paper is to study the following nonlinear stochastic equation
of convolution type

⎧⎪⎨
⎪⎩

∂�u

∂t
+ (�u ∗ �∇)�u = νΔ�u + �f ∗ �u

�u(0, x) = �u0(x),

(1)
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where �u is a Rn-generalized vector field, �f is a n-dimensional generalized func-
tion, ν > 0 a real constant, t ∈ [0,∞) the time parameter, x = (x1, . . . , xn) ∈
Rn the spatial variable, Δ the Laplacian operator in Rn, ∇ the gradient and
∗ the convolution product for generalized functions (see [1], [11] and Subsec-

tion 2.2 for more details), �f ∗�u is a driving term, �u∗ �∇ denotes the differential
operator

n∑
j=1

uj ∗ ∂

∂xj

and the initial condition �u0 = (u0,1, · · · , u0,n) is a n-dimensional generalized
stochastic process, see Section 3 for more details.

Problem (1) with ∗ replaced by the usual product coincides with the
classical Burgers equation well known in the literature ([3], [5] and refer-
ences therein). However the physical interpretation of (1) is quite different.
This is easily seen by comparing the j-component, for any j, 1 ≤ j ≤ n,
the Fourier transform of the nonlinear kinetic term (�u.∇)�u in the Burgers
equation, namely

∫
Rn

dnq
n∑

i=1

ũi(t, q)(k − q)iũj(t, k − q) (2)

with the j-component of the Fourier transform of the nonlinear term in (1),
(�u ∗ ∇)�u

n∑
i=1

ũi(t, k)kiũj(t, k) (3)

ũi denoting the Fourier transform of ui.
In the Burgers case the expression (2) implies that the Fourier modes at

length scale 2π
q

and 2π
k−q

control the eddies at scale 2π
k

, consistent with the
phenomenological description of the inertial range in the turbulence cascade.
However, in the convolution case the nonlocal nonlinearity corresponds to a
self-interaction of the modes at each length scale. Nevertheless, nonlocal non-
linearities are also important in models of transport in magnetized plasmas,
see [4] and also in the modeling of convection driven by density gradients as
it arises in geophysical fluid flows, see [12], [13], [14] and [15].

By restricting oneself to solutions of gradient type, the Burgers equation
may be linearized by the Cole-Hopf transformation. This provides the most
general solution for (1 + 1)-dimensions but not for (1 + n)-dimensions. For
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our equation (1), using the Laplace transform in a general setting, we obtain
a general solution for (1 + n)-dimensions.

The paper is organized as follows: In Section 2 we provide the mathemat-
ical background needed to solve the Cauchy problem stated above, namely
spaces of test and generalized functions, the characterization theorem of gen-
eralized functions and the convolution product as well as some of its proper-
ties. In Section 3 we combine the convolution calculus and the characteriza-
tion theorem in order to find an explicit solution of the problem (1).

2 Preliminaries

2.1 Test and generalized functions spaces

In this section we introduce the framework needed later on. The starting
point is the real Hilbert space H = L2(R, Rd)×Rr, d, r ∈ N with scalar prod-
uct (·, ·) and norm | · |. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈
H, then

|(f, x)|2 :=
d∑

i=1

∫
R

f2
i (u)du +

r∑
i=1

x2
i = |f |2L2 + |x|2

Rr .

Let us consider the real nuclear triplet

M′ = S ′(R, Rd) × R
r ⊃ H ⊃ S(R, Rd) × R

r = M. (4)

The pairing 〈·, ·〉 between M′ and M is given in terms of the scalar product
in H, i.e., 〈(ω, x), (ξ, p)〉 := (ω, ξ)L2 + (x, p)Rr , (ω, x) ∈ M′ and (ξ, p) ∈ M.
Since M is a Fréchet nuclear space, it can be represented as

M =
∞⋂

n=0

Sn(R, Rd) × R
r =

∞⋂
n=0

Mn,

where Sn(R, Rd)×Rr is a Hilbert space with norm squared given by |·|2n+|·|2
Rr ,

see e.g. [8] or [2] and references therein. We will consider the complexification
of the triple (4) and denote it by

N ′ ⊃ Z ⊃ N , (5)

where N = M+iM and Z = H+iH. On M′ we have the standard Gaussian
measure γ given by Minlos’s theorem via its characteristic functional, namely
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for every (ξ, p) ∈ M

Cγ(ξ, p) =

∫
M′

exp(i〈(ω, x), (ξ, p)〉)dγ((ω, x)) = exp

(
−1

2
(|ξ|2L2 + |p|2

Rr)

)
.

In order to solve the (1+n)-dimensional equation of convolution type (1)
we need to introduce an appropriate space of vectorial generalized functions.
We borrow this construction from [9]. Let θ = (θ1, θ2) : R2

+ → R, (t1, t2) �→
θ1(t1) + θ2(t2) where θ1, θ2 are two Young functions, i.e., θi : R+ → R+

continuous convex strictly increasing function and

lim
t→∞

θi(t)

t
= ∞, θi(0) = 0, i = 1, 2.

For every pair m = (m1,m2) with m1,m2 ∈]0,∞[, we define the Banach
space Fθ,m(N−n), n ∈ N by

Fθ,m(N−n) := {f : N−n → C, entire, ‖f‖θ,m,n < ∞},
where

‖f‖θ,m,n := sup
z∈N−n

{|f(z)| exp(−θ(m|z|−n),

Here, for each z = (ω, x) we have θ(m|z|−n) := θ1(m1|ω|−n) + θ2(m2|x|).
Now we consider as test function space the space of entire functions on N ′

of (θ1, θ2)-exponential growth and minimal type

Fθ(N ′) :=
⋂

m∈(R∗
+)2,n∈N0

Fθ,m(N−n),

endowed with the projective limit topology. We would like to use Fθ(N ′)
to construct a triple centered in the complex Hilbert space L2(M′, γ). To
this end we need another condition on the pair of Young functions (θ1, θ2).
Namely,

lim
t→∞

θi(t)

t2
< ∞, i = 1, 2. (6)

This is enough to obtain the following Gelfand triple

F ′
θ(N ′) ⊃ L2(M′, γ) ⊃ Fθ(N ′), (7)

where F ′
θ(N ′) is the topological dual of Fθ(N ′) with respect to L2(M′, γ)

endowed with the inductive limit topology.

4



In applications it is very important to have the characterization of gen-
eralized functions from F ′

θ(N ′). First we define the Laplace transform of
an element in F ′

θ(N ′). For every fixed element (ξ, p) ∈ N the exponential
function exp((ξ, p)) is a well defined element in Fθ(N ′), see [7]. The Laplace
transform L of a generalized function Φ ∈ F ′

θ(N ′) is defined by

Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉. (8)

We are ready to state to characterization theorem (see e.g., [7] and [1] for
the proof) which is the main tool in our further consideration.

Theorem 2.1 1. The Laplace transform is a topological isomorphism be-
tween F ′

θ(N ′) and the space Gθ∗(N ), where Gθ∗(N ) is defined by

Gθ∗(N ) :=
⋃

m∈(R∗
+)2,n∈N0

Gθ∗,m(Nn),

and Gθ∗,m(Nn) is the space of entire functions on Nn with the following
θ-exponential growth condition

Gθ∗,m(Nn)  g, |g(ξ, p)| ≤ k exp(θ∗1(m1|ξ|n) + θ∗2(m2|p|)), (ξ, p) ∈ Nn.

Here θ∗ = (θ∗1, θ
∗
2), where θ∗i = supt≥0 (tx − θi (t)) is the Legendre trans-

form associated to the function θi, i = 1, 2.

2. In the particular case θ(x) = (θ1(x), θ2(x)) = (x, x), we denote the
space F ′

θ(N ′) by F ′
x(N ′). Then the Laplace transform realizes a topolog-

ical isomorphism between the distributions space F ′
x(N ′) and the space

Hol0(N ) of holomorphic function on a neighborhood of zero of N .

2.2 The Convolution Product ∗
It is well known that in infinite dimensional complex analysis the convolution
operator on a general function space F is defined as a continuous operator
which commutes with the translation operator. Let us define the convolution
between a generalized and a test function. Let Φ ∈ F ′

θ(N ′) and ϕ ∈ Fθ(N ′)
be given, then the convolution Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,
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where τ−(ω,x) is the translation operator, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

It is not hard the see that Φ ∗ ϕ ∈ Fθ(N ′), cf. [7]. The convolution product
is given in terms of the dual pairing as (Φ ∗ ϕ)(0, 0) = 〈〈Φ, ϕ〉〉 for any Φ ∈
F ′

θ(N ′) and ϕ ∈ Fθ(N ′).
We can generalize the above convolution product for generalized functions

as follows. Let Φ, Ψ ∈ F ′
θ(N ′) be given, then Φ ∗ Ψ is defined by

〈〈Φ ∗ Ψ, ϕ〉〉 := 〈〈Φ, Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N ′). (9)

This definition of convolution product for generalized functions will be
used later for the solution of the equation (1). We have the following equality,
(see [11], Proposition 3):

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)), (ξ, p) ∈ N .

As a consequence of the above equality and definition (9) we obtain

L(Φ ∗ Ψ) = LΦLΨ, Φ, Ψ ∈ F ′
θ(N ′) (10)

which says that the Laplace transform maps the convolution product on
F ′

θ(N ′) into the usual pointwise product in the algebra of functions Gθ∗(N ).
Therefore we may use Theorem 2.1 to define the convolution product between
two generalized functions as

Φ ∗ Ψ = L−1(LΦLΨ).

This allows us to introduce the convolution exponential of a generalized
function. In fact, for every Φ ∈ F ′

θ(N ′) we may easily check that exp(LΦ) ∈
Geθ∗ (N ). Using the inverse Laplace transform and the fact that any Young
function θ verifies the property (θ∗)∗ = θ we obtain that L−1(Geθ∗ (N )) =
F ′

(eθ∗)∗(N ′). Now we give the definition of the convolution exponential of

Φ ∈ F ′
θ(N ′), denoted by exp∗ Φ

exp∗ Φ := L−1(exp(LΦ)).

Notice that exp∗ Φ is a well defined element in F ′
(eθ∗ )∗(N ′) and therefore

the distribution exp∗ Φ is given in terms of a convergent series

exp∗ Φ = δ0 +
∞∑

n=1

1

n!
Φ∗n, (11)

6



where Φ∗n is the convolution of Φ with itself n times, Φ∗0 := δ0 by convention
with δ0 denoting the Dirac distribution at 0. We refer to [1] for more details
concerning convolution product on F ′

θ(N ′).
A one parameter generalized stochastic process with values in F ′

θ(N ′) is
a family of generalized functions {Φ(t), t ≥ 0} ⊂ F ′

θ(N ′). The process Φ(t)
is said to be continuous if the map t �→ Φ(t) is continuous. For a given
continuous generalized stochastic process (X(t))t≥0 we define the generalized
stochastic process

Y (t, ω, x) =

∫ t

0

X(s, ω, x)ds ∈ F ′
θ(N ′)

by

L
(∫ t

0

X(s, ω, x)ds

)
(ξ, p) :=

∫ t

0

LX(s, ξ, p)ds. (12)

The process Y (t, ω, x) is differentiable and we have ∂
∂t

Y (t, ω, x) = X(t, ω, x).
The details of the proof can be seen in [10], Proposition 11.

2.3 Convolution inverse of distributions

Let Φ a fixed element on the distribution space F ′
θ(N ′) and consider the

following convolution equation

Φ ∗ Ψ = δ0, (13)

Applying the Laplace transform to the convolution equation (13) we obtain

Φ̂.Ψ̂ = 1.

If Φ̂(ξ, q) �= 0 for every (ξ, q) ∈ N , then using the division result in the space
Gθ∗(N ) (see [6]) we obtain

Ψ̂ =
1

Φ̂
∈ Gθ∗(N ).

Moreover, by the Laplace transform isomorphism (see Theorem 2.1), we prove
the existence and uniqueness of the solution Ψ ∈ F ′

θ(N ′) in the equation (13).
If we denote this solution Ψ by Φ∗−1, we have

L(
Φ∗−1

)
=

1

L(Φ)
.

This division result is also true in the limit case θ(x) = (x, x); i. e., Φ̂ ∈
Gθ∗(N ) = Hol0(N ).
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3 Solution of the n-dimensional convolution

equation

We are now ready to solve the Cauchy problem stated in (1) which we recall
for the reader convenience, namely⎧⎪⎨

⎪⎩
∂�u

∂t
+ (�u ∗ �∇)�u = νΔ�u + �f ∗ �u

�u(0, x) = �u0(x).

(14)

The different terms in (14) are as follows: �u0(x) = (u0,1(x), . . . , u0,n(x))
is a generalized function; u0,j(x) ∈ F ′

θ(N ′), ν > 0 a real constant, x =

(x1, . . . , xn) ∈ Rn, �u = (u1, . . . , un), �f = (f1, . . . , fn), with fj = fj(t, x), uj

∈ F ′
θ(N ′). We denote

�f ∗ �u = (f1 ∗ u1, . . . , fn ∗ un)

Δ�u =

⎛
⎜⎝

Δu1
...

Δun

⎞
⎟⎠

(�u ∗ ∇)�u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

uj ∗ ∂ju1

...
n∑

j=1

uj ∗ ∂jun

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ∂j :=
∂

∂xj
, j = 1, . . . , n.

We are now ready to prove the main result of this paper, namely we obtain
the explicit solution of the equation (14). using the tools from Section 2.

Theorem 3.1 Let �u0(x) = (u0,1(x), . . . , u0,n(x)) and �f = (f1, . . . , fn) be
such that u0,k, fk ∈ F ′

x(N ′), k = 0, . . . , n. Then the solution �u(t, ω, x) of the
nonlinear equation of convolution type (14) is given explicitly by the following
system:

uk(t, x) = u0,k(x) ∗ e∗
R t
0 fk(s)ds ∗ γ2νt (15)

∗
(

δ0 +
n∑

j=1

∂ju0,j ∗
∫ t

0

e∗
R τ
0 fj(s)ds ∗ γ2ντ dτ

)∗−1
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with k = 1, . . . , n and δ0 is the Dirac measure at point zero and γ2νt is the
Gaussian measure with variance 2νt on R

n.

Proof. We denote ∂t = ∂
∂t

such that the n-dimensional equation (14) may
be written as ⎧⎪⎨

⎪⎩
∂tuk +

n∑
j=1

uj ∗ ∂juk = νΔuk + fk ∗ uk

uk(0, ω, x) = u0,k(ω, x)

(16)

where k = 1, . . . , n.
We denote by vk = vk(t, ξ, q), gk = gk(t, ξ, q) and v0,k = v0,k(ξ, q), ξ ∈

S
(
R, Rd

)
, q ∈ R

n, the Laplace transforms of the generalized functions uk =
uk(t, ω, x), fk = fk(t, ω, x) and initial condition u0,k = u0,k(ω, x), respectively,
for k = 1, . . . , n. Applying the Laplace transform to the system (16) we
obtain

⎧⎪⎨
⎪⎩

∂tvk −
n∑

j=1

qjvjvk = νq2vk + gkvk

vk(0, q) = v0,k(q).

(17)

Changing the variables, Sk = 1
vk

, k = 1, . . . , n, the system (17) is equiva-
lent to the following:

⎧⎪⎨
⎪⎩

−∂tSk −
n∑

j=1

qj
Sk

Sj

= (νq2 + gk)Sk

Sk(0, ξ, q) = S0,k(ξ, q).

(18)

We denote S1 · · · Šk · · ·Sn = S1 · · ·Sk−1Sk+1 · · ·Sn, for k = 1, . . . , n. If we
multiply the first equation of the system (18) by S1 · · · Šk · · ·Sn, we deduce

(−∂tSk)S1 · · · Šk · · ·Sn −
n∑

j=1

qjS1 · · · Šj · · ·Sn = (νq2 + gk)S1 · · ·Sn. (19)

Let us denote such equation by (Ek), k = 1, . . . , n. If we fixe k, then the
difference (E1) − (Ek) becomes

Š1S2 · · · Šk · · ·Sn(−Sk∂tS1 + S1∂tSk) = (g1 − gk)S1 · · ·Sn. (20)
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After simplification, we divide by S1Sk and obtain the equation

∂tSk

Sk
− ∂tS1

S1
= g1 − gk (21)

which can be integrated. The solution is

Sk =
S0,k

S0,1

S1 e
R t
0 (g1(s)−gk(s))ds, k = 1, · · · , n (22)

where for simplification of notation gj(s) = gj(s, ξ, q), j = 1, · · · , n. Then
we have the relation

Sk

Sj

=
S0,k

S0,j

e
R t
0 (gj(s)−gk(s))ds, k, j = 1, · · · , n. (23)

Introducing the expression of Sk

Sj
in (18) we deduce the following linear

system of equations

∂tSk +
n∑

j=1

qj
S0,k

S0,j
e

R t
0 (gj(s)−gk(s))ds = −(νq2 + gk)Sk, k = 1, . . . , n. (24)

For any fixed k, the solution of the homogeneous equation is given by

Sk(t, q) = λe−
R t
0 (νq2+gk(s))ds, (25)

where λ is a constant. Then the solution of (24) is given by the method of
variation of constants as

Sk(t, ξ, q) = λe−
R t
0 (νq2+gk(s))ds (26)

− e−
R t
0 (νq2+gk(s))ds

n∑
j=1

qj
S0,k

S0,j

∫ t

0

e
R τ
0 (gj(s)+νq2)dsdτ,

where the constant λ is determined by the initial conditions; Sk(0, ξ, q) =
S0,k = λ. Then (26) may be written as

Sk(t, ξ, q) = S0,k e−
R t
0 gk(s)ds e−νq2t (27)(

1 −
n∑

j=1

qj

S0,j

∫ t

0

e
R τ
0 (gj(s)+νq2)dsdτ

)
.
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Since Sk(t, ξ, q) =
1

vk(t, ξ, q)
, we obtain

vk(t, ξ, q) = v0,k e
R t
0 gk(s)ds eνq2t (28)(

1 −
n∑

j=1

qjv0,j

∫ t

0

e
R τ
0 (gj(s)+νq2)dsdτ

)−1

.

In fact, it is easy to show that for every t ≥ 0, the function

Y (t, q, ξ) = 1 −
n∑

j=1

qjv0,j(ξ, q)

∫ t

0

e
R τ
0 (gj(s,ξ,q)+νq2)dsdτ

belongs to the space Hol0(N ) and satisfy Y (t, 0, 0) = 1 �= 0. Then there
exists U a neighborhood of (0, 0) of N , such that Y (t, q, ξ) �= 0 for every
(ξ, q) ∈ U . Therefore

1

Y (t, q, ξ)
∈ Hol0(N )

which implies that
vk(t, q, ξ) ∈ Hol0(N ).

Finally, to obtain the solution of the equation (14) we use the following
equalities:

L
{

e∗
R t
0 fk(s)ds

}
= e

R t
0 gk(s)ds

L
{∫ t

0

e∗
R τ
0 fk(s)ds ∗ γ2ντ )dτ

}
=

∫ t

0

e
R τ
0 gk(s)dseνq2τdτ

and then uk(t, x), k = 1, . . . , n is given by the Laplace inverse transform
according to the theorem 2.1, as in (15).

Corollary 3.1 If the potential �f in the equation (14) does not depend of the

time variable t, i.e., �f = �f(x), then the solution is given by

uk(t, x) = u0,k(x) ∗ e∗tfk ∗ γ2νt

∗
(

δ0 +
n∑

j=1

∂ju0,j ∗
∫ t

0

e∗τfj ∗ γ2ντdτ

)∗−1

with k = 1, . . . , n. In particular if f = 0, the solution has the from

uk(t, x) = u0,k(x) ∗ γ2νt ∗
(

δ0 + ∇ · u0 ∗
∫ t

0

γ2ντdτ

)∗−1

with k = 1, . . . , n and ∇· represents the divergence operator.

11



Acknowledgment

We thank Martin Grothaus for useful discussions. Financial support by
GRICES, Portugal/Tunisia, 2004 and FCT, POCTI - Programa Operacional
Ciência, Tecnologia e Inovação, FEDER are gratefully acknowledged.

References

[1] M. Ben Chrouda, M. El Oued, and H. Ouerdiane. Convolution calculus
and applications to stochastic differential equations. Soochow J. Math.,
28(4):375–388, 2002.

[2] Yu. M. Berezansky and Yu. G. Kondratiev. Spectral Methods in Infinite-
Dimensional Analysis, volume 1. Kluwer Academic Publishers, Dor-
drecht, 1995.

[3] J. M. Burgers. The Nonlinear Diffusion Equation. D. Reidel Publishing
Company, Dordrecht, Holland, 1974.

[4] J. D. Callen, C. C. Hegana, E. D. Held, T. A. Gianakon, S. E. Kruger,
and C. R. Sovinec. Nonlocal closures for plasma fluid simulations.
Phys. Plasmas, 11(5):2419–2426, 2004.

[5] Weinan E, K. Khanin, A. Mazel, and Ya. Sinai. Invariant measures for
Burgers equation with stochastic forcing. Ann. of Math. (2), 151(3):877–
960, 2000.

[6] R. Gannoun, R. Hachaichi, P. Kree, and H. Ouerdiane. Division de
fonctions holomorphes a croissance θ-exponentielle. Technical Report E
00-01-04, BiBoS University of Bielefeld, 2000.

[7] R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui. Un théoréme
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