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Abstract

In this paper three near-exact distributions are developed for the sphericity test
statistic. The exact probability density function of this statistic is usually repre-
sented through the use of the Meijer G function, what renders the computation of
quantiles impossible even for a moderately large number of variables. The main goal
of this paper is thus twofold: to obtain near-exact distributions that i) lie closer to
the exact distribution than the asymptotic distributions and also that ii) correspond
to density and cumulative distribution functions pratical to use, allowing for an easy
way to determine quantiles. On the way, also two asymptotic distributions that lie
closer to the exact distribution than the existing ones were developed. Three mea-
sures are considered to evaluate the proximity between the exact and the asymptotic
and near-exact distributions developed. As a reference we use the asymptotic dis-
tribution proposed by Box as well as some saddlepoint approximations developed
by other authors.

Key words: asymptotic distributions, sphericity test, Generalized Near-Integer
Gamma distribution, mixtures.

1 Introduction

Let x be a p×1 vector of variables with a multivariate normal distribution
Np(µ,

∑
). We intend to test the hypotheses,

H0 : Σ = σ2 Ip versus H1 : Σ 6= σ2 Ip . (1)

1 This research was financially supported by the Portuguese Foundation for Science
and Technology (FCT).



The likelihood ratio test statistic is defined, for a sample of size N , as (Mauchly,
1940; Anderson, 1958, Sec. 10.7)

λ =
|A| 12N

(
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p
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) 1
2
pN

, (2)

where A is either the Maximum Likelihood Estimator of Σ, the sample variance-
covariance matrix or yet the sample matrix of sums of squares and cross prod-
ucts of deviations about the mean.

The moments of Λ = λ2/N , considering n = N − 1 , are
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where
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p(p−1)

4
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is the multivariate Gamma function.

Since in (3) the Gamma functions are defined for any strictly complex h, we
may write the characteristic function of W = − log Λ as

φ
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For m∈IN (where IN is the set of positive integers) we can use the expression
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It we will be based on (5) that we will obtain the expressions for the near-exact
approximations.

2 Asymptotic approximations

In order to compare and evaluate the quality of the near-exact approximations,
we will use the asymptotic approximation of Box (1949) and Anderson (1958,
Sec. 10.7) and two other asymptotic approximations that we develop, which
lie closer to the exact distribution, as it will be shown in section 5 through
the use of the measures described in section 4.

Box (1949) and Anderson (1958, Sec. 10.7) give, under the null hypothesis in
(1), an asymptotic distribution for Λ, under the form

P (−nρ log Λ ≤ z) = P (χ2
f ≤ z) + ω2

(
P (χ2

f+4 ≤ z)− P (χ2
f ≤ z)

)
(6)

+O
(
n−3

)

where

ω2 =
(p + 2)(p− 1)(p− 2)(2p3 + 6p2 + 3p + 2)

288p2n2p2
, f =

1

2
p(p + 1)− 1

and

ρ = 1− 2p2 + p + 2

6pn
.

From (6) we may write φBox(t) as an aproximation for φW (t), where
W =− log Λ, under the form
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(7)

Considering that the random variable X has a Gamma distribution with shape
parameter r > 0 and rate parameter λ > 0, that is,

X ∼ Γ(r, λ)
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if its probability density and characteristic functions are respectively given by

fX(x) =
λr

Γ(r)
e−λx xr−1 , φX(t) = λr(λ− it)−r ,

we may thus say that the characteristic function in (7) is the characteristic
function of a mixture of two Gamma distributions, both with rate parameter
nρ/2 and one of them with weight 1 − ω2 and shape parameter f/2 and the
other with weight ω2 and shape parameter f/2 + 2.

In order to obtain other asymptotic distributions we propose two other mix-
tures of Gamma distributions, which match the first four or six exact moments;
the mixture of two Gamma distributions, both with the same rate parameter
(matching the first four exact moments), with characteristic function

φM2G(t) =
2∑

j=1

pj λrj(λ− it)−rj , (8)

where p2 = 1 − p1 with pj, rj, λ > 0, and the mixture of three Gamma
distributions, all with the same rate parameter (matching the first six exact
moments), with characteristic function

φM3G(t) =
3∑

j=1

p∗j µr∗j (µ− it)−r∗j , (9)

where p∗3 = 1− p∗1 − p∗2, with p∗j , r∗j , µ > 0.

The parameters in (8) and (9) are respectively obtained by solving the systems
of equations
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for those parameters.
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3 Near-exact distributions

Theorem 1 The characteristic function of W = − log Λ = − log
(
λ

2
N

)
, where

λ is the statistic in (2), may be written as
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and

sj,p =
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Proof: For aj given by (11),

bj =
j − 1

p
+

j − 1

2
and b∗j = bbjc (14)

we may write (5) as
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But then, using, for integer b∗j ,

Γ(α + b∗j) = Γ(α)
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(15)

= φ
W1

(t)× φ
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(t)

where, given the definiton of bj in (14), b∗j and cj (j = 1, . . . , p) are respectively
given by (11) and (12).

In (15), φ
W1

(t) is the characteristic function of the sum of
∑p

j=1 b∗j indepen-
dent exponencial random variables with parameters aj + h (j = 1, . . . , p;
h = 0, . . . , b∗j − 1) and φ

W2
(t) is the characteristic function of the sum of

p independent random variables whose exponential has a Beta distribution
with parameters aj + b∗j and cj (j = 1, . . . , p).

Observing with attention expression (15) we may see that

aj = aj+2k + k for k ≤ b∗j+2k − 1 , k ∈ IN ,

or in a more general form

aj + n0 = aj+2k + k + n0
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for n0 ≤ b∗j − 1 and n0 + k ≤ b∗j+2k − 1, with k ∈ IN , n0 ∈ IN0 . Using this
relation we may write φ

W1
(t) under the form

φ
W1

(t) =
p∏

j=2

a
sj,p

j (aj − it)−sj,p (16)

where sj,p (j = 1, . . . , p), are given by (13). See Appendix A for further details
on the proof of this latter result. 2

Further ahead we will take advantage of the fact that φ
W2

(t) is the charac-
teristic function of the sum of p independent Logbeta random variables by
using characteristic functions of Gamma distributions or mixtures of these
distributions to approximate φ

W2
(t).

Our goal is to obtain a near-exact approximation (Coelho, 2004) to φ
W

(t), by
keeping φ

W1
(t) unchanged and replacing φ

W2
(t) by another characteristic func-

tion, having in mind that the final characteristic function has to correspond
to a known and manageable cumulative distribution function. We intend to
make the computation of near-exact quantiles as accurate as possible by using
for φ

W2
(t) the best possible approximation, while keeping the above context

unchanged and the computation of quantiles feasible.

As we show in Theorem 2 ahead, the near-exact distributions obtained for
W will be either a Generalized Near-Integer Gamma distribution (GNIG) or
mixtures of two or three of these distributions.

The density and distribution functions for the GNIG is given by Coelho (2004).
Let

Z = Z1 + Z2

where Z2 ∼ Γ(r, λ), with λ > 0 and r a positive non-integer and

Z1 =
g∑

i=1

Xi , with Xi ∼ Γ(ri, λi) ,

where r1, . . . , rg are positive integers and λ1, . . . , λg > 0 are all different. Fur-
thermore, let Z1 and Z2 be independent and λ 6= λi (i = 1 . . . , g). Then the
distribution of Z is a GNIG distribution of depth g + 1. We will denote this
by

Z ∼ GNIG(r1, . . . , rg, r; λ1, . . . , λg, λ) .

7



The probability density function of Z is given by

fZ(z|r1, . . . , rg, r; λ1, . . . , λg, λ) =

Kλr
g∑

j=1

e−λjz
rj∑

k=1

{
cj,k

Γ(k)

Γ(k+r)
zk+r−1

1F1(r, k+r,−(λ−λj)z)

}
,

(z > 0)

(17)

and the cumulative distribution function by

FZ(z|r1, . . . , rg, r; λ1, . . . , λg, λ) = λr zr

Γ(r+1)
1F1(r, r+1,−λz)

−Kλr
g∑

j=1

e−λjz
rj∑

k=1

c∗j,k
k−1∑

i=0

zr+iλi
j

Γ(r+1+i)
1F1(r, r+1+i,−(λ− λj)z)

(z > 0)

(18)

where

K =
g∏

j=1

λ
rj

j and c∗j,k =
cj,k

λk
j

Γ(k)

with cjk given by (11) through (13) in Coelho (1998). In the above expressions

1F1(a, b; z) is the Kummer confluent hypergeometric function (Abramowitz
and Stegun, 1974). Such functions have usually very good convergence prop-
erties and are nowadays handled by a number of software packages.

Theorem 2 Using for φ
W2

(t) in (10), the following approximations

- λr(λ− it)−r with r, λ > 0 (matching the first two moments);

-
2∑

k=1
θk µrk(µ− it)−rk , where θ2 = 1−θ1 with θk, rk, µ > 0 (matching the first

four moments);

-
3∑

k=1
θ∗k νr∗k(ν − it)−r∗k , where θ∗3 = 1− θ∗1 − θ∗2 with θ∗k, r∗k, ν > 0 (matching the

first six moments);

we obtain as near-exact distributions for W , respectively, a GNIG distribution
of depth p + 1 with distribution function (using the notation as in (18))

F (w|s1,p, . . . , sp,p, r; a1, . . . , ap, λ) (19)

or a mixture of two GNIG distributions of depth p + 1, with distribution func-
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tion

2∑

k=1

θk F (w|s1,p, . . . , sp,p, rk; a1, . . . , ap, µ) (20)

or a mixture of three GNIG distributions of depth p + 1, with distribution
function

3∑

k=1

θ∗k F (w|s1,p, . . . , sp,p, r
∗
k; a1, . . . , ap, ν) , (21)

with sj,p and aj (j = 1, . . . , p) given respectively by (13) and (11), and where

λ =
m1

m2 −m2
1

and r =
m2

1

m2 −m2
1

(22)

with

mh = ih
∂h

∂th
φ

W2
(t) , h = 1, 2 ,

θ1, µ, r1 and r2 are obtained from the numerical solution of the system of
equations

2∑

k=1

θk
Γ(rk + h)

Γ(rk)
µ−h = i−h ∂h

∂th
φ

W2
(t) (h = 1, . . . , 4) (23)

with θ2 = 1−θ1, for those parameters, and θ∗1, θ∗2, ν, r∗1, r∗2 and r∗3 are obtained
from the numerical solution of the system of equations

3∑

k=1

θ∗j
Γ(r∗k + h)

Γ(r∗k)
ν−h = i−h ∂h

∂th
φ

W2
(t) (h = 1, . . . , 6) (24)

with θ∗3 = 1− θ∗1 − θ∗2, for those parameters.

Proof: If in the characteristic function of W in (10) we replace φ
W2

(t) by
λr(λ− it)−r we obtain

φ
W

(t) ≈



p∏

j=1

a
sj,p

j (aj − it)−sj,p




︸ ︷︷ ︸
φ

W1
(t)

λr(λ− it)−r
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that is the characteristic function of the sum of p + 1 independent Gamma
random variables, p of which with integer shape parameters sj,p and rate pa-
rameters aj, and a further Gamma random variable with rate parameter r and
shape parameter λ, that is, the characteristic function of the GNIG distribu-
tion of depth p + 1 with distribution function given in (19). The parameters r
and λ are taken in such a way that the two first moments of this approxima-
tion are the same as the two first exact moments of W , that is, in such a way
that

∂h

∂th
λr(λ− it)−r =

∂h

∂th
φ

W2
(t) , h = 1, . . . , 2 ,

what gives rise to the definition of r and λ in (22).

If in the characteristic function of W in (10) we replace φ
W2

(t) by
2∑

k=1
θk µrk(µ− it)−rk we obtain

φ
W

(t) ≈



p∏

j=1

a
sj,p

j (aj − it)−sj,p




︸ ︷︷ ︸
φ

W1
(t)

2∑

k=1

θk µrk(µ− it)−rk

=
2∑

k=1

θk




p∏

j=1

a
sj,p

j (aj − it)−sj,p


 µrk(µ− it)−rk

that is the characteristic function of the mixture of two GNIG distributions of
depth p + 1 with density function given in (20). The parameters θ1, µ, r1 and
r2 are defined in such a way that the first four moments of this approximation
match the first four exact moments of W , that is, in such a way that

∂h

∂th

2∑

k=1

θk µrk(µ− it)−rk =
∂h

∂th
φ

W2
(t) , h = 1, . . . , 4 ,

giving rise to the evaluation of these parameters as the numerical solution of
the system of equations in (23).

If in the characteristic function of W in (10) we replace φ
W2

(t) by
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3∑
k=1

θ∗k νr∗k(ν − it)−r∗k we obtain

φ
W

(t) ≈



p∏

j=1

a
sj,p

j (aj − it)−sj,p




︸ ︷︷ ︸
φ

W1
(t)

3∑

k=1

θ∗k νr∗k(ν − it)−r∗k

=
3∑

k=1

θ∗k




p∏

j=1

a
sj,p

j (aj − it)−sj,p


 νr∗k(ν − it)−r∗k

that is the characteristic function of the mixture of three GNIG distributions
of depth p + 1 with density function given in (21). The parameters θ∗1, θ∗2,
ν, r∗1, r∗2 and r∗3 are defined in such a way that the first six moments of this
approximation match the first six exact moments of W , that is, in such a way
that

∂h

∂th

3∑

k=1

θ∗k νr∗k(ν − it)−r∗k =
∂h

∂th
φ

W2
(t) , h = 1, . . . , 6 ,

what gives rise to the evaluation of these parameters as the numerical solution
of the system of equations in (24). 2

All of the approximations considered were determined for the random variable
W = − log Λ so, having in mind the final goal of evaluating quantiles we must
note that

FΛ(z) = 1− FW (− log z)

where FΛ(z) is the cumulative distribution function of Λ and FW (z) is the
cumulative distribution function of W , so that

Λ1−α = e−Wα ,

where Λ1−α is the (1− α)-quantile of Λ and Wα is the α-quantile of W
(0<α<1).
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4 Measures of proximity between distributions and characteristic
functions

In order to evaluate the quality of the approximations developed we use three
measures. The first two are measures of proximity between characteristic func-
tions which also can be used as a reference of the proximity of the distributions.
The third one is a measure of proximity between distributions based on their
moments.

Let Y be a random variable defined on S with distribution function FY (y)
and characteristic function φY (t). Let us consider also φ(t) and F (t) the char-
acteristic function and the distribution function that are supposed to be ap-
proximatios of φY (t) and FY (y). The first measure is

∆1 =

∞∫

−∞
|φY (t)− φ(t)| dt

and the second one is

∆2 =
1

2π

∞∫

−∞

∣∣∣∣∣
φY (t)− φ(t)

t

∣∣∣∣∣ dt ,

based on the Berry-Esseen upper bound on |FY (y)−F (y)| (Berry, 1941; Esseen,
1945; Loève, 1977, Chap. VI, Sec. 21; Hwang, 1998) which may, for any b >
1/(2π) and any T > 0, be written as

max
y∈S

|FY (y)− F (y)| ≤ b

T∫

−T

∣∣∣∣∣
ΦY (t)− Φ(t)

t

∣∣∣∣∣ dt + C(b)
M

T
(25)

where M = maxy∈Sf(y) and C(b) is a positive constant that only depends of
b. But if in (25) above we take T → ∞ then we will have ∆2, since then we
may take b = 1/(2π).

These measures were used by Grilo & Coelho (2005) to study the application
of near-exact approximations to the distribution of the product of independent
Beta random variables.

The third measure of proximity,

∆3 = 2
12∑

i=1

∣∣∣ M (i)
Y (0)− M̃

(i)
Y (0)

∣∣∣
(i + 1)!

,
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where M
(i)
Y (0) and M̃

(i)
Y (0) are respectively the exact and approximate mo-

ments of order i of Y , was used by Alberto & Coelho (2005) in the study
of the quality of several asymptotic and near-exact approximations for the
distribution of the Wilks Lambda statistic.

Alberto & Coelho (2005) choose as upper limit in the summation 12, because it
seems to work well with most distributions, therefore we use the same criterion.
This measure is particularly useful when the moments are the only available
information about the exact distribution, in the sense that the density function
and the distribution function expressions are not known or available.

5 Numerical studies

At this stage we intend to evaluate the quality of the near-exact approxi-
mations developed in Theorem 2 in section 3 (which will be here denoted
by GNIG, M2GNIG and M3GNIG) and of the asymptotic distributions with
characteristic functions φM2G(t) and φM3G(t), by using the proximity mea-
sures ∆1, ∆2 and ∆3 and the asymptotic approximation with characteristic
function φBox(t) as a reference.

In Tables 1 through 4 we try to illustrate what happens when the values of n
and p are close. In these tables we have the values of the measures ∆1, ∆2 and
∆3 computed between the exact distribution of W = − log Λ, by using the
characteristic function in (4) or (5), and the six approximations under study.

Table 1 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 4 and n = 6

∆1 ∆2 ∆3

Box 2.400347× 10−2 5.296631× 10−3 5.293539× 10−1

M2G 5.629880× 10−3 3.073746× 10−4 1.267215× 10−2

M3G 6.755321× 10−4 3.042502× 10−5 4.806794× 10−4

GNIG 8.611649× 10−4 5.629021× 10−5 1.282105× 10−3

M2GNIG 1.856344× 10−6 8.455091× 10−8 8.635209× 10−7

M3GNIG 1.511358× 10−8 5.406071× 10−10 1.117393× 10−9

Table 2 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 5 and n = 7

∆1 ∆2 ∆3

Box 5.292725× 10−2 1.247970× 10−2 22.94659× 10−1

M2G 5.863905× 10−3 4.144532× 10−4 4.734755× 10−2

M3G 0.859891× 10−3 5.093622× 10−5 2.109841× 10−3

GNIG 2.229895× 10−4 1.867244× 10−5 1.153609× 10−3

M2GNIG 1.119780× 10−6 6.443755× 10−8 1.401748× 10−6

M3GNIG 3.018537× 10−9 1.248176× 10−10 1.619620× 10−10
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Table 3 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 7 and n = 9

∆1 ∆2 ∆3

Box 1.435125× 10−1 3.513675× 10−2 2.334934× 101

M2G 0.613287× 10−2 5.540876× 10−4 3.472426× 10−1

M3G 0.108668× 10−2 8.283219× 10−5 1.583907× 10−2

GNIG 5.452705× 10−5 5.875449× 10−6 2.225609× 10−3

M2GNIG 6.964433× 10−8 5.299830× 10−9 7.481820× 10−7

M3GNIG 4.888577× 10−11 3.026994× 10−12 7.925231× 10−11

Table 4 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p=10 and n=12

∆1 ∆2 ∆3

Box 3.537171× 10−1 8.762356× 10−2 4.109209× 102

M2G 0.062413× 10−1 6.707073× 10−4 3.392193× 100

M3G 0.125224× 10−2 1.134158× 10−4 1.283925× 10−1

GNIG 8.939694× 10−6 1.170968× 10−6 5.029142× 10−3

M2GNIG 3.393735× 10−9 3.189230× 10−10 4.703995× 10−7

M3GNIG 3.601155× 10−12 2.706019× 10−13 5.008025× 10−11

The first conclusion we can extract from the observation of Tables 1, 2, 3, and
4 is that the near-exact distributions are more precise (closer to the exact dis-
tribution) than the asymptotic distributions, with only the M3G distribution
beating the GNIG distribution for p = 4 and n = 6. Also, as p increases, while
the near-exact distributions become even better approximations to the exact
distribution, the asymptotic distributions go the other way around.

Both the asymptotic and near-exact distributions based on mixtures and that
also equate a few of the first exact moments (M2G, M3G, M2GNIG, M3GNIG)
show a much better performance than their counterparts which are only mix-
tures (Box) or only equate moments (GNIG).

The cases in Tables 5 through 8 show us what happens when n is large and
fixed and p varies.

Table 5 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 4 and n = 50

∆1 ∆2 ∆3

Box 1.316307× 10−4 2.308134× 10−6 6.916870× 10−7

M2G 8.810475× 10−6 3.902971× 10−8 8.435886× 10−14

M3G 7.465405× 10−8 2.565611× 10−10 9.519035× 10−19

GNIG 1.581990× 10−4 9.826998× 10−7 9.018162× 10−10

M2GNIG 3.671823× 10−9 1.627832× 10−11 3.490914× 10−17

M3GNIG 8.927223× 10−13 3.215025× 10−15 1.445208× 10−23

Table 6 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 5 and n = 50

∆1 ∆2 ∆3

Box 3.307800× 10−4 7.431952× 10−6 2.936049× 10−6

M2G 1.040064× 10−5 6.831249× 10−8 5.005316× 10−13

M3G 6.778877× 10−8 3.566580× 10−10 6.579225× 10−18

GNIG 5.326060× 10−5 4.776306× 10−7 9.920014× 10−10

M2GNIG 4.101531× 10−8 2.637224× 10−10 1.743970× 10−15

M3GNIG 8.748147× 10−11 4.432099× 10−13 6.449350× 10−21
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Table 7 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p = 7 and n = 50

∆1 ∆2 ∆3

Box 1.153656× 10−3 3.678555× 10−5 2.442663× 10−5

M2G 1.479446× 10−5 1.544824× 10−7 7.885513× 10−12

M3G 7.818462× 10−8 6.711671× 10−10 1.618277× 10−16

GNIG 2.711777× 10−5 3.795430× 10−7 2.889724× 10−9

M2GNIG 4.099824× 10−9 4.211031× 10−11 1.969911× 10−15

M3GNIG 7.829089× 10−12 6.509655× 10−14 1.254690× 10−20

Table 8 – Values of ∆1, ∆2 and ∆3 for the asymptotic and near-exact
distributions for W =− log Λ in the paper, for p=10 and n=50

∆1 ∆2 ∆3

Box 4.106258× 10−3 1.875948× 10−4 2.774119× 10−4

M2G 2.378513× 10−5 3.804352× 10−7 2.066435× 10−10

M3G 1.646943× 10−7 2.186226× 10−9 1.119725× 10−14

GNIG 8.777086× 10−6 1.868771× 10−7 7.281156× 10−9

M2GNIG 7.456426× 10−10 1.176134× 10−11 5.873697× 10−15

M3GNIG 7.626329× 10−13 9.891727× 10−15 4.184783× 10−20

Observing tables 5 through 8 and comparing with tables 1 through 4 we can
verify that:

- the near-exact approximations are still, in general, more precise than the
asymptotic approximations, with only the asymptotic mixture of three
Gamma distributions (M3G) beating the near-exact GNIG distribution in
every case, and the asymptotic mixture of two Gamma distributions also
beating the GNIG distribution for p = 4 and p = 5;

- large values of n improve the quality of both the asymptotic and near-
exact approximations, what shows the asymptotic character of these latter
distributions;

- when referring to the measures ∆1 and ∆2, in general, when p increases the
near-exact approximations seem to become even more precise (only between
p = 4 and p = 5 this is not true).

As an overall remark we may say that the measure ∆3 seems to penalize a
bit the distributions that do not equate any moments and overbenefit the
distributions that equate more moments.

Finally, we intend to analyze how precise the near-exact approximations are
for the computation of quantiles. To evaluate the precision of the approximate
quantiles we will use the measure

∆4 = − log10 |exact− approx.|

used by Alberto & Coelho (2005).

In tables 9 through 12 we have the exact and approximate (asymptotic and
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near-exact) 0.05 and 0.01 quantiles of Λ = λ2/N , for λ given by (2).

Table 9 – Comparison between the exact and approximate 0.05 and 0.01
quantiles for Λ = λ2/N , for p=4 and n = 6

Distribuição quant. 0.05 ∆4 quant. 0.01 ∆4

exact 0.0168675905941638 — 0.0050311233877392 —
Box 0.0178416505363502 3.0 0.0056387672070156 3.2
M2G 0.0168753311183583 5.1 0.0050176930650620 4.9
M3G 0.0168656225900511 5.7 0.0050319376157784 6.1
GNIG 0.0168693683122978 5.8 0.0050332151150509 5.7
M2GNIG 0.0168675885068604 8.7 0.0050311217115163 8.8
M3GNIG 0.0168675905988773 11.3 0.0050311233945564 11.2

Table 10 – Comparison between the exact and approximate 0.05 and 0.01
quantiles for Λ = λ2/N , for p=4 and n = 50

Distribuição quant. 0.05 ∆4 quant. 0.01 ∆4

exact 0.7049677092298717 — 0.6390788053204583 —
Box 0.7049688987100046 5.9 0.6390807866253055 5.7
M2G 0.7049677098372609 9.2 0.6390787892143052 7.8
M3G 0.7049677092046101 10.6 0.6390788053921197 10.1
GNIG 0.7049677606261154 7.3 0.6390793225105899 6.3
M2GNIG 0.7049677092301036 12.6 0.6390788053137241 11.2
M3GNIG 0.7049677092298712 15.3 0.6390788053204593 15.0

Table 11 – Comparison between the exact and approximate 0.05 and 0.01
quantiles for Λ = λ2/N , for p = 5 and n = 7

Distribuição quant. 0.05 ∆4 quant. 0.01 ∆4

exact 0.0064001285238792 — 0.0018281122216092 —
Box 0.0072695203302933 3.1 0.0023087004587565 3.3
M2G 0.0064016650127828 5.8 0.0018190894487171 5.0
M3G 0.0063987734959247 5.9 0.0018290332400471 6.0
GNIG 0.0064004575589233 6.5 0.0018284034242836 6.5
M2GNIG 0.0064001274775452 9.0 0.0018281119552464 9.6
M3GNIG 0.0064001285232339 11.1 0.0018281122221749 12.0

Table 12 – Comparison between the exact and approximate 0.05 and 0.01
quantiles for Λ = λ2/N , for p = 5 and n = 50

Distribuição quant. 0.05 ∆4 quant. 0.01 ∆4

exact 0.6109257783234166 — 0.5453271467029756 —
Box 0.6109294330577949 5.4 0.5453326755425309 5.3
M2G 0.6109257736916504 8.3 0.5453271117271034 7.5
M3G 0.6109257783121262 10.9 0.5453271468448589 9.8
GNIG 0.6109258303258338 7.3 0.5453274453932077 6.5
M2GNIG 0.6109257782978391 10.6 0.5453271465834711 9.9
M3GNIG 0.6109257783234295 13.9 0.5453271467025087 13.3

The results show that in most cases the near-exact distributions provide quan-
tile values with greater precision than the asymptotic distributions. However,
for n = 50, the asymptotic distributuions developed in this paper give very
precise quantiles, outperforming the GNIG distribution for both p = 4 and
p = 5 and with the asymptotic M3G distribution outperforming the M2GNIG
for p = 5 for the 0.05 quantile.
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Yet in order to better evaluate the quality of the asymptotic and near-exact
distributions presented in this paper, we compare their performance with
the performance of several saddlepoint approximations to the distribution of
Λ = λ2/N in Butler et all. (1993).

In Tables 13 and 14 we show the approximate exceedance probabilities for
the exact 0.05 and 0.01 quantiles of Λ = λ2/N rounded to four decimal places,
obtained with the asymptotic and near-exact distributions in this paper, using
the same exact quantiles used in Butler et all. (1993), that is, the ones in
Nagarsenker & Pillai (1973). Computations are done exactly for the same
combinations of values of n and p used by Butler et all. (1993). Only the case
p = 2 was left out since for this case the exact distribution of W = − log Λ is
easily obtained as a simple Exponential distribution.

Table 13 – Exceedance probabilities for the exact quantile 0.05 of Λ for
the asymptotic and near-exact distributions in the paper

n p Box M2G M3G GNIG M2GNIG M3GNIG

7 3 0.0498 0.0500 0.0500 0.0500 0.0500 0.0500
6 4 0.0464 0.0500 0.0500 0.0500 0.0500 0.0500
6 5 0.0332 0.0499 0.0501 0.0500 0.0500 0.0500

12 6 0.0481 0.0500 0.0500 0.0500 0.0500 0.0500
8 7 0.0192 0.0500 0.0501 0.0500 0.0500 0.0500

13 8 0.0432 0.0500 0.0500 0.0500 0.0500 0.0500
11 9 0.0220 0.0501 0.0500 0.0500 0.0500 0.0500
15 10 0.0377 0.0500 0.0500 0.0500 0.0500 0.0500

Table 14 – Exceedance probabilities for the exact quantile 0.01 of Λ for
the asymptotic and near-exact distributions in the paper

n p Box M2G M3G GNIG M2GNIG M3GNIG

7 3 0.0099 0.0100 0.0100 0.0100 0.0100 0.0100
6 4 0.0085 0.0100 0.0100 0.0100 0.0100 0.0100
6 5 0.0043 0.0102 0.0100 0.0100 0.0100 0.0100

12 6 0.0092 0.0100 0.0100 0.0100 0.0100 0.0100
8 7 0.0017 0.0103 0.0099 0.0100 0.0100 0.0100

13 8 0.0076 0.0100 0.0100 0.0100 0.0100 0.0100
11 9 0.0024 0.0101 0.0100 0.0100 0.0100 0.0100
15 10 0.0061 0.0100 0.0100 0.0100 0.0100 0.0100

We may observe that when rounding to four decimal places, all of the near-
exact distributions always give the exact probability, while the saddlepoint
approximations, which have a more complicated formulation than the asymp-
totic distributions proposed in this paper, are, in their best performance cases,
only able to match the asymptotic distributions, never outperforming these
ones.

In order to better assess the quality of the approximations given by the two
asymptotic and the three near-exact distributions developed in this paper,
we present in Appendix B two tables, similar to the last ones, where we give
the tail probabilities for those distributions, rounded to twelve decimal places,
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computed using the exact quantiles for Λ rounded to sixteeen decimal places
for the cases where such computation was possible to be carried out, that is,
for p ≤ 8.

6 Conclusions and final remarks

The near-exact distributions generally have a much better performance than
the asymptotic distributions considered in this paper, with the almost im-
pressive performance of the distribution M3GNIG. The values obtained with
the four measures considered (∆1, ∆2 , ∆3 , ∆4) indicate that in general the
near-exact distributions become even better approximations when p increases,
mainly in situations where the sample size is small.

It seems like the three measures ∆1, ∆2 and ∆3, give us a very strong vision
of the quality of this approximations, garanting the precision of the computed
quantiles.

For larger values of p the computation of exact quantiles becomes so hard and
time consuming that the asymptotic and near-exact distributions developed
in this paper, namely the distributions M3G, M2GNIG and M3GNIG, may
well be used instead of the exact distribution to compute quantiles. Moreover,
the parameters in all the proposed asymptotic and near-exact distributions
are easy to determine, being that computation even easier in the case of the
near-exact distributions. These facts emphasize the need and usefulness of
such distributions.

Appendix A

Details of the proof of expression (16) in Theorem 1

In Theorem 1 we observed that, for j = 2, . . . , p, with p ≥ 2,

b∗j−1∏

h=0

(aj + h)(aj + h− it)−1 = a
sj,p

j (aj − it)−sj,p (26)

where the sj,p are given by (13).

This fact may be proven if we notice that

aj = aj+2k + k

or, in a more general way, that,

aj + n0 = aj+2k + k + n0
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for

n0 ≤ b∗j − 1 , n0 + k ≤ b∗j+2k − 1 and k ∈ IN , n0 ∈ IN0 ,

and that, given the definition of bj (j = 1, . . . , p) in (14) then b∗j = bbjc will
be given by (11) (with b∗1 = 0 for any p, b∗2 = 1 for p = 2 and b∗2 = 0 for any
other value of p > 2) what may lead us to collect the rate parameters aj + h
(j = 2, . . . , p; h = 0, . . . , b∗j − 1) in the following array




(a2)
∗

a3

a4 (a4+1)∗

a5 a5+1

a6 a6+1 (a6+2)∗

a7 a7+1 a7+2

a8 a8+1 a8+2 (a8+3)∗

a9 a9+1 a9+2 a9+3

a10 a10+1 a10+2 a10+3 (a10+4)∗

a11 a11+1 a11+2 a11+3 a11+4

a12 a12+1 a12+2 a12+3 a12+4 (a12+5)∗
...

”last row”




where

(aj + h)∗ =





aj + h , p ≤ j + 2h

does not exist , p > j + 2h

and

”last row” =





ap ap+1 · · · ap+
p−3
2

, p odd

ap ap+1 · · · ap+
p−4
2

ap+
p−2
2

, p even .

Let then sj,p be the number of times that, for a given value of p, a rate
parameter with the value aj appears in the left hand side of (26). Then sj,p

may be defined as in (13), since by analysing well the definition of b∗j in (11)
and the aspect it conffers to the above matrix of rate parameters, we may
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easily derive the following relations:

i) for p ≥ 2 (with s2,p−2 = 0 if p− 2 < 2),

s2,p =





s2,p−2 + 1 , p− 2 = 4k + 0 , k ∈ IN0

s2,p−2 , p− 2 = 4k + 2 , k ∈ IN0

s2,p−2 , p− 2 = 4k + 1 , k ∈ IN0

s2,p−2 + 1 , p− 2 = 4k + 3 , k ∈ IN0

, (27)

ii) for p ≥ 3 (with s3,p−1 = 0 if p− 1 < 3),

s3,p =





s3,p−1 + 1 for p odd

s3,p−1 for p even
(28)

iii) for j > 3 (and p ≥ j),

sj,p =





sj−1,p − 1 , p even and j − 1 even

sj−1,p , p even and j − 1 odd

sj−1,p , p odd and j − 1 even

sj−1,p − 1 , p odd and j − 1 odd

. (29)

These relations imply the definition of sj,p the way it is done in (13). We will
summarize this result in Proposition 1 and prove it by induction.

Proposition 3 Let sj,p be the number of times that, for a given value of
p (≥ 2), a rate parameter with the value aj (j = 2, . . . , p) appears on the
left hand side of (26). Then sj,p is given by (13), or equivalently,

sj,p =





⌊
p−j
2

+ 1
⌋

, j = 3 , . . . p
⌊

p
4

+ 1
2

⌋
, j = 2 and mod(p− 2, 4) = 0

⌊
p
4

⌋
, j = 2 and mod(p− 2, 4) 6= 0 ,

(30)

where mod(a, b) represents the remainder of the integer division of a by b.

Proof: We will first prove that for j = 3, . . . , p, sj,p =
⌊

p−j
2

+ 1
⌋
:

a) we will first prove that for p ≥ 3, s3,p =
⌊

p−3
2

+ 1
⌋
:

i) in fact, from (30), we have s3,3 =
⌊

3−3
2

+ 1
⌋

= 1
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ii) assuming then that for p ≥ 4, s3,p−1 =
⌊

p−1−3
2

+ 1
⌋

iii) we have, from (29), that for even p,

s3,p = s3,p−1 =
⌊
p− 1− 3

2
+ 1

⌋
=

⌊
p− 2

2

⌋
=

⌊
p− 1

2

⌋
=

⌊
p− 3

2
+ 1

⌋
,

while for odd p,

s3,p = s3,p−1 + 1 =
⌊
p− 1− 3

2
+ 1

⌋
+ 1 =

⌊
p− 2

2

⌋
+ 1 =

⌊
p

2

⌋

=
⌊
p− 1

2

⌋
=

⌊
p− 3

2
+ 1

⌋
,

what proves that for p ≥ 3, s3,p =
⌊

p−3
2

+ 1
⌋
;

b) we will now prove that for 3 ≤ j ≤ p, sj,p =
⌊

p−j
2

+ 1
⌋
:

i) indeed, for p ≥ 3, s3,p =
⌊

p−3
2

+ 1
⌋
, as it was proven above

ii) assuming that sj−1,p =
⌊

p−j+1
2

+ 1
⌋

iii) from (29), for both p and j − 1 even or both odd, what makes p− j odd,
we have

sj,p = sj−1,p − 1 =
⌊
p− j + 1

2
+ 1

⌋
− 1 =

⌊
p− j + 1

2

⌋
=

⌊
p− j

2
+

1

2

⌋

=
⌊
p− j

2
+ 1

⌋

while for p and j − 1, with different parity, we have p− j even and thus

sj,p = sj−1,p =
⌊
p− j + 1

2
+ 1

⌋
=

⌊
p− j

2
+

3

2

⌋
=

⌊
p− j

2
+ 1

⌋

what concludes the proof that for j = 3, . . . , p, sj,p =
⌊

p−j
2

+ 1
⌋
.

Finally we will prove (30), or (13), for j = 2.

i) in fact, either from (13) or (30), we have

s2,2 = 1 and s2,3 = 0;

ii) assuming that

s2,p−2 =





⌊
p−2
4

⌋
, mod(p− 4, 4) 6= 0

⌊
p−2
4

+ 1
2

⌋
, mod(p− 4, 4) = 0
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iii)

• for p− 2 = 4k + 0 (k ∈ IN0),

s2,p = s2,p−2 + 1 =
⌊
p− 2

4

⌋
+ 1 =

⌊
p− 2

4
+ 1

⌋
=

⌊
p + 2

4

⌋
=

⌊
p

4
+

1

2

⌋

• for p− 2 = 4k + 2 (⇐⇒ p = 4k + 8) (k ∈ IN0),

s2,p = s2,p−2 =
⌊
p− 2

4
+

1

2

⌋
=

⌊
p

4

⌋

(
=

⌊
4k + 4

4

⌋
=

⌊
4k + 6

4

⌋
=

⌊
p

4
+

1

2

⌋ )

• for p− 2 = 4k + 1 (⇐⇒ p = 4k + 3) (k ∈ IN0),

s2,p = s2,p−2 =
⌊
p− 2

4

⌋
=

⌊
4k + 1

4

⌋
=

⌊
4k + 3

4

⌋
=

⌊
p

4

⌋

• for p− 2 = 4k + 3 (⇐⇒ p = 4k + 5) (k ∈ IN0),

s2,p = s2,p−2 + 1 =
⌊
p− 2

4

⌋
+ 1 =

⌊
4k + 3

4

⌋
+ 1 =

⌊
4k + 5

4

⌋
=

⌊
p

4

⌋

what proves (13) or (30) for j = 2. 2

Appendix B

Exceedance probabilities for exact quantiles of Λ = λ2/N for the
asymptotic and near-exact distributions presented

in the paper

Table B.1 – Exceedance probabilities for the exact quantile 0.05 of Λ = λ2/N for the
asymptotic and near-exact distributions presented in the paper

n p M2G M3G GNIG M2GNIG M3GNIG

7 3 0.049996325841 0.050000138079 0.049999668406 0.050000004937 0.049999996284
6 4 0.049970822608 0.050007434526 0.049993284475 0.050000007884 0.049999999982
6 5 0.049915626363 0.050064299293 0.049996405450 0.050000009506 0.049999999964

12 6 0.050004943806 0.050000168450 0.049998872166 0.050000001179 0.049999999997
8 7 0.050025390406 0.050090741271 0.049998800136 0.050000000764 0.050000000000

13 8 0.050020919307 0.049999452177 0.049999261995 0.050000000269 0.050000000000

Table B.2 – Exceedance probabilities for the exact quantile 0.01 of Λ = λ2/N for the
asymptotic and near-exact distributions presented in the paper

n p M2G M3G GNIG M2GNIG M3GNIG

7 3 0.010001927692 0.009999986323 0.009993656389 0.010000022541 0.010000002483
6 4 0.010036738923 0.009997772599 0.009994280233 0.010000004585 0.009999999981
6 5 0.010177525578 0.009974134917 0.009998133122 0.010000000481 0.010000000002

12 6 0.010008521891 0.009999593686 0.009999043556 0.010000000439 0.009999999999
8 7 0.010295272227 0.009935293267 0.009999448707 0.009999999967 0.010000000000

13 8 0.010019904708 0.009998541296 0.009999480001 0.010000000055 0.010000000000
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