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Abstract 
 
In this paper we study the Variable Size Bin Packing Problem (VSBPP) which is a 

generalization of the Bin Packing Problem where bins of different capacities (and 

different costs) are available for packing a set of items. The objective is to pack all the 

items minimizing the total cost associated with the bins. We discuss applications of the 

VSBPP and propose and discuss one generic (non-linear integer programming) 

formulation as well as two linear integer programming formulations. One of these 

formulations overcomes the non-linearity of the original model by simply adding 

explicitly the class of the bin used. The other, less straightforward, uses a so-called 

discretized model reformulation technique already proposed for other problems (see 

Gouveia (1995) and Gouveia and Saldanha da Gama (2006)), and shows that we need 

not use explicitly the information on the type of bin used provided we know the amount 

packed in it. These two models are, then, compared in terms of the linear relaxation 

bounds. New valid inequalities suggested by the decision variables of the discretized 

models are also proposed to strengthen the original linear relaxation bounds. 

Computational results are presented showing that the valid inequalities proposed not 

only enhance the linear programming relaxation bound but may also be extremely 

helpful when using a commercial package for solving the VSBPP to optimality.  
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1. Introduction 

In this paper we study the Variable Size Bin Packing Problem (VSBPP). Given a set 

of items, each one with a certain weight, and a set of bins partitioned into several 

subsets, each subset corresponding to bins of a given positive capacity and a given cost, 

the objective is to pack all the items in the bins and minimizing the total cost associated 

with the chosen bins. It is assumed that for each class there are an unlimited number of 

bins. This variation of the classic bin packing problem (which only has one class of 

bins) has many practical applications: 

i) Loading truck problems when weight is the only ‘dimension’ to be 

considered, considers the situation where more than one truck of each size / 

weight limit is available and the goal is to minimize the total cost associated 

with the selected trucks. 

ii) Cutting-stock problems. The bins are associated to standard lengths of some 

material like paper, wood, or electric cables from which ‘items’ must be cut. 

In this case, the items refer to specific dimensions that have to be cut from 

the standard lengths. When, more than one standard length is available we 

obtain the VSBPP.  

iii) In machine scheduling, the VSBPP arises when a set of tasks/jobs with 

known arbitrary processing times need to be executed and different classes 

of processors are available to parallelize the processing. In this case the goal 

is (typically) to schedule all the tasks minimizing a cost associated with the 

processors. 

The literature on the MBBP is scarce. Friesen and Langston (1986) have studied this 

problem with the objective of minimizing the total capacity associated with the bins 

used (which is equivalent to minimizing the total cost associated with the bins if this 

cost is proportional to the size of the bins). The authors propose several approximation 

schemes giving asymptotic worst case bounds. Kang and Park (2003) propose two 

greedy algorithms for solving three particular cases of the problem. These cases are 

defined in terms of the divisibility of the weights of the items and/or the capacities of 

the bins.  
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The VSBPP contains the classical one-dimensional bin packing problem (BPP) as a 

particular case which is known to be a NP-Hard problem (Garey and Johnson (1979)). 

Thus, the VSBPP is NP-Hard as well. 

In this paper we propose and analyze several formulations for VSBPP. We start by 

presenting a generic formulation with a general cost function (Section 2). The objective 

function of this model is general enough to capture non-linearities that may exist in the 

costs associated with the use of the bins. To overcome the non-linearity of the objective 

function we consider two alternative decision variable sets that lead to two alternative 

integer linear programming formulations. One of these models is straightforward, and 

solves the non-linearity of the model above by simply adding to the variable definition 

information on the class of the bin used. The other, less straightforward, uses a so-called 

discretized model reformulation technique already proposed for other problems (see 

Gouveia (1995) and Gouveia and Saldanha da Gama (2006)), and shows that we need 

not use explicitly the information on the type of bin used provided we know the amount 

packed in it. These two models (see Section 3) are, then, compared in terms of the linear 

relaxation bounds. New valid inequalities suggested by the decision variables of the 

discretized models are also proposed to strengthen the original linear relaxation bounds. 

Computational results (see Section 4) are presented showing that the valid inequalities 

proposed not only enhance the linear programming relaxation bound but may also be 

extremely helpful when using a commercial package for solving optimally VSBPP. 

For any model P we denote by v(P) its optimal value and let v( P ) denote the 

optimal value of the corresponding linear programming relaxation.  

 
2. Generic Formulation 

Let J denote the set of items with integer weight (jw Jj∈ ) and I denote the set of 

bins. Here, we consider the case where the set I is partitioned into subsets kI , ( ), 

each subset corresponds to bins of a given positive capacity  and a given cost . 

Without loss of generality we will also assume that 

Kk ∈

b

www ≤

k kf

n≤≤ ...

bb ≤≤≤ ...21 bw

21 (n = |J| = |Ik|, 

k=1,…,|K|), b  (m = |K|), m mj ≤  ( ).  Jj∈

Consider the following generic formulation for the problem (we consider any 
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ordering of the bins) involving binary variables  indicating whether item j is packed 

into the i

ijx

I∈ Jj∈ v

I∈

v

th bin ( i , ) and integer variables  representing the amount stored in 

bin i ( i ). Here we obviously, assume that the capacity of the i

i

th bin is enough for 

packing the amount equal to : i
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The objective function (1) minimizes the cost of the bins used for packing all the 

items. Note the non-linearity of this objective function. The value f(vi) gives the cost of 

the minimum capacity bin which can pack the amount vi. Constraints (2) ensure that 

each item j is packed; equalities (3) state the amount packed in each bin i is equal to the 

amount vi; constraints (4) are the integrality constraints, whereas (5) and (6) establish 

bounds for the amount packed in each bin i. 

3. Integer Linear Programming Models 

In this next section we discuss two mixed integer linear programming models. One 

is straightforward, and solves the non-linearity of the model above by simply adding 
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explicitly the class of the bin used, to the information on the ith bin used. The other, less 

straightforward, uses a so-called discretized model reformulation technique already 

proposed for other problems (see Gouveia (1995) and Gouveia and Saldanha da Gama 

(2006)), and shows that we need not use explicitly the information on the type of bin 

used provided we know the amount packed in it.  

3.1 Model P2 

By using additional binary variables  indicating whether the iiky th bin has capacity 

and is used in the solution, we can write the following formulation for the VSBPP: kb

(P2)  Min  ∑∑        (7) 
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m

k
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      0≥iv Ii∈     (5) 

  { }1,0∈iky    Ii∈ , Kk ∈    (10) 

The “new” inequalities (9) are consistency constraints guaranteeing that each bin 

only has one of the given capacity values. The new capacity constraints (8) link the v  

with the  variables and together with (9), they guarantee that the bin chosen to pack 

the amount selected for the i

i

iky

v

th bin has enough capacity. The new constraints (10) are 

domain constraints. Constraints (3) permit us to eliminate the  variables from the 

model leading to the following model P3: 

i
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1

=∑
=

n

i
ijx ∈     (2) 

     ∑∑
==

≤
m

k
ikk

n

j
ijj ybxw

11
Ii∈     (11) 

     1
1

≤∑
=

m

k
iky Ii∈      (9) 

  { }1,0∈ijx    Ii∈ , Jj∈     (4) 

  { }1,0∈iky    Ii∈ , Kk ∈    (10) 

The following result is a straightforward adaptation of a similar result presented for the 

BPP by Martello and Toth (1990) when the costs satisfy economies of scale or are 

proportional to the capacities. 

Result 1: An optimal solution for 3P  is given by 

1=iix ,  , 0=ijx )( ji ≠ miim bwy = ,  0=iky  )( mk ≠ .  

Proof: The minimum space required to pack all the items is given by . The 

lowest cost for packing all items is attained when all the items are packed in the bins for 

which the unitary cost is the smaller. Under economies of scale or in the situation where 

the costs are proportional to capacities, a bin with the largest capacity corresponds to 

the lowest unitary cost, which is given by . It is easy to verify that this solution is 

feasible for 

∑ =

n

j jw
1

mm bf /

3P  and has cost given by mm bf / ×∑ =j jw
1

n . ▲ 

This result also indicates that the bound v( 3P ) needs to be improved. In an attempt 

to strengthen this lower bound, we present, next, two classes of valid inequalities for the 

problem. Both of them are similar in flavour to inequalities used for improving the 

linear programming relaxation of discrete location problems (see, for instance 

Cornuejols et al (1991) and Gouveia and Saldanha-da-Gama (2006)). The first 
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states that we need to select enough bins (and with enough capacity) to pack all the 

given items. The inequalities in the second set are as follows  

∑
=

≤
m

kk
ikij yx

'
   Ii∈ , Jj∈    (13) 

where  (that is, k’ represents the index of the smallest bin size that 

is able to pack item j). 

}:min{' jk wbkk ≥=

3. 2. The Discretized Model  

A different way to overcome the non-linearity of the objective function of P1 is to 

make use of a so-called discretized model (see, for instance, Gouveia and Saldanha-da-

Gama (2006)). The main idea of using such a type of model is to use “new” binary 

variables   indicating whether the iq ∈∈ ∈iz }),...,1{,( mbqIi th bin  is storing an 

amount equal to q. The interest about this discrimination technique is that we can obtain 

the discretized model from the original model P1 by using the following set of linking 

constraints, to replace old with new variables: 
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Inequalities (16) are consistency constraints for the new variables and state that if  

 for a given i and q, then  for all 1iz =q =p 0iz )( qp ≠ .  Constraints (17) are the new 

constraints obtained by the discretization technique and guarantee that the index q of the 

discretized variable associated equal to 1 and associated with bin i must be equal to the 

total weight of the items stored in i.  The advantage of this model is obvious since by 

defining  
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we can write the model with a linear objective function (15).  

 
3.3 Comparing the Two Models 
 

In this section we show that the linear programming relaxation of the two models, 

P3 and DM are equivalent. To show this result, consider the following set of equalities 

that relate the new sets of variables in the two previous models: 

∑
+= −

=
k
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b

bq

q
iik zy

11

 , , Ii∈ Kk ∈ 00 =b     (19) 

We shall use these equalities to show how to transform a solution that is feasible or 

optimal for one model to another that is feasible for the other and which has the same 

cost. 

Result 2: )()3( DMvPv =  

Proof: i) Let { , } be feasible for ijx q
iz DM  (here we do not require the solution to 

be optimal). Then, the solution { , } with  given by (19) is feasible for ijx iky iky 3P . In 

fact, the validity of (2), (9) and non-negativity of variables  and  is 

straightforward. From (17) and using (19) we obtain 

ijx yik
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This shows that (11) is satisfied. Clearly the cost of the solution { , } in ijx q
iz DM  is the 

same as the cost of solution { , } in ijx iky 3P . 

This shows that )()3( DMvPv ≤ .  

ii) Let { , } be an optimal solution for *
ijx *

iky 3P . Clearly, constraints (11) are satisfied as 

equalities. Furthermore, we can assume that there exists at least one variable  such 

that . For each  such that  define  and  for 
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which is equivalent to (17). 

Thus, we have shown that ( 3) ( )v P v DM≥  and together with i) we conclude that 

( 3) ( )v P v DM= . ▲ 

Apart from the domain constraints, models P3 and DM have exactly the same 

number of constraints as well as the same number of  variables. Excluding the 

situation where , DM has, in general, much more binary variables than 

ijx

Kb #=m
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P3.Thus, DM appears to be worse (from a computational point of view) than P3 due to 

the large number of binary variables. Nevertheless, as our computational experience in 

section 4 will show, the model DM is worth considering for two reasons. First, we can 

eliminate quite straightforwardly many of the variables of the model. Second, the 

information attached to the discretized variables permit us to derive new and very 

intuitive inequalities that strongly enhance the original linear relaxation bound. 

Furthermore, any inequality that is defined in the variables of the non-discretized 

models P2 and P3 can be simply translated to DM using (14) and (19). 

3.4 Reducing the Number of Variables of the DM Model 

As observed above, the major drawback of model DM appears to be the large 

number of  variables. This number can be decreased in an inexpensive way by noting 

that for each i ( ), the index q associated to the variable  need not be less than the 

value . This decreases the range of variation of the index q in this variable and the 

model can be rewritten as follows: 
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Clearly, we have that 

Result 3: )()( DMRvDMv ≤  

The following example shows that the inequality stated in the previous result can be 
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strict for some instances. Consider an instance for VSBPP with 3 items weighting 1, 2 

and 3. Suppose that bins with capacities 1, 2 and 3 are available with a cost (per bin) of 

1, 3 and 4, respectively for the mentioned capacities. The optimal value of this instance 

has cost equal to 8 and considers 2 bins of size 3 with the first two items packed in one 

of them and the third packed in the other. The optimal solution to DM  has cost equal to 

7.5 and is given by: 

13
1 =z , , ,  5.01

2 =z 5.03
2 =z 11

3 =z

112 =x , 3/113 =x , 3 ,/223 =x 131 =x  

The optimal solution to DMR  has value 23/3>7.5 and is given by:  

11
1 =z , ,  13

2 =z 3/23
3 =z

5.012 =x , , 5.022 =x 3/223 =x , 131 =x , 3/133 =x  

As we can see, variables  and  (that are not included in 1
2z 1

3z DMR ) have a non zero 

value in the optimal solution of DM . 

3. 5. Valid Inequalities 

We note first, that by using (19), the inequalities (12) and (13) given in Section 3.1 

for model P3 can be rewritten in terms of the model DM as follows:  
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},max{
  Ii∈ , Jj∈    (25) 

It should be noted that as suggested by Martello and Toth (1990) for BPP, the right-

hand side of (24) can be improved. The same can be done for VSBPP if we consider the 

capacity of the largest bin. This modified constraint (24) will be used in our 

computations.  
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Following the same type of reasoning as in Gouveia and Saldanha-da-Gama (2006), 

we introduce next several classes of valid inequalities for VSBPP. Let us start by 

considering equalities (22). Dividing each term by an integer value p (p>1) we obtain 

the following equivalent equalities: 
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By rounding down each coefficient in the left-hand side term of (26) and, 

subsequently, by rounding down the right-hand side term (this can be done due (21) and 

(23)) we obtain: 
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By adding inequalities (27) for all Ii∈  and taking (2) into account, we obtain: 
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Using a similar reasoning, but starting by rounding up the coefficients on the left-

hand side term in (26), then rounding up the right-hand side term and finally summing 

in i  we obtain I∈
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Thus, we have jus proved the following result. 

Result 4: Inequalities (28) and (29) are valid for the VSBPP. 

A related set of inequalities can also be obtained by considering (22) and (2). By, 

first, adding constraints (22) for all Ii∈  and then using (2) we obtain 
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Dividing by p (p>1) each term and adequately rounding down the coefficients as 
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before we obtain 
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Similarly, by rounding up the coefficients we obtain one more set of inequalities: 
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and we have just proved result 4. 

Result 5: Inequalities (31) and (32) are valid for the VSBPP. 

It should be noted that when mbp = , inequality (32) is exactly inequality (24). A 

careful examination shows that some inequalities (32) are dominated by others as we 

obtain many such inequalities with the same right-hand side. Thus, we only need to 

consider the inequality with the “stronger” left-hand side. A similar situation arises with 

respect to the other three sets of inequalities. 

4. Computational Experience 

In this section we present some computational experiments to assess the efficiency 

of the models proposed in the previous sections. We start by describing the instances we 

worked with and then we analyze the results obtained. For obtaining the optimal integer 

value of the given instances, we use the branch-and-bound procedure provided by the 

commercial package ILOG CPLEX 8.0 (2002). We have tested several formulations for 

VSBPP, namely P3, DMR and enhancements of them using the valid inequalities 

presented in the last subsection of the previous section. For each model, we give the 

CPU time for solving it to optimality (a maximum time limit of five hours was 

considered) and for solving the corresponding linear relaxation. We have also examined 

the gap provided by the linear programming relaxation of the models here proposed. All 

13 



the tests were performed a PC with a Pentium IV processor, 2.6 GHz and 512 Mb of 

RAM. 

4. 1. Test Instances 

Because no benchmark instances were found in the literature for the VSBPP, two 

classes of instances were generated. With respect to the first class, the instances were 

generated according with the following rules:  

- The number of items was chosen in the set {10,20,60}. 

- The weights of the items were randomly generated according to a (discrete) 

uniform distribution in the set {1,2,…,20}. 

- The cost associated with each bin was set equal to ⎣ ⎦b100 , where b is the 

corresponding capacity, in order to reflect an economy of scale. 

- For each combination obtained with the parameters above two sets of available 

capacities were considered: {20,30,40} and {15,20,25,30,35,40}, which means, 

m=3 and m=6, respectively. 

- For each combination of all parameters 5 instances were generated. 

For the second class of instances, we have tried to bring to the variable size 

situation, the structure of the instances that can be found in the literature, for the simpler 

BPP. Accordingly, we considered 3 sets of instances available in the OR Library 

(http://people.brunel.ac.uk/~mastjjb/jeb/info.html) namely U120, T60 and T120. The 

instances in U120 consist of 120 items of sizes uniformly distributed in (20,100) to be 

packed into bins of size 150. The instances in the sets T60 and T120 consist of 60 and 

120 items, respectively, of sizes uniformly distributed in (25,50) to be packed into bins 

of size 100. In each of these sets, we picked the first 5 instances and divided by 10 the 

capacity of the bins and the dimension of the items. The values were then rounded down 

so that integer values were obtained. We have then considered two cases: i) with only 

one type of bin (the classical problem) and ii) three available bin capacities. In the latter 

situation we have considered capacities equal to 10, 15 and 20 for the U instances and 5, 

10 and 15 for the T instances. The costs associated with the bins were generated 

similarly as for the instances in class 1. 
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4. 2. Evaluating the Results 
 

Tables 1 – 6 describe the results obtained. Each table is associated with one specific 

value for n. Accordingly, tables 1, 2 and 3 present the results for the instances in the 

first class and for n=10, n=20 and n=60, respectively. Tables 4, 5 and 6 present the 

results for the instances in the second class namely for the instances obtained from 

U120, T60 and T120, respectively. 

In the tables, the first column indicates the model to which the corresponding line 

refers to. The remaining columns are divided into two sets of three columns. Each one 

of these set is associated with a specific value for m (3 or 6). The corresponding values 

for the capacities available for bins have been described above. The column entitled o. 

m. / t. l. presents the number of instances (out of five) for which an out of memory error 

occurred when using the branch-and-bound procedure of ILOG CPLEX 8.0 (2002). The 

other value described in the tables, is the number of instances whose optimal solution 

was not found within the time limit. The column CPU presents the average of the CPU 

time required for obtaining the optimal solution (excluding the instances for which 

either an out of memory error occurred or no optimal solution was found within the 

time limit). Column GAP presents the gap, in percentage, of the bound provided by the 

linear relaxation. 

We have not presented the CPU time required by the linear programming relaxation 

because apart from three cases, the corresponding CPU time was always less than 1 

second. The three exceptions refer to table 6 namely to the models P3+(12)+(13) (3.7 

seconds), DMR (2.6 seconds) and DMR+(25)+ (28)+(29)+(31)+(32)  (4.6 seconds). In 

any case, the CPU time corresponding to solving the linear programming relaxation is 

not significant.  

Concerning the bound provided by the linear programming relaxation, the 

discretized formulation enhanced with valid inequalities presented in section 3.5 

produced 0 gaps for all the instances in class 1 with m = 3 and for all instances in class 

2. Concerning the instances in class 1 with m = 6, the gap obtained with the enhanced 

DMR formulation is very close to 0. These results give a strong indication of what to do 

when fast and good lower bounds are required, for instance, to evaluate a feasible 

solution obtained by some heuristic method. Another important outcome of these results 
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is that inequalities (13) and (25) are not worth considering as enhancements for P3 and 

DMR (in terms of the bound provided by the linear relaxation). 

Concerning obtaining the optimal integer solutions, we were able to obtain all of 

them but only by using DMR with valid inequalities (again, this is a strong indication 

that discretized models together with valid “discretized” inequalities are worth trying). 

There are two exceptions that occur when we have consider the inclusion of inequalities 

(25): the first can be seen in table 4, where DMR+(25)+(28)+(29)+(31)+(32) exceeded 

the time limit. The second exception refers to table 6 where the same model lead to one 

“memory error” and twice the time limit was exceeded. Nevertheless, this gives some 

evidence that constrains (25) may not help much in solving the problem optimally. 

In all instances with m = 3 or m = 6, even when the models P3+(12) or 

P3+(12)+(13) were able to solve the instances optimally, the CPU required for 

optimality was greater than the CPU required by DMR (with valid inequalities). 

Another important aspect regards DMR alone. With m = 3 and m = 6 the corresponding 

results are even worse. For m=1, the worst results are produced with P3+(12)+(13). 
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  m=3    m=6  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 0 / 0  11 7,6  0 / 0  668 7,2 
P3+12 0 / 0  4 2,0  0 / 0 652 2,0 
P3+12+13 0 / 0 15 2,0  0 / 0 560 2,0 
DMR 2 / 0 149 7,6  1 / 0 1137 7,2 
DMR +28+29+31+32 0 / 0  1 0  0 / 0 233 0,3 
DMR +25+28+29+31+32 0 / 0  1 0  0 / 0 104 0,3 

Table 1: Instances in class 1 – 10 items. 
 

 
  m=3    m=6  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 2 / 1 963 5,4  1 / 2 2782 4,7 
P3+12 1 / 0 1139 1,1  1 / 2 190 0,7 
P3+12+13 1 / 1 2158 1,1  1 / 1 1428 0,7 
DMR 5 / 0 - 5,4  5 / 0 - 4,7 
DMR +28+29+31+32 0 / 0  5 0  0 / 0 3 0,1 
DMR +25+28+29+31+32 0 / 0 4 0  0 / 0 2 0,1 

Table 2: Instances in class 1 – 20 items. 
 

 
  m=3    m=6  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 5 / 0 - 1,9  5 / 0 - 1,5 
P3+12 3 / 1 20 0,5  3 / 1 3 0,2 
P3+12+13 0 / 4 180 0,5  0 / 3 231 0,2 
DMR 5 / 0 - 1,9  5 / 0 - 1,5 
DMR +28+29+31+32 0 / 0 26 0  0 / 0 35 0,0 
DMR +25+28+29+31+32 0 / 0 510 0  0 / 0 274 0,0 

Table 3: Instances in class 1 – 60 items 
 
 

  m=1    m=3  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 0/0 20 1,1  4/1 - 0,8 
P3+12 0/0 21 0  4/1 - 0,2 
P3+12+13 0/0 1275 0  0/4 8915 0,2 
DMR 0/0 45 1,1  4/1 - 0,8 
DMR +28+29+31+32 0/0 112 0  0/0 246 0 
DMR +25+28+29+31+32 0/0 717 0  0/1 5310 0 

Table 4: Instances in class 2 (obtained from U120) – 120 items. 
 
 

  m=1    m=3  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 0/0 1 2,7  4/1 - 1,8 
P3+12 0/0 2 0  3/1 790 0,6 
P3+12+13 0/0 35 0  3/1 705 0,6 
DMR 0/0 3 2,7  4/1 - 1,8 
DMR +28+29+31+32 0/0 2 0  0/0 17 0 
DMR +25+28+29+31+32 0/0 25 0  0/0 258 0 

Table 5: Instances in class 2 (obtained from T60) – 60 items. 
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  m=1    m=3  
Model o.m. / t. l. CPU (sec.) Gap (%)  o.m. / t. l. CPU (sec.) Gap (%)  
P3 0/0 56 1,9  4/1 - 1,6 
P3+12 0/0 113 0  4/1 - 0,5 
P3+12+13 0/0 993 0  0/5 - 0,5 
DMR 0/0 797 1,9  4/1 - 1,6 
DMR +28+29+31+32 0/0 34 0  0/0 284 0 
DMR +25+28+29+31+32 0/0 564 0  1/2 1716 0 

Table 6: Instances in class 2 (obtained from T120) – 120 items. 
 
 
5. Conclusion 
 

In this paper we have proposed several formulations for the VSBPP. In particular, we 

have proposed a so-called discretized model that together with valid inequalities (based 

on the discretized variables) is able to solve many instances that are not solved when 

non-discretized models are considered. 
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