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Abstract. We consider the Laplace operator in a thin tube of R3
with a Dirichlet condition on its boundary. We study

asymptotically the spectrum of such an operator as the thickness of the tube’s cross section goes to zero. In particular we

analyse how the energy levels depend simultaneously on the curvature of the tube’s central axis and on the rotation of the

cross section with respect to the Frenet frame. The main argument is a Γ-convergence theorem for a suitable sequence of

quadratic energies.
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1. INTRODUCTION.

We are interested in the 3D-1D reduction analysis for the following elementary spectral problem :

−∆uε = λεuε , u ∈ H1
0 (Ωε) , (1.1)

where Ωε ⊂ R3 is a thin and long domain generated by a cross section ωε = ε ω (ω ⊂ R2) which
rotates along a curve r(s) ∈ R3 parametrized by s, the usual arc length variable. Here ε is a small
parameter and the rotation angle α(s) of the section with respect to the Frénet frame is given. We
show the following behavior of the spectrum {λε

i ; i ∈ N} as ε→ 0 :

λε
i =

λ0

ε2
+ µε

i , µε
i → µi .

where the µi’s are the eigenvalues of a one dimensional problem of the kind

−w′′ + q(s)w = µw , w ∈ H1
0 (0, L) ,

being q(s) is an effective potential which we characterize in terms of the geometric parameters
k(s), τ(s), α(s) and of the shape of ω.



A possible physical motivation for this problem is the understanding of the behavior of the
probability density associated with the wave function of a particle confined in a thin waveguide. The
interpretation of the convergence result above is that, from the particle’s point of view, everything
happens as if it will propagate in a one dimensional medium governed by the non zero potential
q(s). Several results have been published in this direction, for instance in [1], [3], in the case of
tube of infinite length with circular cross section, showing the shift of the spectrum on the left
due to the curvature and the possible occurence of localized modes. Here we emphasize on the
effects of the torsion and of the shape of cross section which, in the opposite direction, tend to
shift the spectrum on the right. Moreover we present a new rigourous variational approach through
Γ-convergence which is very flexible and can be adapted to other kind of spectral problems.

Let us finally notice that the geometrical effects described here are very specific to the Dirichlet
boundary condition imposed on the lateral part of the tube. Such effects would disappear if the
Dirichlet condition would be replaced by a Neumann condition. We refer to [7] (see also the survey
[6]) for related questions where networks of tubes with junctions are considered.

In Section 2 we describe the geometric properties of the domain. In Section 3, we present the
rescaled spectral problem on a varying Hilbert space and show how the asymptotic behavior of the
entire spectrum can be recovered by proving the Γ-convergence of a suitable family of quadratic
energies . In Section 4, we preliminary study a perturbed problem for the first eigenvalue in the
cross section and then establish the main convergence result. Eventually, some elementary examples
of limit models are discussed in Section 5.

2. GEOMETRY OF THE DOMAIN.

Let r : s ∈ [0, L] → r(s) ∈ R3 be a simple C2 curve in R3 parametrized by the arc length
parameter s. Denoting by T its tangent vector and assuming that T ′(s) 6= 0 for every s ∈ [0, L],
we may define the usual Frenet system (T,N,B) through the following expressions :

T =
dr

ds
= r′ (‖r′‖R3 = 1) ; N = T ′/‖T ′‖R3 ; B = T ×N.

Denote by k : s ∈ [0, L] → k(s) ∈ R and by τ : s ∈ [0, L] → τ(s) ∈ R, the curvature and torsion
functions associated with the curve. They are functions in L∞(0, L) and they satisfy the Frenet
formulas :

T ′ = k N ; N ′ = −k T + τ B ; B′ = −τ N. (2.1)

Let now ω ⊂ R2 be an open bounded, simply connected subset of R2 and consider the following
subset of R3, directly associated with the Frenet system defined above :

ΩF = {x ∈ R3 : x = r(s) + y1 N(s) + y2 B(s), s ∈ [0, L], y = (y1, y2) ∈ ω}.

As it is well known, the consideration of such a domain may pose two major problems :
i) The Frenet system my not be defined for all s ∈ [0, L] for one may have points for which T ′ = 0.
ii) In each point s ∈ [0, L], the cross section of the domain ΩF has a prescribed rotation with

respect to curve r, given by the value of the torsion function τ at that point.
In order to overcome these problems we are led to the introduction of yet another reference

system, denoted by (T,X, Y ), denominated Tang’s reference system, for which the corresponding
domain :

ΩT = {x ∈ R3 : x = r(s) + y1 X(s) + y2 Y (s), s ∈ [0, L], y = (y1, y2) ∈ ω},
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is such that its cross section possesses no rotation with respect to the tangent vector T to the given
curve r.

The orthonormal basis vectors of Tang’s reference system are given by :

X ′ = λ T ; Y ′ = µT ; T ′ = −λ X − µ Y ; (2.2)

where λ and µ are functions of the arclength parameter s. In the next figure we show an illustration
of the domains ΩF and ΩT (four cross sections only).

Figure 2.1 - Reference domains associated with Frenet’s and Tang’s systems

For each s ∈ [0, L] Tang’s reference system is such that (X,Y ) can be seen as a two dimensional
basis, in ω, rotated from (N,B), around T , of an angle α = α(s). In fact if :

X = cosα N + sinα B,

Y = − sinα N + cosα B,

using Frenet’s formulas (2.1), one obtains :

X ′ = −(τ + α′) sinα N + (τ + α′) cosα B − k cosα T,

Y ′ = −(τ + α′) cosα N − (τ + α′) sinα B + k sinα T,

and one obtains (2.2) if, for each s ∈ [0, L], one considers :

α′ = −τ , λ = −k cosα , µ = k sinα

which we designate by Tang’s conditions. We are then faced with three possible choices for the
reference set, namely :
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i) We may follow Tang’s reference system and obtain a domain ΩT , without torsion with respect
to the central axis r ;

ii) We may follow Frenet’s reference system and obtain a domain ΩF , rotated of the same amount
as Frenet’s system (τ), with respect to the central axis r ;

iii) We may follow yet another reference system (T,Nα, Bα), and obtain a generic domain Ωα defined
through :

Ωα = {x ∈ R3 : x = r(s) + y1 Nα(s) + y2 Bα(s), s ∈ [0, L], y = (y1, y2) ∈ ω},

whose cross section presents an arbitrary rotation of an angle α with respect to Frenet’s domain :

Nα(s) := cosα(s) N(s) + sinα(s) B(s),
Bα(s) := − sinα(s) N(s) + cosα(s) B(s).

(2.3)

As is clear from the above notation, if for every s ∈ [0, L], α = 0 then Ωα ≡ ΩF and if α is such
that α′ = −τ , then Ωα = ΩT .
We are interested in the (eigenvalue) problem given by (1.1) in a domain for which the diameter

of the cross section ω is much smaller than its length L. Specifically, we consider a real parameter
ε > 0 and a cross section, obtained from the reference one, by an homothety of ratio ε. Our thin
tube will be then determined as follows :

Ωα
ε :=

{
x ∈ R3 : x = r(s) + ε y1 Nα + ε y2 Bα, s ∈ [0, L], y = (y1, y2) ∈ ω

}
.

Figure 2.2 - A generic domain Ωα
ε

3. ASYMPTOTIC SPECTRAL PROBLEM AND Γ-CONVERGENCE APPROACH.

We consider, for fixed ε > 0, the thin domain Ωα
ε defined in section 2 and the following eigenvalue

problem {
−∆uε = λεuε

uε ∈ H1
0 (Ωα

ε ), (3.1)
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As Ωα
ε is bounded, the spectrum σε of this problem is discrete and can be written as σε := {λε

i :
i ∈ N}, where 0 < λε

0 ≤ λε
1 ≤ · · · ≤ λε

i ≤ λε
i+1 · · · are positive reals, arranged increasingly. As the

cross section becomes thiner and thiner, it is clear that all these eigenvalues go to infinity as ε→ 0.
More precisely, let λ0 be the fundamental eigenvalue for the Laplace operator in the cross section
ω and let u0 be the associated normalized eigenvector, that is

− ∆u0 = λ0 u0 , u0 ∈ H1
0 (ω) , u0 > 0 ,

∫
ω

u2
0 = 1 . (3.2)

We are expecting the following asymptotic behavior :

λε
i =

λ0

ε2
+ µi + ρ(ε), lim

ε→0
ρ(ε) = 0, (3.3)

where µi (i ∈ N) are suitable real numbers. Our goal is to establish (3.3) and to identify the set
{µi} as the eigenvalues of a one dimensional spectral problem in H1

0 (0, L) in which the geometric
parameters k(s), τ(s), α(s) are involved.

3.1 Change of variables. As usual in the dimension reduction analysis, we first proceed to a
rescaling and a change of variables in order to reduce the initial problem to a variational min-max
formulation on a fixed domain. Having in mind the asymptotic behavior of the shifted spectrum

σε − λ0

ε2
, the initial quadratic energy defined in H1

0 (Ωα
ε ) reads as :

Fε(w) :=
∫

Ωα
ε

(
|∇w|2 − λ0

ε2
|w|2

)
dx. (3.4)

Recalling (2.3), consider the following transformation, for each ε > 0,

ψε : [0, L]× ω −→ Ωα
ε

(s, (y1, y2)) 7→ x = r(s) + ε y1Nα + ε y2Bα

and define, for each w ∈ H1
0 (Ωα

ε ), v(s, (y1, y2)) := w(ψε(s, (y1, y2))).
We obtain that, in the Frénet frame :

∇ψε =


βε 0 0

−ε(τ + α′)(z⊥α · y) ε cosα −ε sinα

ε(τ + α′)(zα · y) ε sinα ε cosα

 , det∇ψε = ε2βε ,

where zα , z⊥α and βε are given by

βε(s, y) := 1− εk(s)(zα · y) , zα := (cosα,− sinα) , z⊥α := (sinα, cosα) , (3.5)

and where, as previously, α′ represents the derivative of α with respect to s ∈ [0, L].
Then

∇ψ−1
ε =



1
βε

0 0

(τ + α′)y2
βε

cosα
ε

sinα
ε

−(τ + α′)y1
βε

− sinα
ε

cosα
ε
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Denote v(s, y) = w(ψε(s, y)), for w ∈ H1
0 (Ωα

ε ), s ∈ [0, L] and y ∈ ω. We scale the functional Fε

introduced in (3.4) by dividing it by 1/ε2. We are led to the quadratic energy Gε defined by :

Gε(v) :=
1
ε2
Fε(v) =

∫ L

0

∫
ω

{
1
βε

∣∣∣v′ +∇yv ·R y (τ + α′)
∣∣∣2 +

βε

ε2

(
|∇yv|2 − λ0|v|2

)}
dy ds,

(3.6)
where v′ stands for the derivative of v in order to s, ∇yv for the derivative of v in order to y and

R for the rotation matrix
(

0 1
−1 0

)
.

3.2 The rescaled spectral problem. Denote QL = ω × (0, L) and let Hε be the Hilbert space
L2(QL, βε) equipped with the weighted scalar product

(u|v)ε :=
∫

QL

u(x) v(x)βε(x) dx .

By (3.5) and since the curvature k(s) is assumed to be bounded, βε(s, y) converges uniformly to 1
as ε→ 0. Therefore all spaces Hε are topologically equivalent and the strong convergence in Hε is
equivalent to the convergence in the fixed space H := L2(QL).

Now we define Aε to be the unique closed self adjoint operator from Hε to Hε with domain in
H1

0 (QL) such that
(Aεv|v)ε = Gε(v) , ∀v ∈ D(Aε) ⊂ H1

0 (QL) .

In view of (3.3) and (3.6), it turns out that uε ∈ H1
0 (QL) solves the spectral equation −∆uε = λε

iuε

if and only if the function vε(s, y) = uε ◦ ψε(s, y)) satisfies

Aεvε = µi
εvε , vε ∈ Hε .

The asymptotic behavior of the spectral equation above will be studied through the variational
convergence of the sequence of functionals {Gε} on the fixed space H = L2(QL)

3.3 Link with the Γ-convergence theory. First we extend the quadratic functional Gε given in
(3.6) by setting Gε(v) = +∞ if v ∈ L2(QL) \H1

0 (QL). We say that the sequence {Gε} Γ-converges
to G in H = L2(QL) if the two following conditions hold :

(i) For any v and {vε} such that vε → v in H, lim inf
ε→0

Gε(vε) ≥ G(v);

(ii) For every v, there exists a sequence {ṽε} such that ṽε → v in H and lim
ε→0

Gε(ṽε) = G(v).

It turns out that such a Γ-limit G always exists, possibly after extracting a subsequence. Also
the Γ−convergence of {Gε} is unchanged if we subsitute Gε by its lower semicontinuous envelope
(with respect to the strong topology in H) and the Γ-limit G enjoys the lower semicontinuouty
property as well. For further features on Γ-convergence theory, we refer to the monograph by G. Dal
Maso [4], in which particular issues concerning the case of quadratic functionals and related linear
operators are detailed (see the section 12 in this book). We have the following abstract result :

Theorem 3.1. Let Aε : Hε → Hε be a sequence of self-adjoint operators where Hε coincides
algebraically with a fixed Hilbert space H endowed with a scalar product (·|·)ε such that

aε ‖u‖2 ≤ (u|u)ε ≤ bε ‖u‖2 ,
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being aε, bε suitable constants such that aε, bε → 1.

Let Gε : H → (−∞,+∞] be defined by Gε(v) := (Aεv|v)ε if v ∈ D(Aε), and Gε(v) := +∞
otherwise, and assume that the three following conditions hold :

i) (Lowerbound) Gε(v) ≥ −c0 ‖v‖2 for a suitable constant c0 ≥ 0.
ii) (Compactness) If sup

ε
{Gε(vε)+‖vε‖} < +∞, then {vε} is strongly relatively compact in H.

iii) Gε does Γ−converge to G.
Then the limit functional G determines a unique closed linear operator A0 : H → H with

compact resolvent (whose domain D(A0) is a priori non dense in H) such that G(v) = (A0v|v)
for all v ∈ D(A0). Furthermore the spectral problems associated with Aε converge in the following
sense : let (µε

i , v
ε
i ) and (µi, vi) be such that

vε
i ∈ H , Aεv

ε
i = µε

iv
ε
i , µε

0 ≤ µε
1 ≤ · · · ≤ µε

i · · · , (vε
i |vε

j ) = δi,j

vi ∈ H , A0vi = µivi , µ0 ≤ µ1 ≤ · · · ≤ µi · · · , (vi|vj) = δi,j

Then, as ε→ 0, µε
i → µi for every i ∈ N. Moreover, up to a subsequence, {vε

i } converges strongly
to eigenvectors associated to µi. Conversely any eigenvector vi is the strong limit of a particular
sequence of eigenvectors of Aε associated to µε

i .

Applying this general result to the sequence {Gε} defined by (3.6), we deduce, in Section 4,
the limit of the shifted spectrum {µε

i}, where µε
i = λε

i − λ0
ε2 . Notice that the equi-compactness

property ii) is crucial, otherwise, we could only expect the inclusion of the spectrum of A0 in the
set of cluster points of {µε

i}.

Proof : Let c > c0. The condition i) and (3.7) imply that, for small ε, the operator Aε + c IHε
,

where IHε denotes the identity map on Hε, is a positive maximal monotone. Let us denote by Sε its
inverse. Since Gε Γ-converges to G, it is easy to check that G is a quadratic lower semicontinuous
functional on H which satisfies condition i) as well. Therefore, for every f ∈ H, the minimum
problem :

inf
{
G(v) + c ‖v‖2H − 2 (f |v) : v ∈ H

}
admits a unique minimizer S0f and the map f 7→ S0f determines a bounded linear operator.
The range of S0 coincides with the domain D(A0) of a closed operator A0 : H 7→ H such that
S0 = (A0 + c IH)−1.

We claim that {Sε} is a uniformly compact family of self adjoint operators on Hε and that
Sε → S0 strongly. Recalling that, due to (3.7), the spaces Hε share the same topology, this means
that

sup ‖fε‖ < +∞⇒ {Sεfε} strongly relatively compact in H, Sεfε → S0f whenever fε → f.

The conclusions of Theorem 3.1 will then follow from [5, Thm. 11.4, Thm. 11.5] (see also [2]), after
noticing that, for v ∈ H, the following equivalences hold :

Aεv = µε
iv ⇐⇒ Sεv =

1
µε

i + c
v , A0v = µiv ⇐⇒ S0v =

1
µi + c

v.

To prove the claim, it is enough to show that for every weakly convergent sequence fε, the following
implication holds

fε ⇀ f =⇒ Sεfε → S0f (strongly) . (3.7)
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The crucial remark is that vε is the unique minimizing point of G̃ε where

G̃ε(v) := Gε(v) + c(v|v)ε − 2 (fε|v)ε .

Since {fε} is bounded, there exists M > 0 such that

(c− c0)‖vε‖2 −M‖vε‖ ≤ G̃ε(vε) ≤ 0 .

It follows that {vε} is bounded and that supGε(vε) < +∞ Therefore, by the condition ii), {vε} is
strongly relatively compact.

On the other hand, G̃ε being a uniformly convergent perturbation of Gε, it is easy to check
that G̃ε does Γ− converge to the functional G̃ := G+ k‖ · ‖2 − 2 (f |·). Therefore, by using the
fundamental variational property of the Γ−convergence, we derive that vε converges to a global
minimizer of G̃. This minimizer is unique and coincides with S0f . The claim (3.11) follows and
Theorem 3.1 is proved.

4. CONVERGENCE RESULTS.

In this section we are going to prove that we can apply Theorem 3.1 to the sequence {Gε}
defined by (3.6) and with G defined as follows

G(v) :=
{
G0(w) if v(s, y) = w(s) u0(y), w ∈ H1

0 (0, L),
+∞ otherwise,

(4.1)

where

G0(w) :=
∫ L

0

{
|w′(s)|2 +

[
(τ(s) + α′(s))2 C(ω)− k2(s)

4

]
|w(s)|2

}
ds. (4.2)

Here u0 is the normalized eigenvector (ground state) of the unperturbed problem introduced in
(3.2) and the geometric parameter C(ω) is given by

C(ω) :=
∫

ω

|∇yu0 ·R y|2 dy . (4.3)

Notice that C(ω) > 0, unless u0 is radial. This parameter which depends only on the shape of
the section ω turns out to be very important as it will govern the effect of the torsion.

4.1 A perturbed spectral problem in the cross section. The influence of the curva-
ture k(s) goes through the multiplicative coefficient βε(s, y) which appears in (3.6) (that is∫

ω
βε(s, y)(|∇yv|2 − λ0|v|2) dy ). In order to study this dependence, we consider, for every ξ ∈ R2,

the following perturbed problem :

−div [(1− ξ · y)∇yu] = λ (1− ξ · y)u , u ∈ H1
0 (ω) . (4.4)

The parameter ξ will be taken to be ξ = ε k(s) zα so that for small ε the perturbed operator is
positive with compact resolvent. Let us denote by λ(ξ) > 0 its first eigenvalue, that is :

λ(ξ) = inf
v∈H1

0
(ω)

v 6≡0

∫
ω
(1− ξ · y) (∇yu)2 dy∫
ω
(1− ξ · y) (u)2 dy

.
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Let v ∈ H1
0 (QL); then the following lowerbound holds for a.e. s ∈ (0, L) :

1
ε2

∫
ω

βε(s, y)(|∇yv|2 − λ0|v|2) dy ≥ γε(s)
∫

ω

βε(s, y) |v|2 dy , (4.5)

where

γε(s) :=
λ
(
ε k(s)zα(s)

)
− λ0

ε2
. (4.6)

The fact that γε remains finite is crucial in order to find a finite Γ−limit for Gε. This is also closely
related to the validity of the postulated behavior given in (3.3).

Proposition 4.1.

i) The function λ(ξ) is twice differentiable at 0 and denoting by I the identity matrix, there holds :

λ(0) = λ0 , ∇λ(0) = 0 , ∇2λ(0) = −1
2
I .

ii) Let γε(s) be given by (4.6) and assume that the curvature k(s) is bounded. Then, as ε→ 0

γε(s) → − k2(s)
4

uniformly on [0, L] .

Remark 4.2 It is rather suprising that the Hessian matrix found in the assertion i) is scalar
and independent of the shape of the cross section ω. In fact this situation is very specific to the
Laplace operator. If we deal with a more general diffusion operator −div (a(y)∇·), being a(y) a
non constant positive coefficient, the situation would be quite different. In fact, if in the definition
of λ(ξ), we replace (4.4) by

−div [(1− ξ · y)a(y)∇yu] = λ(1− ξ · y)u , u ∈ H1
0 (ω) ,

it turns out that, although the function λ(·) is still locally concave in the neighborhood of 0, the
symmetric negative matrix ∇2λ(0) is not, in general, a multiple of the identity matrix. Moreover,
and this is the main point, the gradient at 0 does not vanish anymore. This gradient is given
by ∇λ(0) = −2

∫
ω
a(y)u0∇yu0 dy where now u0 is the eigenvector (bound state) of the new

unperturbed problem.

In order to prove Proposition 4.1, we introduce, for fixed ξ ∈ R2, the solution uξ ∈ H1
0 (ω) of the

following problem :

−∆ uξ − λ0 uξ = −ξ · ∇y u0 , uξ ⊥ u0 in L2(ω). (4.7)

The existence of uξ falls under Fredholm alternative. Since λ0 is simple, it is enough to
observe that the right hand-side in (4.7) is orthogonal to u0, which is clear from the fact that
u0∇y u0 = 1

2∇y u2
0 has zero mean value by the Dirichlet condition on ∂ω. Futhermore, by

linearity, denoting by χ1, χ2 the solutions of (4.7) for ξ = e1 and ξ = e2, respectively, we have :

uξ = ξ1 χ1 + ξ2 χ2 . (4.8)

Lemma 4.3. For every ξ ∈ R2, we have

inf
v∈H1

0 (ω)

∫
ω

[
|∇yv|2 − λ0|v|2 + 2 (ξ · ∇yu0) v

]
dy = −|ξ|

2

4
(4.9)
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Furthermore, the above infimum is reached for uξ given in (4.7).

Proof The variational problem in (4.9) is convex and v is a minimizer if and only if it solves the
Euler equation :−∆ v− λ0 v = −ξ · ∇y u0 . Therefore, by (4.7) the minimum is reached at uξ. By
the equi-repartition of energy, we are then reduced to check the equality∫

ω

(ξ · ∇yu0)uξ = − |ξ|2

4
. (4.10)

We notice that u0∇yuξ − uξ∇u0 = ∇y(u0uξ) has zero mean value and that, by (3.2) and (4.7),

div(u0∇yuξ − uξ∇yu0) = u0∆uξ − u0∆u0 = (ξ · ∇yu0)u0 .

Then (4.10) follows after integrating twice by parts :∫
ω

(ξ · ∇yu0)uξ dy =
1
2

∫
ω

[(ξ · ∇yu0)uξ − (ξ · ∇yuξ)u0] dy

=
1
2

∫
ω

∇y(ξ · y) (uξ∇yu0 − u0∇yuξ) dy

=
1
2

∫
ω

(ξ · y) div [u0∇yuξ − uξ∇yu0] dy

=
1
2

∫
ω

(ξ · y) (ξ · ∇yu0)u0 dy

= −1
4

∫
ω

div[(ξ · y)ξ]u2
0 dy

= −1
4

∫
ω

|ξ|2u2
0 dy = − 1

4
|ξ|2.

Proof of Proposition 4.1 In view of definition (4.6) assertions i) and ii) will be obtained by
proving that :

lim
ξ→0

λ(ξ)− λ0

|ξ|2
= − 1

4
. (4.11)

In order to obtain (4.11) and recalling the definition of λ(ξ), we evaluate the Rayleigh quotient

R(u) =
A(u)
B(u)

where

A(u) :=
∫

ω

(1− ξ · y)|∇yu|2 dy , B(u) :=
∫

ω

(1− ξ · y)|u|2 dy ,

and u is written as u = tu0 +ϕ where t ∈ R, ϕ ∈ H1
0 (ω) and ϕ ⊥ u0 in L2(ω). First we notice that,

by integrating by parts
∫

ω
∇yu0 · ∇y((ξ · y)w) dy and taking (3.2) into account, we have for every

w ∈ H1
0 (ω) : ∫

ω

(ξ · y)(∇yu0 · ∇yw − λ0 u0 w) dy = −
∫

ω

(∇yu0 · ξ)w dy .
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In particular, using this relation for w = u0 and w = ϕ, we easily deduce that

A(u)− λ0B(u) =
∫

ω

(1− ξ · y)(|∇yϕ|2 − λ0|ϕ|2) dy + 2t
∫

ω

(∇yu0 · ξ)ϕdy .

B(u) = t2 +
∫

ω

ϕ2 dy −
∫

ω

(ξ · y)(tu0 + ϕ)2 dy .
(4.12)

Upperbound : We take u = u0 + uξ, i.e. t = 1 and ϕ = uξ, where uξ is defined by (4.7). In view
of (4.8) and (4.12) there is a constant C > 0, depending only on ω such that, for ξ small enough,∣∣∣∣∫

ω

(ξ · y)(|∇yuξ|2 − λ0|uξ|2) dy
∣∣∣∣ ≤ C|ξ|3 , |B(u0 + uξ)− 1| ≤ C|ξ|.

Also by Lemma 4.3, we have
∫

ω
(|∇yuξ|2 − λ0|uξ|2) dy + 2

∫
ω
(∇yu0 · ξ)uξ dy = − |ξ|2

4 .
Consequently, we deduce the following upperbound :

λ(ξ)− λ0

|ξ|2
≤ A(u0 + uξ)− λ0B(u0 + uξ)

|ξ|2B(u0 + uξ)
≤

− 1
4 + C|ξ|

1− C|ξ|
. (4.13)

Lowerbound : We may choose the constant C large enough and |ξ| small enough so that, in view
of (4.12),

1− ξ · y ≥ 1− C|ξ| ≥ 0 in ω, B(tu0 + ϕ) ≥ (1− C|ξ|) t2 , (4.14)

for every t ∈ R, ϕ ∈ H1
0 (ω) with ϕ ⊥ u0 in L2(ω). Then :

(A− λ0B)(tu0 + ϕ)) ≥ (1− C|ξ|)
[∫

ω

(|∇yϕ|2 − λ0|ϕ|2) dy +
2t

(1− C|ξ|)

∫
ω

(∇yu0 · ξ)ϕdy
]
.

Now we apply Lemma 4.3 replacing ξ by
t ξ

1− C|ξ|
, obtaining, for every (t, ϕ),

(A− λ0B)(tu0 + ϕ) ≥ − t2|ξ|2

4(1− C|ξ|)
.

Combining with (4.14), we get

λ(ξ)− λ0

|ξ|2
= inf

t,ϕ

{
A(tu0 + ϕ)− λ0B(tu0 + ϕ)

|ξ|2B(tu0 + ϕ)

}
≥ − 1

4(1− C|ξ|)2
. (4.15)

Convergence (4.11), which yields i) and ii), follows from (4.13) and (4.15).

4.2 The main result. Recalling the definitions of Gε and G (see (3.6) and (4.1) - (4.3)) , we are
now in position to state our main result. In what follows we will assume that k(s), τ(s) belong to
L∞(0, L) and that the angular parameter α(s) is a Lipschitz function. We introduce the effective
potential q(s) ∈ L∞(0, L) given by

q(s) := (τ(s) + α′(s))2 C(ω)− k(s)2

4
. (4.16)

Theorem 4.4.

i) The sequence {Gε} satisfies all conditions i), ii) , iii) of Theorem 3.1.
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ii) The eigenvalues λε
i of the spectral problem (3.1) satisfy (3.3) where µi (i ∈ N) are the

eigenvalues of the following Sturm-Liouville problem

−ϕ′′ + q(s) ϕ = µϕ, ϕ ∈ H1
0 (0, L) , (4.17)

iii) Let uε
i be a normalized eigenvector for problem (3.1) associated with λε

i (recall (uε
i |uε

j) = δi,j).
Then vε

i = ψε(uε
i ) converges strongly in L2(QL) to vi(s, y) = wi(s)u0(y) where wi is a normalized

eigenvector of problem (4.17) associated with µi. Conversely, any such vi is the limit of a sequence
ψε(uε) where uε is an eigenvector of (3.1) associated with λε

i .

Remark 4.5. In the particular case of a circular cross section of radius R, the ground state u0 is
radial : it is given by u0(x) =

√
2

RJ1(
√

λ0R)
J0(
√
λ0 |x|) where λ0 =

(
r0
R

)2, |x| is the distance to the
axis, J0, J1 are the first and second Bessel functions and r0 denote the first zero of J0. Therefore
the constant C(ω) defined in (4.3) vanishes and we recover, by variational methods, the curvature
dependence obtained in [3] (in [1,3], the length L is infinite and the method used is based on formal
operator asymptotic expansions).

In this paper we bring to the fore a new effect due to torsion. This effect appears when the
constant C(ω) is stricly positive ; this is the case for example if ω is a rectangle. Then the rotation
of the section with respect to the Tang frame (τ + α′) produces a shift of the spectrum on the
right. This effect comes into competition with the curvature effect which produces a shift on the
left.

Remark 4.6. The tools used in our approach are very flexible and we may as well deal with
Neumann conditions on the extremities of the tube (which after the change of variables corresponds
to {0, L} × ω) and the limit spectral equation (4.17) would be changed acordingly.

Remark 4.7. The case of a heterogeneous medium decribed by a diffusion coefficient a(y) (see
Remark 4.2), for example a(y) taking two values and jumping across a coaxial cylinder, is beyond
the scope of this paper. In that case the behavior of the eignevalues as ε→ 0 include in general an
additional term of order ε−1 and the asymptotic behavior given in (3.3) has to be replaced by

λε
i =

λ0

ε2
+
λ1

ε
+ µi + ρ(ε), lim

ε→0
ρ(ε) = 0.

The presence of the non zero coeffient λ1 is a direct consequence of the fact that the gradient of
the the function λ(ξ), introduced in Section 4.1, does not vanish, as emphasized in Remark 4.2.

Remark 4.8. In oder to modelize a tube with infinite length, it is natural to send L → +∞
(after substituting the interval (0, L) by (−L/2, L/2)). Doing so, it is clear from (4.17) that the
corresponding spectral set {µi,L} will converge to the spectrum of the same operator on the whole
real line i.e. −w′′ + q(s)w , w ∈ L2(R) . Now it is possible to proceed in different ways namely as
in [DE] by considering for every ε the spectral problem on the infinite tube and then passing to
the limit in ε. It seems to us that both ways lead to the same limit operator. The proof of this fact
would require futher analysis and, in particular, a generalization of our results in which we could
choose the length L = L(ε) to be dependant of ε with Lε →∞.

4.3 Proof of the main Theorem. We proceed in four steps : in Step 1, we prove that {Gε}
satisfies the conditions i), ii) of Theorem 3.1 . Then to prove the Γ-convergence result (condition

12



iii)), we establish the lower bound inequality (Step 2) and the upperbound inequality (Step 3). In
the last Step, we apply Theorem 3.1.

Step 1 Recalling the definition of Gε in (3.6), we deduce from (4.5) the lowerbound

Gε(v) ≥
∫ L

0

∫
ω

{
1
βε

∣∣∣v′ +∇yv ·R y (τ + α′)
∣∣∣2 + βε(y, s)γε(s) |v|2

}
dy ds. (4.18)

Accordingly, the inequality i) is satisfied for any c0 so large that essinfQL
{γεβε} ≥ −c0 . Since

the curvature k(s) belongs to L∞(0, L), βε → 1 uniformly on QL (see (3.5)) whereas by Proposition
4.1 γε(s) → − 1

4k
2(s) uniformly. The latter lowerbound is achieved, for ε small enough, provided

c0 >
1
4

(‖k‖∞)2 .

Consider now a sequence {vε} bounded in L2(QL) such that Gε(vε) ≤ M . Then, as βε is
unifomly close to 1, we infer from (4.18) that :

lim sup
ε→0

∫
QL

∣∣∣v′ε +∇yvε ·R y (τ + α′)
∣∣∣2 ≤ C < +∞, (4.19)

and from (3.6) that

lim sup
ε→0

∫
QL

|∇yvε|2 ≤ lim sup
ε→0

∫
QL

βε|∇yvε|2

≤ lim sup
ε→0

{∫
QL

βε

(
|∇yvε|2 − λ0 |vε|2

)
+ λ0

∫
QL

βε|vε|2
}

≤ lim sup
ε→0

{
Cε2 + λ0 lim sup

ε→0

∫
QL

|vε|2
}

< +∞ .

(4.20)

From (4.19) , (4.20) and the fact that τ + α′ is bounded, we infer that the sequence {Dvε}, where
Dvε = (v′ε,∇yvε), is bounded in L2(QL). Thus {vε} is bounded in H1

0 (QL) and strongly relatively
compact in L2(QL) by Rellich-Kondrachov Theorem.

Step 2 Let {vε} be a sequence such that vε → v in L2(QL). Up to a subsequence we may
assume that lim infε→0Gε(vε) = limε→0Gε(vε) < +∞ . Then, as proved in Step 1, the sequence is
bounded in H1

0 (QL) and inequalities (4.19) and (4.20) apply. Therefore, v belongs to H1
0 (QL) and

v′ε ⇀ v′,∇yvε ⇀ ∇yv weakly in L2(QL). In particular, as R y (τ + α′) ∈ L∞(QL), we obtain :

v′ε +∇yvε ·R y (τ + α′) ⇀ v′ +∇yv ·R y (τ + α′) .

Futhermore, from (4.18) and the uniform convergence of βεγε to − 1
4k

2(s), we deduce that

lim inf
ε→0

Gε(vε) ≥
∫

QL

{∣∣∣v′ +∇yv ·R y (τ + α′)
∣∣∣2 − k2

4
|v|2

}
dy ds. (4.21)

Now, due to (4.20) and the strong convergence of vε, we derive that∫
QL

|∇yv|2 ≤ lim inf
ε→0

∫
QL

|∇yv|2 ≤ λ0 lim sup
ε→0

∫
QL

|vε|2 = λ0

∫
QL

|v|2 .
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In other words, we have
∫ L

0
f(s) ds = 0 where the function f(s) :=

∫
ω
(∇yv|2 − λ0 |v|2)(s, y) dy

is nonnegative by the definition of λ0. Therefore, for a.e. s ∈ (0, L), f(s) vanishes and v(s, ·), as
an eigenvector associated with λ0, is proportional to the ground state u0. We deduce that v can
be written in the form v(s, y) = w(s)u0(y) with w ∈ H1

0 (0, L) (since v ∈ H1
0 (QL)). We plug this

expression of v into (4.21) and, after straightforward computations where we use (4.3) and the
equalities

∫
ω
u2

0 dy = 1 ,
∫

ω
u0∇yu0 · Ry dy = 0 , we conclude that lim infε→0Gε(vε) ≥ G(v)

where G(v) = G0(w) is given by (4.1)(4.2). This concludes the proof of the lowerbound part of the
Γ-convergence.

Step 3 Let v ∈ L2(QL). We have to show the existence of a sequence {vε} such that vε → v
and lim supε→0Gε(vε) ≤ G(v). We may assume that G(v) < +∞ so that, in view of (4.1), we
can write v(s, y) = w(s)u0(y) for a suitable element w ∈ H1

0 (0, L). We consider vε defined by
vε = w(s)[u0(y) + εϕ(s, y)] where ϕ ∈ H1

0 (QL) will be chosen later. Clearly vε → v strongly in
H1

0 (QL) and, as βε is uniformly close to 1, we have

lim
ε→0

∫
QL

1
βε

∣∣∣v′ε +∇yvε ·R y (τ + α′)
∣∣∣2 ds dy =

∫
QL

∣∣∣v′ +∇yv ·R y (τ + α′)
∣∣∣2 ds dy

=
∫ L

0

|w′|2 +
[
(τ + α′)(s)2 C(ω)

]
|w|2 ds

(4.22)

As in the proof of Lemma 4.3, we find that, for a.e. s :∫
ω

βε(s, y)
ε2

(
|∇yvε|2 − λ0|vε|2

)
dy =

=
∫

ω

βε(s, y)
[(
|∇yϕ|2−λ0|ϕ|2

)
+ 2k(s)zα(s) · ∇yu0 ϕ

]
w2(s) dy.

Integrating with repect to s, passing to the limit as ε → 0 and taking into account (4.22), we are
led to

lim
ε→0

Gε(vε) =
∫ L

0

|w′|2 +
[
(τ + α′)(s)2 C(ω)

]
|w|2 ds + F (ϕ), (4.23)

where
F (ϕ) :=

∫
QL

[(
|∇yϕ|2 − λ0|ϕ|2

)
+ 2k(s)zα(s) · ∇yu0 ϕ

]
w2(s) dsdy.

We observe that F , as a functional on H1
0 (QL), is derivative free with respect to s and then can be

extended by continuity to the larger space L2(0, L;H1
0 (ω)). Recalling (4.7) and (4.8), and in view

of Lemma 4.3, the minimizer of this extended functional F̃ is reached for ϕ = ϕ0 where

ϕ0(s, y) := u(kzα)(s)(y) = k(s) [cosα(s)χ1(y)− sinα(s)χ2(y)] .

Therefore

inf{F (ϕ) : ϕ ∈ H1
0 (QL)} = F̃ (ϕ0) = −

∫
QL

k2(s)
4

w2(s) ds .

Now we choose a minimizing sequence {ϕn} in H1
0 (QL) such that ϕn → ϕ0 in L2(0, L;H1

0 (ω).
Then replacing vε by vε,n = w(s)(u0(y) + εϕn(s, y)) in (4.23), we obtain :

lim sup
n→∞

(
lim sup

ε→0
Gε(vε,n)

)
≤ G0(w) (= G(v)).
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The conclusion follows by taking a diagonal subsequence.

Step 4 Assume further that G ≥ −c0‖ · ‖2 for a suitable c0 ≥ 0 then, as a functional from L2(QL)
into (−∞,+∞], G is lower semicontinuous and quadratic (see [DM, Thm 11.10]). Denote by V the
subspace where it is finite. By [DM, Theorem 12.13], there exists a bilinear symmetric form a0(u, v)
such that G(v) = a0(v, v) if v ∈ V and such that the associated operator A0 : L2(QL) → L2(QL)
is self adjoint with dense domain (in fact A0 + c0 IQL is maximal monotone).

We apply Theorem 3.1 to the sequence {Gε} which by the previous steps satisfy all the
required conditions. The domain of G can be identified with the space H1

0 (0, L) through the map
v(s, y) = w(s)u0(y) 7→ w(s). In this identification, the self-adjoint operator A0 associated with G
becomes

A0 : w ∈ H1
0 (0, L) ∩H2(0, L) → −w′′ + q(s)w ∈ L2(0, L).

5. PHYSICAL INTERPRETATION AND EXAMPLES.

As stated in Theorem 4.4, the result obtained can be put in the form of a Sturm-Liouville
problem. Equations (4.16) and (4.17) can be interpreted as a onedimensional problem for the
spatial wave equation of a particle confined to move in a onedimensional waveguide with a potential
given by q(s). In other words, although we have started from a threedimensional problem without
a potential in the interior of the domain under consideration, in the limit, in a onedimensional
curved waveguide, the particle sees the curvature, the torsion and the influence of the cross section
as a (nonhomogeneous) potential function in an equivalent straight waveguide of the same total
length. This potential, induced by the geometry of the waveguide, includes the influence of the
curvature and of the rotation of the section through the functions k(s), α(s) and τ(s) ; also the
influence of the shape of the cross section goes through the constant C(ω), for it depends both on
ω and on the eigenfunction u0 which changes with ω. Moreover, as pointed out in Remark 4.5, the
effects of curvature and rotation compete against each other.

Assume that, from the start, we have a straight waveguide , that is k ≡ 0 and τ ≡ 0. If the
cross section is circular (or if α′ ≡ 0 ) then one obtains the classical (eigenvalue, eigenvector) pairs((nπ

L

)2
,
√

2
L sin nπxL

)
.

Assume now that the cross section is a square. Then, we can very easily simulate an arbitrary
positive potential by suitably choosing the rotation angle α(s). In particular, if we consider a
straight waveguide of infinite length twisted so that α is periodic, then our analysis (see Remark
4.8) allow us to predict the presence of band gaps in the limit spectrum as we get an effective
potential q(s) on the real line which is periodic.

Coming back to a wave guide of finite length L, let us now illustrate the change of the probability
density function through a simple example. Let us consider that q is constant in a certain interval
[a, L] ⊂ [0, L] and zero in [0, a[. Then, in this case, solving (4.16) leads to search for µ such that
µ ≥ max{0, q} and :

sinh(
√
|µ|a) cos[

√
µ− q(L− a)] +

√
|µ|√

µ− q
cosh(

√
|µ|a) sin[

√
µ− q(L− a)] = 0 .

In the next figure we show the dependence of the eigenvalues with respect to a/L for q = −6
and L = 2.
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Figure 5.1 - µ1, µ2, µ3, µ4 vs. a/L for q = −6 and L = 2.

We remark that for a/L = 1 (or a/L = 0) , we must obtain the usual eigenvalues

µn =
(n π
L

)2

or µn =
(n π
L

)2

+ q (n ∈ N).

If, for example, one chooses q = −6, a = 1 and L = 2 one gets µ ≈ −1.363855334 and the
probability density function P (s) = w∗(s)w(s) becomes :

Figure 5.2 - Probability density function (thick line) and for the classical case (thin line)
(q = −6, a = 1 and L = 2)

As is clear from the above example, a local perturbation of the curvature and/or the torsion
and/or the shape of the cross section will change not only the energy levels but also the wave
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function and, consequentely, the probability density function in the waveguide. For example, if one
whishes that the probability density function be concentrate near the end s = L, then one should
strongly bend the waveguide near the end. For the case where one has q = −80, a = 1.8 and L = 2
the result is the following :

Figure 5.3 - Probability density function (thick line) and for the classical case (thin line)
(q = −80, a = 1.8 and L = 2)

Now, owing to (4.16), if the shape contant C(ω) is stricly positive, we may start from the
situation depicted in Figure 5.3 and apply a rotation α(s) of increasing amplitude between L/2
and L in order to compensate the curvature and in such a way that we recover the probability
density depicted in Figure 5.2. In other words, by playing with the curvature and the torsion of
the waveguide, we can control the energy levels and bound state solutions at will.
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