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Abstract

An ordered pair (e, f) of idempotents of a regular semigroup is called a skew
pair if ef is not idempotent whereas fe is idempotent. Previously [1] we have
established that there are four distinct types of skew pairs of idempotents. We
have also described (as quotient semigroups of certain regular Rees matrix semi-
groups [2]) the structure of the smallest regular semigroups that contain precisely
one skew pair of each of the four types, there being to within isomorphism ten
such semigroups. These we call the derived Rees matrix semigroups. In the par-
ticular case of full transformation semigroups we proved in [3] that TX contains
all four skew pairs of idempotents if and only if |X| � 6 . Here we prove that
TX contains all ten derived Rees matrix semigroups if and only if |X| � 7 .
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If S is a regular semigroup and e, f ∈ E(S) then the ordered pair (e, f) is said
to be a skew pair if ef /∈ E(S) whereas fe ∈ E(S). In a previous publication [1]
we showed that there are four distinct types of skew pairs (e, f) of idempotents,
namely those that are

(1) strong in the sense that fe = efe = fef = (ef)2;

(2) left regular in the sense that fe = fef �= efe = (ef)2;

(3) right regular in the sense that fe = efe �= fef = (ef)2;

(4) discrete in the sense that fe , efe , fef , (ef)2 are distinct.

If we let

Ŝ = {a ∈ S | a �= a2 = a3, V (a) ∩ E(S) �= ∅}

then, by [2, Theorem 5] for every skew pair (e, f) of idempotents we have

ef ∈ Ŝ ; and conversely for every a ∈ Ŝ there exists a skew pair (e, f) of
idempotents such that ef = a . A skew pair (e, f) of idempotents is said to be
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fundamental [3] if eR ef L f . By [3, Theorem 5] for every skew pair (e, f) of
idempotents in a regular semigroup S there is a fundamental skew pair (e�, f�)
of idempotents such that e�f� = ef . Consequently, the fundamental skew pairs
of idempotents in S are located in the D -classes of Ŝ .

In the case of the full transformation semigroup TX on a set X (and
herein all calculations are based on mappings being written on the left ) the

fundamental skew pairs of idempotents are of the form (ϑϕ, ϕϑ) where ϑ ∈ T̂X
and ϕ ∈ V (ϑ) ∩ E(TX). The following result (see [3, Theorems 2, 3]) then
describes the various types.

Theorem 1. If ϑ ∈ T̂X then Im ϑ2 = Fix ϑ2 = Fix ϑ . Moreover, if
ϕ ∈ V (ϑ) ∩ E(TX) then the fundamental skew pair (ϑϕ, ϕϑ) is

(1) strong if and only if Ker ϕ ⊆ Ker ϑ2 and Im ϑ2 ⊆ Im ϕ;

(2) left regular if and only if Ker ϕ ⊆ Ker ϑ2 and Im ϑ2 � Im ϕ;

(3) right regular if and only if Ker ϕ � Ker ϑ2 and Im ϑ2 ⊆ Im ϕ;

(4) discrete if and only if Ker ϕ � Ker ϑ2 and Im ϑ2 � Im ϕ .

Skew pairs (e, f) and (e�, f�) are said to be associated if ef = e�f� . The
ubiquity of skew pairs of idempotents in TX is revealed in the following theorem
which summarises the main results of [3].

Theorem 2. To every skew pair (e, f) of idempotents in TX there exists in
Def an associated fundamental skew pair (e�, f�) of idempotents of the same
type as (e, f) . Moreover, TX contains skew pairs of idempotents that are

(1) strong if and only if |X| � 3;

(2) left regular if and only if |X| � 4;

(3) right regular if and only if |X| � 5;

(4) discrete if and only if |X| � 6 .

It follows from the above that TX contains all four types of skew pairs
of idempotents if and only if |X| � 6. Now we have determined to within iso-
morphism and dual isomorphism the regular semigroups of smallest cardinality
that contain precisely one of each of these four types. These can be described
as follows. Let 2 be the semilattice {0, 1} and consider the regular Rees matrix
semigroups of the form R3,P = M(2; 3, 3;P ). These consist of two D -classes,
namely D1 that consists of elements of the form (i, 1, j), and D2 that con-
sists of elements of the form (i, 0, j). Let ∆1,2 be the smallest congruence that
identifies the first two rows of D2 , let ∆1,2 be the smallest congruence that
identifies the first two columns of D2 , and let ∆ = ∆1,2 ∨ ∆1,2 . Then the
quotient semigroup R3,P /∆ has 13 elements. We denote this by ∂P and call
it a derived Rees matrix semigroup. The required description of the semigroups
in question is now given by the following paraphrase of the main results of [2].
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Theorem 3. To within isomorphism there are ten regular semigroups of
minimum cardinality that contain precisely one of each of the four types of skew
pairs of idempotents. These are given by the derived Rees matrix semigroups
∂P where P is one of the following matrices or its transpose:

M1 =

[
1 1 1
1 0 1
1 1 1

]
; M2 =

[
1 1 1
1 0 1
1 0 1

]
; M3 =

[
1 1 1
1 0 1
0 1 0

]
;

M4 =

[
1 1 1
1 0 0
0 1 1

]
; M5 =

[
1 1 1
1 0 0
1 0 0

]
; M6 =

[
1 1 1
1 0 0
0 1 0

]
.

In what follows our objective is to investigate, in full transformation
semigroups, the existence of subsemigroups that are isomorphic to these ten
derived Rees matrix semigroups. For this purpose, we note from Theorem 2(4)
that we need consider only those TX for which |X| � 6. Of course, as is well
known, by the extended right regular representation every semigroup S can
be embedded in the full transformation semigroup TS1 . Consequently all ten
derived Rees matrix semigroups can be embedded in T14 . Here our main result
(see Theorem 8 below) is that TX contains copies of all ten derived Rees matrix
semigroups if and only if |X| � 7.

For presentational convenience and subsequent reference we list the ten
derived Rees matrix semigroups in a particularly useful way. In these descrip-
tions, (e, f) denotes the strong skew pair, (γ, δ) the discrete skew pair, RR(x, y)
the right regular skew pair, and LR(x, y) the left regular skew pair. In each case
we fix e and f at, respectively, the (2, 1) and (1, 2) positions in the D -class
D1 of ∂P . We also use the label • to indicate an element of ∂̂P . Note that,
by the fundamental isomorphism of [2, Theorem 10], each • corresponds to an
entry 0 in the transpose of the corresponding Rees matrix.

∂M1

α f αγ
e • ef γ
δα δ δαγ

RR(γ, f) LR(e, δ)

(γδ)2 γδγ
δγδ δγ

∂M2

α f αδ
e = γ • ef • γδ
δα δf δ

RR(γ, αδ) LR(γ, δf)

γδγ (γδ)2

δγ δγδ
∂Mt

2

α f = δ αγ
e • ef eγ
γα • γδ γ

RR(eγ, f) LR(γα, f)

δγδ δγ
(γδ)2 γδγ

∂M3

fγ f • fγδ
e • ef δ
γ γf • γδ

RR(fγ, δ) LR(e, γf)

δγ δγδ
γδγ (γδ)2 ∂Mt

3

δe f δ
e • ef eδ
• γδe γ • γδ
RR(eδ, f) LR(γ, δe)

δγ δγδ
γδγ (γδ)2

∂M4

γ f • γδ
e • ef eδ
δe • δef δ

RR(γ, eδ) LR(δe, f)

γδγ (γδ)2

δγ δγδ
∂Mt

4

δ f fγ
e • ef • efγ
• γδ γf γ

RR(e, fγ) LR(γf, δ)

δγδ δγ
(γδ)2 γδγ

∂M5

α f δ
e • ef • eδ
γ • γf • γδ

RR(e, δ) LR(γ, f)

δγ δγδ
γδγ (γδ)2
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∂M6

α f •αδ
e • ef δ
γ • γf • γδ

RR(α, δ) LR(γ, f)

δγ δγδ
γδγ (γδ)2 ∂Mt

6

α f δ
e • ef • eδ
• γα γ •γδ
RR(e, δ) LR(γ, α)

δγ δγδ
γδγ (γδ)2

We begin by investigating the existence of each of these semigroups as a
subsemigroup of TX where |X| = 6. For this purpose we require the following
important observations.

Theorem 4. If |X| = 6 and if (γ, δ) is a discrete skew pair of idempotents
in TX then | Im γδ| = 3 and | Im (γδ)2| = 2 .

Proof. Let X = {x, y, z, u, v, w} and let ϑ = γδ . Then ϑ ∈ T̂X and so
ϑ �= ϑ2 = ϑ3 . We may therefore assume that

ϑ =

(
x y z u v w
y z z ∗ ∗ ∗

)
≡
(

y z z ∗ ∗ ∗
)
, ϑ2 =

(
z z z ∗ ∗ ∗

)
.

Now since (γ, δ) is discrete we have, by Theorem 1(4), that ϑ2ϕ �= ϑ2 and
ϕϑ2 �= ϑ2 for some ϕ ∈ V (ϑ) ∩ E(TX). Then ϑ2 is not a constant mapping.
Furthermore, by Theorem 1, we have Im ϑ2 = Fix ϑ2 = Fix ϑ . We may
therefore assume that

ϑ =
(

y z z u ∗ ∗
)
, ϑ2 =

(
z z z u ∗ ∗

)
.

We now observe that

(1) v /∈ Fix ϑ and w /∈ Fix ϑ .

In fact, if we suppose for example that v ∈ Fix ϑ then, with ϕ as above, we
have the following five possibilities for ϑ , and correspondingly for ϑ2 and ϕ :

ϑ:
(

y z z u v y
) (

y z z u v z
) (

y z z u v u
) (

y z z u v v
) (

y z z u v w
)

ϑ2:
(

z z z u v z
) (

z z z u v z
) (

z z z u v u
) (

z z z u v v
) (

z z z u v w
)

ϕ:
(
∗ ∗ z u v ∗

) (
x x ∗ u v ∗

) (
x x z ∗ v ∗

) (
x x z u ∗ ∗

) (
x x z u v w

)
Now since (γ, δ) is discrete we have Im ϑ2 � Im ϕ by Theorem 1(4). The first
and last possibilities above are therefore excluded. In the remaining three cases
we must have y /∈ Im ϕ since otherwise, ϕ being idempotent, we would have
ϕ(y) = y whence the contradiction y = ϑ(x) = ϑϕϑ(x) = ϑϕ(y) = ϑ(y) = z . It
follows from these observations that in all three possibilities for ϕ the entries
marked ∗ must all be w . But this gives Ker ϕ ⊆ Ker ϑ2 which contradicts the
fact that (γ, δ) is discrete. We conclude that v /∈ Fix ϑ . Similarly it can be
shown that w /∈ Fix ϑ .

Since Fix ϑ = Im ϑ2 it follows from (1) that Im ϑ2 = {z, u} and
therefore | Im (γδ)2| = 2. We complete the proof by showing that Im ϑ =
{y, z, u} .
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For this purpose, we note from the above that

ϑ =
(

y z z u p q
)

where p �= v, q �= w.

Since x /∈ Im ϑ it suffices therefore to show that p �= w and q �= v .

Suppose, by way of obtaining a contradiction, that p = w . Then we have

ϑ =
(

y z z u w q
)

where q /∈ {x,w}.

Now since for every a ∈ Im ϑ we have ϕ(a) ∈ {b ∈ X | ϑ(b) = a} , we see that

ϕ(y) ∈ {x,w}, ϕ(z) ∈ {y, z, w}, ϕ(u) ∈ {u,w}, ϕ(w) ∈ {v, w}.

But w = ϑ(v) gives w = ϑϕϑ(v) = ϑϕ(w); and ϑ(w) = q �= w . Then ϕ(w) �= w
and so, since ϕ is idempotent, we have w /∈ Im ϕ . Since, as observed above,
y /∈ Im ϕ it follows that ϕ(y) = x , ϕ(z) = z , ϕ(u) = u , ϕ(w) = v and
therefore, ϕ being idempotent, we must have ϕ(x) = x and ϕ(v) = v . Thus we
see that ϕ =

(
x x z u v v

)
whence Im ϑ2 ⊆ Im ϕ , which contradicts the fact

that (γ, δ) is discrete.

Similarly we can show that q �= v . We conclude that Im ϑ = {y, z, u} as
required.

We have seen in the proof of Theorem 4 that if X = {x, y, z, u, v, w} and
(γ, δ) is a discrete skew pair of idempotents in TX then ϑ = γδ ∈ T̂X is of the
form ϑ =

(
y z z u ∗ ∗

)
with Im ϑ = {y, z, u} and Im ϑ2 = {z, u} . By Theorem

2 there is no loss in generality in supposing that (γ, δ) is fundamental, so that
in TX we have the egg-box situation

ϕ δ

γ •ϑ = γδ

where ϕ ∈ V (ϑ) ∩ E(TX). Consequently,

Im ϕ = Im δ, Im γ = Im ϑ, Ker ϕ = Ker γ, Ker δ = Ker ϑ.

More particularly, we now observe that

Theorem 5. In the above situation we have

(1) y /∈ Im δ;

(2) precisely one of z, u belongs to Im δ .

Proof. (1) Since y ∈ Im ϑ = Im γ and γ is idempotent we have γ(y) = y .
Suppose now that y ∈ Im δ . Then likewise δ(y) = y and there follows the
contradiction z = ϑ(y) = γδ(y) = γ(y) = y . Hence we see that y /∈ Im δ .
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(2) Suppose, by way of obtaining a contradiction, that neither z nor u
belongs to Im δ . Since ϑ, δ are D -related we deduce from Theorem 4 that
| Im δ| = | Im ϑ| = 3. It follows by the hypothesis and (1) that

Im δ = {x, v, w}.

Now Ker δ = Ker ϑ and δ2 = δ give δ(x) = x , δ(y) = δ(z) = δ[δ(z)] , and
δ(u) = δ[δ(u)] from which we see that

Im δ = {x, δ(z), δ(u)}.

Clearly, we may choose δ(z) = v and δ(u) = w . We then have

X = {x, y, z, u, δ(z), δ(u)}, δ =
(

x v v w v w
)
.

We next observe that
(
z, δ(z)

)
∈ Ker δ = Ker ϑ and

(
u, δ(u)

)
∈ Ker δ = Ker ϑ ,

whence ϑ(x) = y , ϑ(y) = ϑ[δ(z)] = ϑ(v) and ϑ(u) = ϑ[δ(u)] = ϑ(w). It follows
that ϑ2(x) = ϑ2(y) = ϑ2(z) = ϑ2(v) and ϑ2(u) = ϑ2(w), from which we deduce
that

ϑ2 =
(

z z z u z u
)
.

Finally, Im γ = Im ϑ = {y, z, u} and γ2 = γ give

δγ(x) = δγδ(x) = δϑ(x) = δ(y) = δ(z);

δγ(y) = δ(y) = δ(z);

δγ(z) = δ(z);

δγ(u) = δ(u);

δγ[δ(z)] = δϑ(z) = δ(z);

δγ[δ(u)] = δϑ(u) = δ(u),

and therefore
δγ =

(
δ(z) δ(z) δ(z) δ(u) δ(z) δ(u)

)
.

It follows from the above observations that Ker δγ = Ker ϑ2 and so (δγ, ϑ2) ∈
L . But we always have (δγ, γδγ) ∈ L . Thus ϑ2 = γδγ and this contradicts
the fact that (γ, δ) is discrete. Consequently at least one of z, u must belong
to Im δ .

However, since (γ, δ) is discrete, we have again by Theorem 1 that
Im ϑ2 � Im ϕ and therefore either z /∈ Im ϕ or u /∈ Im ϕ . We conclude
that precisely one of z, u must be in Im ϕ = Im δ .

Theorem 6. If S is a derived Rees matrix subsemigroup of T6 then∣∣∣∣ ⋃
t∈S

Im t

∣∣∣∣ = 5.
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Proof. Let |X| = 6, say X = {x, y, z, u, v, w} , and suppose that S is a
derived Rees matrix subsemigroup of TX . If (e, f) is the strong skew pair of
idempotents in S then we can represent S in the D -class form

α f a
e • ef b
c d g

fe

Let (γ, δ) be the discrete skew pair in S . Then, as in the proof of Theorem 4,
we may assume that

ϑ = γδ =
(

y z z u−−
)
, ϑ2 =

(
z z z u−−

)
with Im ϑ = {y, z, u} and Im ϑ2 = {z, u} .

Since δγ is D -related to ϑ2 we have | Im δγ| = 2. Now z ∈ Im ϑ ⊆ Im γ
gives z = γ(z) and so δ(z) ∈ Im δγ ; and likewise δ(u) ∈ Im δγ . Moreover,
δ(z) �= δ(u), for otherwise (z, u) ∈ Ker δ ⊆ Ker ϑ which gives the contradiction
z = ϑ(z) = ϑ(u) = u . It follows from this and the fact that (δγδ, δγ) ∈ R that

Im δγ = {δ(z), δ(u)} = Im δγδ.

There are two cases to consider.

(1) (ϑ2, fe) /∈ R .

[Note from the above descriptions that this case covers all semigroups except
∂M1 , ∂M2 , ∂M4 .]

In this case we have (fe, δγδ) ∈ R and so Im fe = Im δγδ = {δ(z), δ(u)} . Then
Im fe ⊆ Im f and Im fe = Im (ef)2 ⊆ Im e give {δ(z), δ(u)} ⊆ Im e ∩ Im f .

Since, by Theorem 5(2), either z = δ(z) or u = δ(u) but not both, it
follows that Im e �= Im ϑ and Im f �= Im ϑ . Consequently (e, ϑ) /∈ R and
(f, ϑ) /∈ R . Thus we see that ϑ ∈ {c, d, g} ; and since (γ, ϑ) ∈ R we also have
γ ∈ {c, d, g} .

In summary, therefore, we have

Im α = Im f = Im a = {δ(z), δ(u), p} ;

Im e = Im ef = Im b = {δ(z), δ(u), q} ;

Im c = Im d = Im g = Im γ = Im ϑ = {y, z, u} ,

where p �= q since Im α �= Im e . Moreover, since α is idempotent, (δ(z), p) /∈
Ker α = Ker e and so e(p) �= eδ(z) = δ(z). Likewise, e(p) �= δ(u) and therefore
we must have e(p) = q . A similar argument shows that α(q) = p .

Now since (ϑ, δ) ∈ L we have Ker ϑ = Ker δ . Consequently, δ(x) �= δ(z)
and δ(x) �= δ(u). Since δ is idempotent it follows that x �= δ(z) and x �= δ(u).
By Theorem 5(2) we thus see that either δ(z) = z and δ(u) /∈ {x, y, z, u} , or
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δ(u) = u and δ(z) /∈ {x, y, z, u} . We may therefore assume, without loss of
generality, that

v =

{
δ(u) if z ∈ Im δ ;
δ(z) if u ∈ Im δ .

If we define T = Im f ∪ Im e ∪ Im ϑ , we thus have

T = {y, z, u, v, p, q}.

Since ϑ, γ ∈ {c, d, g} we must have δ ∈ Re∪Rf . Consequently, T =
⋃
t∈S Im t .

Our objective is therefore to show that T has precisely 5 elements. For
this purpose, we require the following observations.

(1.1) {δ(z), δ(u)} ⊆ Fix a ∩ Fix b .

In fact, by [2, Theorem 8], one of a, b must be idempotent. Suppose, for
example, that a is idempotent. Then since b = ea and δ(z) ∈ Im a ∩ Im e =
Fix a ∩ Fix e we have bδ(z) = eaδ(z) = eδ(z) = δ(z) so δ(z) ∈ Fix b ; and
likewise for δ(u). A similar argument holds if b is idempotent.

(1.2) c(p) = c(q) = d(p) = y .

We have g = ca , d = cf and, by (1.1), {δ(z), δ(u)} ⊆ Fix a . Using the
fact that ϑ ∈ {c, d, g} and {δ(z), δ(u)} ⊆ Im f we then have gδ(z) = cδ(z) =
dδ(z) = ϑδ(z) = ϑ(z) = z , and similarly for u . Since

(
p, δ(z)

)
/∈ Ker α = Ker c

we have c(p) �= cδ(z) = z ; and similarly c(p) �= u . It follows that c(p) = y .
Moreover, e(p) = q gives e(p) = e(q) whence (p, q) ∈ Ker e = Ker c and so
c(p) = c(q). Finally, d(p) = cf(p) = c(p).

(1.3) (∀t ∈ D2) t(y) ∈ {δ(z), z} .

The D class D2 is
D2 = {ϑ2 = (γδ)2, δγ, δγδ, γδγ}

and ϑ2(y) = ϑ(z) = z; δγ(y) = δ(y) = δ(z); δγδ(y) = δϑ(y) = δ(z); γδγ(y) =
γδ(y) = ϑ(y) = z .

(1.4) (∀t ∈ D2) tδ(x) ∈ {δ(z), z} .

In fact the proof is similar to that of (1.3).

Consider now the set X . Since δ(x) �= δ(z) and δ(x) �= δ(u), the fact
that δ is idempotent gives δ(x) �= z and δ(x) �= u . Moreover, by Theorem 5(1),
δ(x) �= y . We can therefore also represent X in the form

X = {δ(x), y, z, u, v, %}

for some undetermined element % . Since Im γ = Im ϑ and γ is idempotent, we
have Fix γ = {y, z, u} and simple calculations show that(

∀k ∈ X\{%}
)

δγ(k) = δγδ(k).
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Since δγ �= δγδ we deduce that % is such that δγ(%) �= δγδ(%).

There are two situations to consider.

(A) δ ∈ Re . [This occurs in ∂M3, ∂M6 .]

Here we have δ = b , γ = c , and a is not idempotent. Then

Im e = Im b = Im δ = {δ(x), δ(z), δ(u)}

whence we see that q = δ(x). Now since (y, z) ∈ Ker ϑ = Ker δ we have,
by (1.2), δγ(p) = δc(p) = δ(y) = δ(z). Moreover, c(y) = γ(y) = y = c(p)
gives (p, y) ∈ Ker c = Ker α whence α(y) = α(p) = p and consequently
δα(y) = δ(p). Since a is not idempotent, (α, b) is a skew pair and so bα ∈
D2 . Consequently, we have δγδ(p) = δγδα(y) = δγbα(y). But, by (1.3),
bα(y) ∈ {δ(z), z} and so

δγδ(p) ∈ {δγδ(z), δγ(z)} = {δϑ(z), δ(z)} = {δ(z)}.

Hence δγδ(p) = δ(z) = δγ(p) and therefore p �= % . It follows that p ∈
{y, z, u, v} and consequently |T | = 5.

(B) δ ∈ Rf . [This occurs in ∂M t
2, ∂M t

3, ∂M t
4, ∂M5, ∂M t

6 .]

In this case we have p = δ(x). There are three situations to consider.

(B1) δ = α . [∂M t
4]

Here γ = g , ϑ = c , a is idempotent and b is not idempotent. Since γδ(z) = z ,
γδ(u) = u , and γ(y) = y we have

(
y, δ(z)

)
,
(
y, δ(u)

)
/∈ Ker γ = Ker b .

Now, by (1.1), δ(z), δ(u) ∈ Fix b whence it follows that b(y) = q . But
since b is not idempotent we have b2 ∈ D2 . By (1.3) and the fact that
z /∈ Im b we therefore have b2(y) = δ(z). Consequently, b(q) = δ(z) and(
q, δ(z)

)
∈ Ker b = Ker g = Ker γ whence γ(q) = γδ(z) = z . Thus we have,

using (1.2),
δγδ(q) = δϑ(q) = δc(q) = δ(y) = δ(z) = δγ(q)

whence q �= % . It follows that q ∈ {y, z, u, v} and consequently |T | = 5.

(B2) δ = f . [∂M t
2]

Here a, b are idempotents and a = αγ . Since a is idempotent we have Fix a =
Fix α = {p, δ(z), δ(u)} ; and since a = αγ we have a(y) = α(y), a(z) = α(z),
a(u) = α(u). Then for all k ∈ X \{%} we have a(k) = α(k). Since a �= α it
follows that a(%) �= α(%). Now since

(
p, δ(z)

)
,
(
p, δ(u)

)
/∈ Ker a = Ker b we see

that b(p) = q ; and b(q) = q since b is idempotent. Thus (p, q) ∈ Ker b = Ker a
whence we obtain a(q) = a(p) = p = α(q). This shows that q �= % whence
q ∈ {y, z, u, v} and consequently |T | = 5.

(B3) δ = a . [∂M t
3, ∂M5, ∂M t

6]
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Here ϑ = g and (ef)2 = δγ . Since f(p) = p we have ef(p) = e(p) = q and so
(ef)2(p) = ef(q). Hence

δγ(q) = (ef)2(q) = (ef)3(p) = (ef)2(p) = δγ(p) = δγδ(x) = δ(y) = δ(z).

Now in ∂M t
3 we have δγδ(q) = δγδe(p) = δγα(p) = δγ(q). As for ∂M5 and

∂M t
6 , using (1.4) we have

δγδ(q) = δγδeδ(x) = δγδ(z) = δϑ(z) = δ(z) = δγ(q).

We deduce from this that q �= % . It follows that q ∈ {y, z, u, v} and consequently
|T | = 5.

(2) (ϑ2, fe) ∈ R .

[Note from the above descriptions that this case covers the remaining semigroups
∂M1 , ∂M2 , ∂M4 .]

In this case we have (ϑ2, γδγ) ∈ R with ϑ2 �= γδγ . Moreover, δ ∈ {d, g}
and ϑ ∈ Re ∪Rf . Clearly, we may take

Im c = Im d = Im g = Im δ = {δ(x), δ(z), δ(u)};

Im α = Im f = Im a = {z, u, p};

Im e = Im ef = Im b = {z, u, q},

where p �= q . Since ϑ ∈ Re∪Rf with Im ϑ = {y, z, u} it follows that y ∈ {p, q} .
Corresponding to the set T in (1) above, consider the set

W = Im e ∪ Im f ∪ Im δ.

With v as before, we then have

W = {δ(x), z, u, v, p, q} =
⋃
t∈S

Im t,

and our objective is to show that |W | = 5.

For this purpose, we may as before represent the set X in the form

X = {δ(x), y, z, u, v, %}.

Simple calculations show that(
∀k ∈ X\{%}

)
ϑ2(k) = γδγ(k).

Since ϑ2 �= γδγ it follows that ϑ2(%) �= γδγ(%).

There are two cases to consider.
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(C) ϑ ∈ Rα . [This occurs in ∂M4 .]

Here Im ϑ = Im α whence p = y . Also, ϑ = a , γ = α , δ = g , and b is
idempotent. Then ϑ = a = αb = γb , and b(q) = q . Thus

ϑ2(q) = ϑγb(q) = ϑγ(q) = γδγ(q)

whence we see that q �= % , and consequently |W | = 5.

(D) ϑ ∈ Re [This occurs in ∂M1, ∂M2 .]

Here Im ϑ = Im e and so q = y . Also, a is idempotent and γδ ∈ {γf, γa} .
Consequently,

ϑ(p) = γδ(p) ∈ {γf(p), γa(p)} = {γ(p)}.

It follows that ϑ2(p) = ϑγ(p) = γδγ(p) whence p �= % and again |W | = 5.

Corollary. or a subsemigroup S of TX with |X| = 6 to be a derived Rees
matrix semigroup it is necessary that there exist some element of X that is not
in the image of any element of S .

With the above results to hand, we can now determine which of the ten
derived Rees matrix semigroups can be represented as semigroups of transfor-
mations. For this purpose we take X = {1, 2, 3, 4, 5, 6} .

Consider ϑ ∈ TX given by ϑ =
(
1 1 6 5 6 6

)
. We have ϑ �= ϑ2 = ϑ3 , and

simple calculations show that the mappings

α =
(
1 1 6 4 4 6

)
, β =

(
1 1 1 4 4 6

)
;

γ =
(
2 2 6 4 4 6

)
, δ =

(
2 2 2 4 4 6

)
,

are idempotent inverses of ϑ in TX , so that ϑ ∈ T̂X . Moreover, Im α = Im β
and so αRβ [mappings on the left! ] , and similarly γR δ . Likewise, Ker α =
Ker γ and so αL γ , and similarly β L δ . Since we have α ∈ V (ϑ)∩E(TX), the
idempotents ϑα =

(
1 1 6 5 5 6

)
and αϑ =

(
1 1 6 4 6 6

)
are such that (ϑα, αϑ)

is a fundamental skew pair. Since αϑ2 = ϑ2 = ϑ2α , we see by Theorem 1(1)
that (ϑα, αϑ) is a strong skew pair in TX .

Repeating this process with β, γ, δ we see similarly that (ϑβ, βϑ) is right
regular, that (ϑγ, γϑ) is left regular, and that (ϑδ, δϑ) is discrete. Consequently
in T6 we have (displayed as previously) the following representation of

∂M1

(
1 1 6 4 4 6

) (
1 1 6 4 6 6

) (
1 1 1 4 4 6

)(
1 1 6 5 5 6

)
•
(

1 1 6 5 6 6
) (

1 1 1 5 5 6
)(

2 2 6 4 4 6
) (

2 2 6 4 6 6
) (

2 2 2 4 4 6
)

(
1 1 6 6 6 6

) (
1 1 1 6 6 6

)(
2 2 6 6 6 6

) (
2 2 2 6 6 6

)
Likewise we have the following representations:

∂M2

(
1 1 6 4 4 6

) (
1 1 6 4 6 6

) (
1 1 1 4 6 6

)(
1 1 6 5 5 6

)
•
(

1 1 6 5 6 6
)
•
(

1 1 1 5 6 6
)(

2 2 6 4 4 6
) (

2 2 6 4 6 6
) (

2 2 2 4 6 6
)

(
1 1 6 6 6 6

) (
1 1 1 6 6 6

)(
2 2 6 6 6 6

) (
2 2 2 6 6 6

)
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∂Mt
2

(
1 1 1 4 4 6

) (
1 1 1 4 6 6

) (
1 1 4 4 4 6

)(
1 1 1 5 5 6

)
•
(

1 1 1 5 6 6
) (

1 1 5 5 5 6
)(

2 2 2 5 5 6
)
•
(

2 2 2 5 6 6
) (

2 2 5 5 5 6
)

(
1 1 1 6 6 6

) (
1 1 6 6 6 6

)(
2 2 2 6 6 6

) (
2 2 6 6 6 6

)
∂M3

(
1 1 6 4 4 6

) (
1 1 6 4 6 6

)
•
(

1 1 1 6 4 6
)(

1 1 6 5 5 6
)
•
(

1 1 6 5 6 6
) (

1 1 1 6 5 6
)(

2 2 6 4 4 6
) (

2 2 6 4 6 6
)
•
(

2 2 2 6 4 6
)

(
1 1 6 6 6 6

) (
1 1 1 6 6 6

)(
2 2 6 6 6 6

) (
2 2 2 6 6 6

)
∂M4

(
1 1 1 4 4 6

) (
1 1 1 4 6 6

)
•
(

1 1 6 6 4 6
)(

1 1 1 5 5 6
)
•
(

1 1 1 5 6 6
) (

1 1 6 6 5 6
)(

2 2 2 5 5 6
)
•
(

2 2 2 5 6 6
) (

2 2 6 6 5 6
)

(
1 1 1 6 6 6

) (
1 1 6 6 6 6

)(
2 2 2 6 6 6

) (
2 2 6 6 6 6

)
∂M5

(
1 1 1 4 4 6

) (
1 1 1 4 6 6

) (
1 1 6 4 6 6

)(
1 1 1 5 5 6

)
•
(

1 1 1 5 6 6
)
•
(

1 1 6 5 6 6
)(

2 2 2 5 5 6
)
•
(

2 2 2 5 6 6
)
•
(

2 2 6 5 6 6
)

(
1 1 1 6 6 6

) (
1 1 6 6 6 6

)(
2 2 2 6 6 6

) (
2 2 6 6 6 6

)
The reader will note that missing from the above list are the remaining

four semigroups ∂M t
3 , ∂M t

4 , ∂M t
6 , ∂M6 . In fact, we have the following

somewhat surprising result.

Theorem 7. The derived Rees matrix semigroups ∂M t
3 , ∂M t

4 , ∂M t
6 , ∂M6

are not isomorphic to any subsemigroup of T6 .

Proof. Suppose, by way of obtaining contradictions, that T6 contains a copy
of one of these four semigroups. Then, continuing with the previous notation,
for X = {x, y, z, u, v, w} we have ϑ = γδ =

(
y z z u % %

)
with Im ϑ = {y, z, u}

and Im ϑ2 = {z, u} . Since δγ is D -related to ϑ2 we have | Im δγ| = 2. Now
z ∈ Im ϑ = Im γ gives δ(z) = δγ(z) ∈ Im δγ ; and likewise δ(u) ∈ Im δγ . And
δ(z) �= δ(u); for otherwise in all cases we would have (z, u) ∈ Ker δ = Ker ϑ
whence the contradiction z = ϑ(z) = ϑ(u) = u . It therefore follows that in all
four semigroups

Fix ef = Im (ef)2 = Im fe = Im δγ = {δ(z), δ(u)}.

Again since Ker δ = Ker ϑ it now follows that Im δ = {δ(x), δ(z), δ(u)} . Since,
by Theorem 5(1), we have y /∈ Im δ and, by Theorem 5(2), precisely one of
z, u belongs to Im δ , we may again represent X in the form

X = {δ(x), y, z, u, v, %}

in which we can choose

v =

{
δ(u) if z ∈ Im δ ;
δ(z) if u ∈ Im δ .

There are two situations to consider:

(1) ∂M t
3, ∂M t

4, ∂M t
6 .
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In each of these three semigroups we have δ = fδ = fϑ and therefore, using
the fact that δ(z), δ(u) ∈ Fix ef , we have

Im eδ⊇{eδ(x), eδ(z), eδ(u)}={efϑ(x), efδ(z), efδ(u)}={ef(y), δ(z), δ(u)}.

Consider now the element ef(y). First we observe that ef(y) �= δ(z), δ(u).
Indeed, suppose for example that ef(y) = δ(z). Since in all three semigroups
ef(y) = efϑ(x) = eδ(x), we have eδ(x) = δ(z) whence eδ(x) = eδ(z).
It follows that (x, z) ∈ Ker eδ = Ker ϑ whence we have the contradiction
y = ϑ(x) = ϑ(z) = z . Since | Im eδ| = 3 we deduce from the above that

Im eδ = {ef(y), δ(z), δ(u)}.

To show that ef(y) is the missing element % of X , we next observe that

(1.1) ef(y) �= δ(x).

In fact, if ef(y) = δ(x) then Im eδ = Im δ whence (eδ, δ) ∈ R . But in each of
the three semigroups we have (eδ, δ) ∈ L .

(1.2) ef(y) �= y .

In fact, if ef(y) = y then in all three cases y ∈ Fix ef = Im fe ⊆ Im f = Im δ
in contradiction to Theorem 5(1).

(1.3) ef(y) �= z, u .

In ∂M t
4 we have Ker e = Ker ϑ . Suppose, for example, that ef(y) = z .

Then eδ(x) = z = e(z) whence (δ(x), z) ∈ Ker e = Ker ϑ which gives the
contradiction y = ϑ(x) = ϑδ(x) = ϑ(z) = z ; and similarly for u .

As for ∂M t
3 and ∂M t

6 , observe that here we have αef = f and ϑf = γ .
Thus

(a) ϑα[ef(y)] = ϑf(y) = γ(y) = y .

Moreover, in each of these semigroups we have

γδγ = (ϑα)2.

Thus

(b) (ϑα)2[ef(y)] = γδγ[ef(y)] = γfe[ef(y)] = γδγ(y) = γδ(y) = ϑ(y) = z .

Then ϑα(y) = z and consequently

(c) ϑα(z) = (ϑα)2(y) = γδγ(y) = z .

We deduce from (a) and (c) that ef(y) �= z .

Since also
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(d) (ϑα)2(u) = γδγ(u) = γδ(u) = ϑ(u) = u,

we see from (b) and (d) that ef(y) �= u .

It is clear from the above observations that for ∂M t
3, ∂M t

4, ∂M t
6 we have

X = {δ(x), y, z, u, v, ef(y)}.

Since this contradicts Theorem 6, we conclude that T6 does not contain copies
of the three derived Rees matrix semigroups ∂M t

3, ∂M t
4, ∂M t

6 .

(2) ∂M6 .

As for ∂M6 , here we have Im α = Im αδ ⊇ {αδ(x), αδ(z), αδ(u)} . But αδ =
αϑ , so αδ(x) = α(y). Also, in ∂M6 we have

δγδ = (αδ)2.

Hence δ(z) = δϑ(z) = δγδ(z) = (αδ)2(z) ∈ Im α and so αδ(z) = δ(z).
Likewise, we have αδ(u) = δ(u). Consequently, Im α ⊇ {α(y), δ(z), δ(u)} .

Consider now the element α(y). First we observe that α(y) �= δ(z), δ(u).
For example, α(y) = δ(z) gives the contradiction y = γ(y) = γα(y) = γδ(z) =
ϑ(z) = z . Since | Im α| = | Im ϑ| = 3 it therefore follows that

Im α = {α(y), δ(z), δ(u)}.

To show that in this case α(y) is the missing element % of X , we observe
that

(2.1) α(y) �= δ(x).

In fact, if α(y) = δ(x) then we have Im α = Im δ which gives the contradiction
(α, δ) ∈ R .

(2.2) α(y) �= y .

Since y, z ∈ Im ϑ = Im γ we have (γf)2(y) = γδγ(y) = γδ(y) = ϑ(y) = z . It
follows from this that γf(y) �= y and consequently f(y) �= y . Thus, since f is
idempotent, y /∈ Im f = Im α , so α(y) �= y .

(2.3) α(y) �= z, u .

Clearly, (y, z) /∈ Ker γ = Ker α and so α(y) �= α(z). Since α is idempotent
this implies that α(y) �= z . Similarly, α(y) �= u .

It is clear from the above observations that for ∂M6 we have

X = {δ(x), y, z, u, v, α(y)}.

Since this contradicts Theorem 6, we conclude that T6 also does not contain a
copy of ∂M6 .
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Combining the above considerations, we arrive at the following result
which is our main conclusion.

Theorem 8. The full transformation semigroup TX contains copies of all
ten derived Rees matrix semigroups if and only if |X| � 7 .

Proof. It suffices to show that T7 contains copies of each of ∂M t
3 , ∂M t

4 ,
∂M t

6 , ∂M6 . The following examples for X = {1, 2, 3, 4, 5, 6, 7} serve this
purpose:

∂Mt
3

(
1 1 5 6 5 6 1

) (
1 1 6 5 5 6 1

) (
1 1 5 6 5 6 5

)(
1 1 3 6 3 6 1

)
•
(

1 1 6 3 3 6 1
) (

1 1 3 6 3 6 3
)

•
(

2 2 4 6 4 6 2
) (

2 2 6 4 4 6 2
)
•
(

2 2 4 6 4 6 4
)
(

1 1 6 6 6 6 1
) (

1 1 6 6 6 6 6
)(

2 2 6 6 6 6 2
) (

2 2 6 6 6 6 6
)

∂Mt
4

(
1 1 3 6 3 6 3

) (
1 1 3 3 6 6 3

) (
1 1 3 3 6 6 1

)(
1 1 5 6 5 6 5

)
•
(

1 1 5 5 6 6 5
)
•
(

1 1 5 5 6 6 1
)

•
(

2 2 4 6 4 6 4
) (

2 2 4 4 6 6 4
) (

2 2 4 4 6 6 2
)
(

1 1 6 6 6 6 6
) (

1 1 6 6 6 6 1
)(

2 2 6 6 6 6 6
) (

2 2 6 6 6 6 2
)

∂Mt
6

(
1 1 5 6 5 6 1

) (
1 1 6 5 5 6 1

) (
1 1 6 6 5 6 5

)(
1 1 3 6 3 6 1

)
•
(

1 1 6 3 3 6 1
)
•
(

1 1 6 6 3 6 3
)

•
(

2 2 4 6 4 6 2
) (

2 2 6 4 4 6 2
)
•
(

2 2 6 6 4 6 4
)
(

1 1 6 6 6 6 1
) (

1 1 6 6 6 6 6
)(

2 2 6 6 6 6 2
) (

2 2 6 6 6 6 6
)

∂M6

(
1 1 3 3 3 6 6

) (
1 1 3 6 6 6 6

)
•
(

1 1 6 6 3 6 1
)(

1 1 5 5 5 6 6
)
•
(

1 1 5 6 6 6 6
) (

1 1 6 6 5 6 1
)(

2 2 4 4 4 6 6
)
•
(

2 2 4 6 6 6 6
)
•
(

2 2 6 6 4 6 2
)
(

1 1 6 6 6 6 6
) (

1 1 6 6 6 6 1
)(

2 2 6 6 6 6 6
) (

2 2 6 6 6 6 2
)
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