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1. Introduction

The aim of this paper is to construct a symbol calculus and a Fredholm criterion
for the nonlocal C*-algebra B := alg (A, Ug) generated by a C*-algebra 2, for
which we know a symbol calculus, and by a group Ug := {Uy : g € G} of unitary
operators U, associated to an amenable (see [14]) discrete group G.
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Let B(L?(T)) be the C*-algebra of all bounded linear operators acting on the
Lebesgue space L?(T) where T is the unit circle in C with the length measure and
the usual anticlockwise orientation. Consider the C*-algebra

2 := alg (PSO(T), St) C B(L*(T)) (1.1)
generated by all multiplications operators by piecewise slowly oscillating func-

tions, PSO(T) (see definition in Section 2.1), and by the Cauchy singular integral
operator St defined on L?(T) by

(St)(t) == lim i,/ P gr teT, T(he)={reT: |r—t <e}.
e—0 M2 T\T(t,e) T —

Let G be an amenable discrete group of orientation-preserving diffeomor-
phisms of T onto itself, with the group operation given by (gh)(t) = h(g(t)) for
g,h € G, t € T. We will denote by e the identity map on T. To each g € G we
assign the unitary shift operator U, defined on the space L?(T) by

(Ugp)(t) == g' (O] ?0(g(t)), for teT. (1.2)
The present paper continues investigations in [5]. In contrast to [5], where the
C*-algebra B = alg (A, Ug) was investigated under the condition that all shifts
g € G\ {e} have the same finite set of fixed points, we now suppose only that the
shifts g € G \ {e} have the same nonempty set A of fixed points. In particular, A
can have limit points, be a Cantor set of measure mes A > 0, have a nonempty
interior (see [18], [21]). This brings new difficulties in studying functional and
singular integral operators with shifts. Obviously, we have the partitions

T =T, UA°UDA, OA=IsAU(A \A°) (1.3)

where Ty := T\ A, A° := Int A is the interior of A, JA is the boundary of A,
Is A is the (at most countable) set of all isolated points of A and A’ is the set of all
limit points of A. The sets T,,. and A° are at most countable unions of open arcs.
If A° is nonempty, then the action of the group of shifts G on T is not topologically
free, in contrast to [5]. According to [1], the group G acts topologically freely on
the contour T if for each finite set F' C G and each open arc v C T there exists a
point ¢ € 7 such that the points g(t) for g € F are pairwise distinct.

To study the C*-algebra B = alg (2, Us), we apply the local-trajectory
method and its generalization based on the notion of spectral measure and deve-
loped for the case when the action of an amenable discrete group G on the maximal
ideal space of a central C*-algebra Z C 2 is not topologically free (see [15], [17],
[5]). This C*-algebra approach, in contrast to the methods of [1]-[2], is related to
the Allan-Douglas local principle (see, e.g., [10]) and is essentially different of those
applied for studying singular integral operators with shifts and discontinuous coef-
ficients on Banach spaces (see [19]-[21] and the references therein). C*-algebras of
singular integral operators with discontinuous coeflicients and amenable discrete
groups of shifts acting freely was studied in [16], [7]. The presence of fixed points
of shifts qualitatively changes symbol calculi for such C*-algebras (see [16], [21],
[3, Section 53], [4], [5])-
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Studying singular integral operators with shifts was initiated and always sup-
ported by G.S. Litvinchuk (see [22], [21]).

To study the C*-algebra B, we also need to investigate the invertibility in
the C*-algebra of functional operators

A :=alg (PSO(T),Ug) C B(L*(T)) (1.4)

generated by all multiplication operators al with a € PSO(T) and by all shift
operators U, (g € G) given by (1.2). Since the action of the group G on T in general
is not topologically free, studying the C*-algebra 4 is more difficult than in [5]. To
investigate the C*-algebra 4 and the quotient C*-algebra B™ := B /I, where K :=
KC(L?(T)) is the ideal of all compact operators in B(L?(T)), we decompose these
C*-algebras in orthogonal sums of operator C*-algebras obtained with the help
of spectral projections related to G-invariant subsets of the maximal ideal space
of appropriate commutative C*-subalgebras of A and B™, respectively. Studying
the invertibility in these operator C*-algebras leads to an invertibility criterion for
the functional operators A € A in Section 3 and to a Fredholm criterion for the
operators B € B in Section 5.

The paper is organized as follows. Section 2 is devoted to important requisites
to subsequent sections. In Subsection 2.1 we describe the C*-algebra PSO(T) of
piecewise slowly oscillating function and its maximal ideal space M (PSO(T)). In
Subsection 2.2 we present a symbol calculus for the C*-algebra 21 and define a
central C*-subalgebra Z™ of the C*-algebra 2™ := /K. In Subsections 2.3-2.4
we recall the local-trajectory method and its generalization based on the notion
of spectral measure.

In Section 3 we study the invertibility in the C*-algebra A (see (1.4)) of
the functional operators with shifts having an arbitrary nonempty set of common
fixed points. Making use of the local-trajectory method and its generalization,
we establish an invertibility criterion for the operators A € A. To this end we
study the invertibility of the operators x°A, xarc A and x. A, respectively, on the
spaces L2(A°), L*(T%,.) and L?(A.) where x°, Xare and Y. are the characteristic

functions of the sets A°, T%,.:= T\ A° and A, := A°\ A°.

Sections 4 and 5 are devoted to studying the Fredholmness in C*-algebra
B or, equivalently, the invertibility in the C*-algebra B™ = B/K considered as
BT = alg (AT, UL), the C*-algebra generated by all the cosets A™ (A € ) and
U7 (g € G), where B™ := B + K for every B € B(L*(T)). In Section 4, using
the spectral measure associated to the central C*-subalgebra Z™ of ™ and to a
faithful representation ¢ of 8™ in a Hilbert space, and considering an appropriate
G-invariant decomposition of the maximal ideal space M (Z™) of Z™, we decompose
the C*-algebra ¢(B™) into the direct sum of some operator C*-algebras B, .,
B1s, B° and B>° such that any operator B € B is Fredholm if and only if all
the ”projections” of the coset B™ are invertible in these C*-algebras. As a result,
we obtain an abstract Fredholm criterion for the operators B € 9 in terms of the
invertibility of corresponding operators in the C*-algebras B,.., B, B° and B>°.
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In Section 5 we establish explicit invertibility criteria for the C*-algebras
Bore, Bis and B° and show that the invertibility in the C*-algebras B,,. and
B° implies the invertibility in the C*-algebra 28°°, which does not have influence
on the Fredholm criterion for the C*-algebra 9. The invertibility conditions and
the methods applied for these C*-algebras are qualitatively different. Using the
symbol calculus for the C*-algebra 2 and the local-trajectory method, we get in
Subsection 5.1 an invertibility criterion for the operators in the C*-algebra B,
associated to the set Ty, = T\ A. In Subsection 5.2, applying [5, Section 9], we
obtain an invertibility criterion for the operators in the C*-algebra Bjs related
to the set Is A of all isolated points of A. The invertibility in the C*-algebra 2B°
associated to the set A’ of all limit points of A is investigated in Section 5.3 on
the basis of local-trajectory method. In Subsection 5.4 devoted to the C*-algebra
B> we establish a general form of operators in the C*-algebra B and show that
the invertibility in the C*-algebras B,,. and B° implies the invertibility in the
C*-algebra 9°°. Finally, in Subsection 5.5, collecting the results of Subsections 5.1—
5.4, we construct a symbol calculus for the C*-algebra B and obtain an explicit
Fredholm criterion for the operators B € B.

2. Preliminaries

Let B(H) denote the C*-algebra of all bounded linear operators on a Hilbert space
H and let K(H) be the ideal of all compact operators on H. If S,T € B(H) and
S —T € K(H), we will use the notation S ~ T. For an operator A € B(H) we
denote by A™ := A+IC(H) the coset of A in the Calkin algebra B(H)/K(H). Given
two C*-algebras A and B, we write A & B if they are isometrically *-isomorphic.

2.1. Function spaces

Let C(T), PC(T) and SO(T) denote the C*-subalgebras of L°>°(T) consisting,
respectively, of the functions continuous on T, of the functions which have one-
sided limits at each point of T, and of the functions slowly oscillating at each point
of T. A function f € L°(T) is called slowly oscillating at a point A € T (cf. [4],
5)) if

gii%esssup{ﬁ(zl) — f(z2)|: 21,22 € Ts()‘)} =0,

where T.(\) := {2z € T: /2 < |z — A\| < &}. Let PSO(T) := alg(SO(T), PC(T))
be the C*-subalgebra of L>°(T) generated by the C*-algebras SO(T) and PC(T).

Given a commutative unital C*-algebra A, we denote by M (A) the maximal
ideal space of A. As is well known, M (C(T)) = T and M(PC(T)) = T x {0,1},
respectively, where the points ¢t € T are identified with the evaluation functionals
3¢ given by 0.(f) = f(t) for f € C(T), and the pairs (¢,0) and (¢,1) are the
multiplicative linear functionals defined for a € PC(T) by (¢,0)a = a(t — 0) and
(t,1)a = a(t+0), where a(t —0) and a(t+0) are the left and right one-sided limits
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of a at the point ¢t € T. It is also known (see [4]) that
M(SO(T)) = | Mi(SO(T)), M(PSO(T))= |J M(PSO(T)), (2.1)
teT £€eM(SO(T))
where the corresponding fibers are given for t € T and & € M(SO(T)) by
My (SO(T)) = {& € M(SO(T)) : &l =t}
M¢(PSO(T)) = {y € M(PSO(T)) : ylsor) = &}
The fibers M(PSO(T)) for f € M(SO(T)) can be characterized as follows.
Theorem 2.1. [4, Theorem 4.6] If £ € M (SO(T)) with t € T, then
Me(PSO(T)) = {(&,0), (§, 1)}, (2.2)
where, for p € {0,1}, (& w)lso) =&, (& wlem =1, (& m)lper) = (t n)-

By (2.1) and (2.2), M(PSO(T)) = M(SO(T)) x {0, 1}. The Gelfand topology
on M(PSO(T)) can be described as follows. If £ € M;(SO(T)) (t € T), a base of
neighborhoods for (¢, 1) € M(PSO(T)) consists of all open sets of the form

_ J e x {0}) U (U, x{0,1}) if p=0,
G0 7 (Ve x (1) U (UL, x {0,1)) if p=1,
where Ug + = UeNM(SO(T)), Ue is an open neighborhood of ¢ in M (SO(T)), and
Ugets U '+ consist of all ¢ € Ug such that 7 = Cle(ry belong, respectively, to the sets
(—t,t) —{ZET —m < arg(z/t) <0} and (¢, —t):={z€T:0<arg(z/t) <m}.
2.2. The C*-algebra 21
Consider the C*-algebra 21 = alg (PSO( ), St) of singular integral operators on
L2(T) with PSO(T) coefficients. Let R = RU{oc} and R = [—00, +00] be the one
and two-point compactifications of the real line R = (—00, 400). Define the set
M := M(SO(T)) x R (2.4)

and equip it with the discrete topology. Let BC(9, C?*?) be the C*-algebra of all
bounded continuous matrix functions f : 9 — C2*2. According to [9, Section 7]
and [5, Theorem 5.1] we have the following symbol calculus for the C*-algebra 2.

Theorem 2.2. The map Sym : {al : a € PSO(T)} U {St} — BC (M, C2*2) given

by the matriz functions

srman(ean) = ("GY,2y)) Gmsaea = (4 ). e

—u(z)

(2.3)

where a(&, 1) is the Gelfand transform of a at the point (&, 1) € M(PSO(T)) and
u(z) := tanh(rx), v(z) := —i/ cosh(nz) for x € R, extends to a C*-algebra homo-
morphism Sym : 2 — BC (9, C2*2) whose kernel consists of all compact operators
on L*(T). An operator A € 2 is Fredholm on the space L*(T) if and only if

det ((Sym A)(&,2)) #0  for all (&,z) €M
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To each point t € T we assign the operator V; € B(L?(T)) given by

Xt (®) e () Xi (2) [ eWxi )
(Vio)(z) o= i /T y+z—2t = i /T y+z—2t dy, for z €T, (26)

where xi are the characteristic functions of the arcs v;5 such that v, := ~;" U~; is
a neighborhood of ¢, v;” Ny, = {t}, v is separated from —t, and v," N (—t,t) = @,
v N (t,—t) = @. By [5, Lemma 5.3|, every operator V; (t € T) with a fixed
singularity at ¢ belongs to the C*-algebra 2. Let P denote the set of all polynomials
>oreo apu® with ap € C and n =0, 1,.... Consider the C*-algebra

Z:=alg{al, Hpy: a € SO(T), PP, t € T} C B(L*(T)) (2.7)
generated by all multiplication operators al with a € SO(T) and by all operators

Hp, = P(xf St T —x; Srx; DVied (PeP, teT). (2.8)
By [5, (4.11) and (6.3)], for all a € PSO(T), b € SO(T), P € P and t € T, we get
aHp’t ~ Hp7taI, STHp’t ~ Hp’tST7 ijr ~ STbI (29)

Thus, Z™ := (£ + K)/K is a central C*-subalgebra of the C*-algebra 2A™ := /I,
where K = KC(L?(T)) is the ideal of all compact operators on L?(T).
Consider now the compact Hausdorff space

M := M(SO(T)) x R, (2.10)

where M(SO(T)) is equipped with the Gelfand topology, and the neighborhood
base of the topology on 9 consists of the open sets of the form

Wiea) =

{Ug,t < (z—e,x+e) if (¢,2) € M(SO(T)) x R,

(Ve \ Ue) x B) U (Ues x R\ [=2,e])) if (€,2) € M(SO(T)) x {o0}, 1V

where (§,z) € M, >0, Ue is an open neighborhood of a point £ € M(SO(T)),
and Ug, = Ug N M (SO(T)) with t = §|C(T) eT.

Theorem 2.3. [5, Theorem 6.3] The mazimal ideal space M(Z™) of the C*-algebra
Z™ coincides with the compact M given by (2.10), and the Gelfand transform of
Z™ s defined by I : 2™ — C(IM), Z™ — z(-,-), where z(&,x) = (Sym Z)11 (€, z)
for (§,2) € M(SO(T)) x R and z(§,00) = (Sym Z)11(§, £oo) for & € M(SO(T)).

2.3. The local-trajectory method

Let us recall the statements of the local-trajectory method (see [15], [17]).

Let 2 be a unital C*-algebra and let Z be a central C*-subalgebra of 2
with the same identity I. For a discrete group G with unit e, let U : g — Uy be a
unitary representation of G, that is, a homomorphism of the group G onto a group
Ug = {Uy : g € G} of unitary elements, where Uy, 4, = Uy, Uy, and U, = I. We
denote by B := alg (U, Ug) the minimal C*-algebra containing the C*-algebra 2
and the group Ug. Assume that
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(A1) for every g € G the mappings oy : a +— UgaU; are *-automorphisms of the

C*-algebras 2 and Z.

According to (A1), 8B is the closure of the set B° consisting of all elements of the
form b= 3" a,U, where a4 € 2 and g runs through finite subsets of G.

Since the C*-algebra Z is commutative, it follows that Z = C(M(Z)) where
C(M(Z2)) is the C*-algebra of all continuous complex-valued functions on the max-
imal ideal space M (Z) of Z. Furthermore, in view of (A1), each *-automorphism
oy : Z — Z induces a homeomorphism 3, : M(Z) — M(Z) given by the rule

218, m)) = lag((m), =€ Z, me M(Z), g€ G, (2.12)
where z(-) € C(M(Z2)) is the Gelfand transform of the element z € Z. The set
G(m) :={By(m) : g € G} is called the G-orbit of a point m € M(Z).

In what follows we also assume that
(A2) G is an amenable discrete group.

Let us equip the set Py of all pure states (see, e.g., [11]) of the C*-algebra
2 with the induced weak* topology. For each maximal ideal m € M(Z) of the
central C*-algebra Z C %, let J,, be the closed two-sided ideal of 2 generated by
m. By [8, Lemma 4.1], if 1 € Py, then Ker p D J,,, where m := ZNKeru € M(Z2).
Furthermore, assume that
(A3) there is a set My C M(Z) such that for every finite set Go C G and for

every nonempty open set W C Py there exists a state v € W such that

Bg(my) # my, for all g € Go \ {e}, where the point m,, = Z NKerv belongs

to the G-orbit G(My) := {By(m) : g € G, m € My} of the set M.

For every m € M(Z), let T, be an isometric representation

T+ A/ T, — B(Hm) (2.13)
of the quotient C*-algebra 2/J,,, in a Hilbert space H,, (see [12, Theorem 2.6.1]).
Let  be the set of all G-orbits of the points m € My with My C M(Z) taken
from (A3), let H, = H,, where m = m,, is an arbitrary fixed point of an orbit
w € Q, and let I2(G, H,,) be the Hilbert space of all functions f : G — H,, such
that f(g) # 0 for at most countable set of points g € G and || f(g)l|F,, < oo.
For every w € ), we consider the representation m, : B — B(I*>(G,H,,)) defined
for all a € A, all g,h € G and all f € I*(G,H,) by

[m(a) f1(9) = Tm., (g(@) + Jm, ) f(9),  [mu(Un)fl(9) = Flgh). (2.14)
Consider the representation 7 = @, ., 7., of the C*-algebra B in the Hilbert
space @, cq 1*(G, Hy). If (A1)-(A3) hold, then 7 is a *-isomorphism of the C*-
algebra 2 onto the C*-algebra 7(2A) (see [17, Theorem 4.1] and [5, Theorem 3.1]),
which implies the following due to the inverse closedness of C*-algebras.

Theorem 2.4. If assumptions (A1)-(A3) are satisfied, then an element b € B is
invertible in the C*-algebra B if and only if for every orbit w € Q0 the operator
7, (D) is invertible on the space I>(G,H,) and, in the case of infinite €,

sup {[|(m,(0)) || : w € Q} < 0.
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2.4. A generalization of the local-trajectory method based on spectral measures

Now we consider a generalization of the local-trajectory method for the case when
condition (A3) is not fulfilled. Such generalization, based on the notion of spectral
measures, was developed in [17] and [5].

Consider the C*-algebra B = alg (A, Ug) under the only condition (A1) of
the local-trajectory method for the C*-algebras 2 and Z C 2. Let R(M(Z2))
denote the o-algebra of all Borel subsets of M(Z), and let

Re(M(Z2)) = {A e R(M(2)): By(A) =A forall g€ G},
where the homeomorphisms 3, are given by (2.12).
As is known (see, e.g., [12, Theorem 2.6.1]), there exists an isometric repre-
sentation 7 : B — B(H) of the C*-algebra B in a Hilbert space H. According
to [24, § 17], for the representation w|z : Z — B(H) of a unital commutative

C*-algebra Z, there is a unique spectral measure Pr(-) which commutes with all
operators in the C*-algebra 7(Z) and in its commutant w(Z)’, and such that

7(z) = / z(m)dP;(m) forall z € Z,
M(Z)

where z(-) € C(M(Z2)) is the Gelfand transform of an element z € Z.
Since (A1) holds, it follows from [17, Lemma 4.6]) that
(b)) Pr(A) = Pr(A)mw(b) forall b€ ®B andall A € Rg(M(Z2)). (2.15)

Given A € Rg(M(Z2)) such that Pr(A) # 0, we define the Hilbert space Ha :=
P (A)YH and introduce the following three C*-subalgebras of B(Ha):

B = {P(A)r(b) : be B},
An = {Pr(A)m(a): a €U} and Za :={P(A)n(z): z € Z}.
Since Z is a central C*-subalgebra of 2, from (2.15) it follows that Za is a central

C*-subalgebra of A, where Ax C Ba. -
For each Borel set A € S|R(M(Z)), let Int A and A denote the interior and

the closure of A, respectively, and let A be the closed subset of A given by
A= {me M(Z): Pr(W,,NA)+# 0 for every open neighborhood Wy, of m}.

Lemma 2.5. [17, Lemmas 5.1-5.2] If A € R(M(Z)) and Int A # &, then:

(i) Pr(A) #0; (i) 2a 2 C(A); (iii) Int(A) € A C A.

Fix A € Rg(M(Z)). For every g € G, we consider the unitary operator
Ug.a = Pr(A)m(Uy) on Ha. As condition (A1) holds, the mappings

Qg.A: Pr(A)m(a) — Uy aPr(A)m(a) ;,A = PW<A>7T(UQGU;>P7T<A) (9€@)

are *-automorphisms of the C*-algebras Za and 2Aa. Since Za = C(&) where
A € Rg(M(Z)) and the isomorphism is given by Pr(A)7w(z) — 2(-)|x, it follows
that each *-automorphism oy A induces on A the homeomorphism £y A := By,

where [, is defined by (2.12).
Below we need the following decomposition result.
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Proposition 2.6. [5, Proposition 3.3] Let 7 : B — B(H) be an isometric represen-
tation of the C*-algebra B = alg (A, Ug) in a Hilbert space H and let {A;} be an
at most countable family of disjoint Borel sets in Rg (M (Z)) such that Pr(A;) # 0
for alli and Pr(M(Z)\J; A;) = 0. If condition (A1) is fulfilled, then the mapping

0: B Ba., b PeA)70)
is an isometric C*-algebra homomorphism from the C*-algebra B into the C*-

algebra B = P, Ba,. Then an element b € B is invertible if and only if for each
i the operator Pr(A;)mw(b) is invertible on the Hilbert space Ha, and

sup [[(Pr(A:)T(b)) Y| < 00 in case {A;} is countable.

Proposition 2.6 allows us to study the C*-algebras B, separately. If some of
these algebras satisfy conditions (A1)—(A3), we can apply Theorem 2.4 (for more
general situations see [17, Section 5]).

Finally we enunciate a crucial result for studying the C*-algebras B, when
A; is an open subset of M (Z2).

Lemma 2.7. [5, Lemma 3.5] Let A be a unital C*-algebra and Z a central C*-
subalgebra of A with the same unit. Let 7 : A — B(H) be a representation of A in
a Hilbert space H. Given an open set A C M(Z), let Z(A) denote the subset of Z
composed by the elements z € Z whose Gelfand transforms z(-) are real functions
in C(M(Z2)) with support in A and values in the segment [0,1]. Then

[1Px(A)m (@)l = P Im(az)llsaey  for all a€ A.

zE

3. Invertibility in the C*-algebra A

Using the generalization of the local-trajectory method related to Proposition 2.6,
we devote this section to studying the invertibility of functional operators in the
C*-algebra A = alg (PSO(T),Ug) C B(L?(T)).

Let Z := {al : a € PSO(T)}. As Z = PSO(T), we get M(Z) = M(PSO(T)),
where M(PSO(T)) = M(SO(T)) x {0, 1} is the Hausdorft compact space with the
topology (2.3). For each a € PSO(T) and each g € G, from [4, Lemma 4.2] it fol-
lows that acg € PSO(T). Consequently, the mapping &, : al — UgaU;1 = (aog)I

is a *-automorphism of the commutative C*-algebra Z. Since G is an amenable

group, conditions (A1)—(A2) of Subsection 2.3 are satisfied for the C*-algebra A.
For every g € G, the *-automorphism ¢, induces the homeomorphism

By : M(PSO(T)) — M(PSO(T)), (& p) — (9(£), 1), (3.1)

where we save notation g for the homeomorphism £+ ¢(§) on M (SO(T)) given by

a(g(§)) = (aog)(€) forall a e SO(T) and £ € M(SO(T)) (3.2)

(as usual, a(§) := &(a)). If the ideal £ € M (SO(T)) belongs to the fiber M;(SO(T)),
then g(&) € My (SO(T)). Moreover, [5, Theorem 6.4] implies the following.
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Lemma 3.1. If A is the set of common fized points of all shifts g € G\ {e}, then
My = UteA M,(SO(T)) x {0,1} € M(PSO(T)) (3.3)

is the set of common fized points of all homeomorphisms 5g (g € G\ {e}).

Since the C*-algebra Z is commutative and hence its maximal ideal space
M(PSO(T)) coincides with the set P of its pure states, choosing Z as the central
C*-subalgebra of itself, we can rewrite condition (A3) of Subsection 2.3 in the form:

(A3’) there is a set My C M(PSO(T)) such that for every finite set Gy C G
and for every nonempty open set W C M(PSO(T)) there exists an ideal

mo € W N G(My) such that ﬁg(mo) # mg for all g € Gy \ {e}.

Obviously, if A° =Int A # &, then condition (A3’) is not fulfilled.

Let Ay be the set of all t € A that are limit points of the sets i~ N A,
respectively, where ;" (v, ) is a right (left) semi-neighborhood of ¢ on T. Clearly,
A° = A°UALUA_and AS C A_, A} C Ay, where A} and A denotes, respectively,
the at most countable set of the initial and final points of all open arcs which
compose the set A°.

Let x°, Xare and x, be the characteristic functions of the sets A°, T . :=

arc

T\A° D Ty and A, := A, UA_, respectively. Since A°UT?,..UA, is a G-invariant

arc
partition of T, we immediately obtain the following decomposition result.

Lemma 3.2. An operator A € A is invertible on L*(T) if and only if:
(i) the operator x°A is invertible on the Hilbert space L?(A°),
(ii) the operator Xar. A is invertible on the Hilbert space L*(T:

(ITC))

(iii) in case mes A, > 0, the operator x. A is invertible on the Hilbert space L*(A.).

Consider now the following subsets of M (Z):
M = Uter M;(SO(T))x {0,1}, M, := Utew M;(SO(T))x {0,1}. (3.4)

arc

The sets M° and M, are invariant under the action of all homeomorphisms Bg

(9 € G). Since these sets are open, from Lemma 2.5(iii) it follows that
M= Mo = M = (U, Md(SO(D) x {0, 1})
U (UteA? My (SO(T)) x {1}) U (UteA;2 M,(SO(T)) x {0})
O (Uscn M0 < 10) U (U, Mi-(5OM) < (0}), 39)
Mipe = Mige = Miye = (U, . M(SO(T) x {0.1)
O (Uyppin M50 > 101) 0 (U, MeSO(T) x (13)
U (UteA+\A; MTe) % {1}) U (UteA,\Ag METe(SO(T)) x {0}). (3.6)
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where My | (resp. M{¢) for t € A\ A} denotes the closed set of all £ € M (SO(T))
which are limits of nets d;, where t, — t and t, € v;* NA° (resp. to € ;" N Tare);
My _ (vesp. M{7¢) for t € A_\ A} is the closed set of all £ € M(SO(T)) which are
limits of nets &;_ where t, — t and t,, € v, NA° (resp. to € v; NTyre). Note that
the limits of nets &, , with t, — ¢ and o, € 7N (OA\{t}), belong to My NMETE.
Let R(M(Z)) be the o-algebra of all Borel subsets of M(PSO(T)) and let
P : R(M(Z)) — B(L*(T)) be the spectral measure associated to the identity
representation I of the C*-algebra Z in the Hilbert space L2(T). Then we get

Pr(M®) =X°I,  Pr(Mg,.) = Xarel,
where X°, Xare are the characteristic functions of the sets M®, M, € Rg(M(Z)).

arc

With the sets M° and M, . given by (3.4) we associate the C*-algebras
A° = alg {x°al,x°Uy : a € PSO(T), g € G} C B(L*(A°)), (3.7)
-Aarc = a‘lg {Xarc CLI, Xachg tac PSO(T)7 g€ G} C B(LQ(T* )) (38)

Let us study the invertibility in these C*-algebras.

Since A° consists of fixed points of all shifts g € G, then x°U, can be identified
with the identity operator on L?(A°). Thus, if A = > ger GgUy € A where F'is a
finite set of G, then x°A = x° > a4, whence ‘ X° EagH < ||A||- Hence the map

o
deF agU, — X deF ag (3.9)
extends by continuity to a C*-algebra homomorphism v° of A onto the C*-algebra

Y°PSO(T) (as M° is a closed subset of M(Z) by (3.5), every function v°(A)
extends to a function a € PSO(T)). Consequently, we deduce from (3.7) that

A° ={x%al : a € PSO(T)} = X°C(M(Z)). (3.10)
By (3.10) and Lemma 2.5(ii), we obtain A° = C(Mvo). Thus, due to (3.9), for
each functional operator A € A there exists a function a € PSO(T) such that
X°A =v°(A)I = x°al. If we denote by A the restriction of the Gelfand transform
of the function @ to the set M°, then A({, p) = a(§, p) for all (§,pu) € M°. In

particular, for A = 3" agUg, we get A(&, 1) = 3 cpag(&,p) for (& p) € M°.
With the previous notation, the mapping

I°:A° = C(M°), x°A— A (A€ A) (3.11)

is the C*-algebra isomorphism of the C*-algebras A° and C(M?), which implies
the following invertibility criterion for .A°.

Theorem 3.3. For each functional operator A € A, the operator A° := XOANE A°
is invertible on the space L*(A°) if and only if A(&,u) # 0 for all (&, 1) € M°.

Using the local-trajectory method, we establish now an invertibility criterion
for the operators in the C*-algebra Ag,... Consider the commutative C*-subalgebra
Zare = {Xarcal : a € PSO(T)} of Aype. From Lemma 2.5(ii) and (3.6) it follows



12 M.A. Bastos, C.A. Fernandes and Yu.l. Karlovich

that Z,,.. & C(Mva,.c). It is clear that Agre = alg(Zgre, ﬁa,.c(G)), the C*-algebra
generated by Z,rc and Uyye(G) := {Uyg are = XarcUg : g € G}. All the mappings

Qg,arc * Xare 0l — ﬁgﬂ’“C(Xa'r'c a)ﬁ;arc = Xarc(@aog)l (g €G)

are *-automorphisms of the C*-algebra Z,,. that induce on M} . the homeomor-
phisms (3¢ qrc being restrictions on M .. of the homeomorphisms 3, given by (3.1).
In view of (3.3) and (3.6), Ma N M, . is the set of fixed points for all

homeomorphisms By qrc (g # €). Setting
Maye i= UteTm M, (SO(T)) x {0,1}, (3.12)

we infer from (2.3), (3.6) and (3.12) that /\//l\a_; = MVZTC. Hence, in view of the
topologically free action of the group G' on T\ A° and since g(§) € My (SO(T)) for
& € My (SO(T)), we conclude from (3.6) that condition (A3’) for M, holds with
My := Mgre. Thus, conditions (A1)—(A3) for the C*-algebra A,,. are satisfied.
For each operator A € A, let Agre := XarcA € Agre. With every maximal

ideal (&, 1) € Mgre we associate the representation
H(E’H) : ‘AU«TC - B(ZQ(G))a Aarc = A(&y), (313)
given for the operators Aq.. = deF Xare @gUg with finite sets F' C G by

(A ) (h) = ZQGF[(agOh)(&M)]f(hg) (heG, fel(G)). (3.14)

Let O4c be a subset of T,,.. containing exactly one point in each G-orbit
defined by the action of the group G on T, and consider the set

Rare == {({, 1) € M(PSO(T)) : € € M-(SO(T)), T € Oare, p=0,1}. (3.15)

The set R, contains exactly one point in each G-orbit defined by the action of
the group G on Mg, by means of the homeomorphisms 3¢ orc (9 € G).

Theorem 3.4. For each functional operator A € A, the operator Agre := XarcA 18
invertible on the space L*(T%,.) if and only if for all (&, 1) € Rare the operators

arc

Ae, ) are invertible on the space 1*(G) and

sup H(A(g’ﬂ))_lH < 0. (3.16)
(&) ERare
Proof. With each functional (£, 1) € Mg, we associate the maximal ideal Ji¢ ) :=
{Xarcal : a € PSO(T), a(&,n) = 0} of Z4c. Since 24, is a commutative C*-
algebra, the mapping

W : Zare/ ey = Co Xarcal + Jig ) — a(§, p),

is an isometric representation of the C*-algebra Z,,./J(¢ ) in C. Following (2.13)~
(2.14), for all (£, u) € Mgrc, we construct the representations Il ,) of the C*-
algebra A, in the Hilbert space [?(G) by formulas (3.13) and (3.14). Since the C*-
algebra Ag,,. given by (3.8) satisfies conditions (A1)—(A3) of the local-trajectory
method, Theorem 2.4 immediately implies the statement of the theorem. O
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Let us study the invertibility of the operator A, := x. A on the space L?(A.).
To this end we need first to construct limit operators (see, e.g., [6] and [25])
associated with operators A € A and points ¢t € A,. Assume, for example, that
1 € A.. Representing each diffeomorphism g € G in the form g(e'*) = €9
for x € [0, 27] where § is an orientation-preserving diffeomorphism of [0, 27] onto
itself, we conclude that g(0) = 0, and ¢’(0) = ¢’(1) = 1. Hence g(z) = = + e(x)x
where e(x) — 0 as  — 0. For all k& > 0, we define the unitary shift operators
Vi € B(L2(T)) by (Vif)(€™®) = [}, (x)]/2 f(ei™®)) for x € [0,2n] where ny(z) =
2rkx/[2m + (k — 1)z]. By direct computation, we obtain

2 (1 4 e[ng(x)])
2m + (1 — k)xe[nw ()]’

(2m)2g' [ (2)]
2m + (1 — k)ae[ni(2)])?

Fix 29 € (0,27). Since e[ng(z)] — 0 and ¢'[nx(x)] — 1 as k — 0 uniformly with
respect to = € [0, zg], we infer from (3.17) and (3.18) that for any zq € (0, 27),

(nk_l ogo Uk)(l’) = (3.17)

(it ogom) (x) = ( (3.18)

lim (1 oGom) (2) =, lm (5t ogom) (x) =1

uniformly for = € [0, x¢] . Hence, we infer from the relation

(ViU Vi £) (%) = [(n o Gomi) (2)] /2 f (0 "e7om) @)y (€ [0, 2a]),

that s-limy_o ViU, V, ' = I for all g € G, which in its turn implies for finite sets
F C G and 7j(t) = explini(—ilnt)] that

15 -1 _ 7 ~
bkl_{%l Ve ( deF agUg> Ve bkl_lgl (deF(ag ° mﬂ)’ (3.19)

if the limit on the right exists. Taking now any £ € M;(SO(T)), by analogy with
[6, Proposition 4.2], we can choose a positive sequence {k,} such that k, — 0 as

n — oo and
slim (30 (agoiie,)1) =" ag(&, D)1,

which implies due to (3.19) that

slimVi, (Y aUp) Vi =30 a6 D)L (3.20)

By (3.20), for every & € M;(SO(T)), the mapping (deF agUy) > ger ag(§1)
extends to a C*-algebra homomorphism v¢; : A — C, A — A(e,1) = ve1(A)
where the notation A is consistent with that for A°. Analogously, there exists a
sequence {k,} such that k, — oo as n — oo and

i‘l}gol Vk"<zg€F agUg)Vl;l = Z geF ag(&,0)1,
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which leads to the C*-algebra homomorphism v¢g: A — C, A — ﬁ(g,()). Thus,
we have the C*-algebra homomorphisms vg ,, : A — A(§, p) for all (&, 1) in the set

M. =, M(SO(T)) x {0,1} € M(PSO(T)). (3.21)

Since C*-algebra homomorphisms h : A — B send invertible elements of a C*-
algebra A to invertible elements of a C*-algebra B, we at once obtain the following.

Lemma 3.5. If a functional operator A € A is invertible on the space L*(T), then
A&, 1) # 0 for all (&, pu) € M., where M, is given by (3.21).

Lemma 3.6. For any functional operator A € A, if E(f, ) #0 for all (&, 1) € M.,
then the operator A, = X« A is invertible on the space L*(A).

Proof. Since M, is a closed subset of M(PSO(T)), it follows from the lemma
condition that the function A : M, — C is continuous and invertible. Further, for
each polynomial functional operator A = deF agUy € A with a finite set F' C G,
we infer that x. A = x. > agl. The latter equality extends by continuity to a
C*-algebra isomorphism v, : x« A — x« PSO(T), x« A = x« al where the Gelfand
transform of a € PSO(T) is obtained by an extension of A € C(M,) to a function
continuous on M (PSO(T)). Since (s a)(€,pu) = A(E, p) for all (&, 1) € M, and
the function A € C(M,) is invertible, we conclude that the operator A, = x, A
is invertible on the space L2(A.,). O

Note that the conditions of Lemma 3.6 in general are not necessary for the
invertibility of the operator A,.

Combining Theorems 3.3, 3.4 and Lemmas 3.2, 3.5, 3.6, we get the following
invertibility criterion for the functional operators in the C*-algebra A.

Theorem 3.7. An operator A € A is invertible on the space L*(T) if and only if
() A(E.p) # 0 for all (€ p) € Myz = Uyezs Mi(SO(T)) x {0,1};
(ii) for all (&, 1) € Rare, the operators A,y are invertible on the space 1*(G)
and (3.16) holds.

Proof. By Lemma 3.6 and Theorem 3.3, condition (i) implies the invertibility of the
operators x. A and x°A, respectively. Condition (ii) and Theorem 3.4 guarantees
the invertibility of the operator xg,. A. Thus, by Lemma 3.2, the operator A is
invertible on the space L?(T). Conversely, if A is invertible, conditions (i) and (ii)
follow from Lemmas 3.2, 3.5 and Theorems 3.3-3.4. O

4. Abstract Fredholm criterion for the C*-algebra 8
Consider the C*-algebra 2 given by (1.1) and fix an isometric representation

¢ :B" — B(H,), B+ p(B™) (4.1)
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of the quotient C*-algebra B™ = B /K in an abstract Hilbert space H,, where
B := alg (PSO(T), St, Ug) = alg (A, Ug) C B(L*(T))

and K = K(L?(T)). Using the generalization of the local-trajectory method by
means of a spectral measure P, (-), we decompose here the C*-algebra ¢(B7™) in an
orthogonal sum of operator C*-algebras satisfying conditions of Proposition 2.6. As
a result, an abstract Fredholm criterion for the operators B € B will be obtained.

Put ™ = /K. For every orientation-preserving diffeomorphism g : T — T,
every function a € L*°(T) and every operator Hp; defined in (2.8), it follows that

UgaUy ' = (a0 g)l, UyStUst =~ Sr, UgHpUy' >~ Hpgagy  (4.2)

(see [23, Theorem 4.1] and [5, (6.9)]). Since a o g € PSO(T) for all a € PSO(T)
and all g € G in view of [4, Lemma 4.2], we infer from (4.2) that the mapping

ag: AT — U;TA”(U;T)_1 (4.3)

is a *-automorphism of the C*-algebra 2A™ and its central C*-subalgebra Z7 :=
(Z+4 K)/K, with Z defined by (2.7). Thus, condition (A1) of the local-trajectory
method is satisfied. By (4.3), each diffeomorphism g : T — T (g € G) induces on

the compact M(Z™) = 9 (see (2.10)) a homeomorphism §, acting by the rule

By : M — M, (&,2) = (9(6),2), (4.4)
where g(&) is given by (3.2). By analogy with [5, Theorem 4.2], we get the following.

Lemma 4.1. All the homeomorphisms By (9 € G\ {e}) have the same set A=
Uiea M (SO(T)) x R of fized points, where A is the set of all (common,) fized
points of the shifts g € G\ {e} on T.

By Lemma 4.1, for each fixed point ¢t € A of all g € G, there is an open subset
M;(SO(T)) x R of M composed by fixed points of all B4- Thus, the action of the
group G on M is not topologically free.

For every t € A, we consider the next subsets of 90 and 91 (see (2.10), (2.4)):

M .= M,(SO(T)) x R, 9 := M,(SO(T)) x {oc},

M, := M(SO(T)) x R, <M, := M,(SO(T)) x R. (4.5)
Further, using (4.5) and the notation of (1.3), we also introduce the sets
R (16
M o= (Uter Sint) Y (UteA’\AO m‘?)’ M 1= UteaA M (4.7)
Mare =, ., My M=, M. (4.8)

Observe that all the sets in the partition
M = Mo UMy UM° UM, (4.9)
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belong in view of Lemma 4.1 to the set

R () = {A € REN) : G,(A) = A forall g€ G}, (4.10)
where 93(9) is the o-algebra of all Borel subsets of 9. We also define the sets

Ty = U@A M;(SO(T)), %°:= UteA, M, (SO(T)), (4.11)
and the Hilbert space

He = 1*(Mare, C?) @ 13(Tis, L3(R)) @ 12(T°, L3(R)). (4.12)

Consider the C*-subalgebra ¢(A™) of B(H,) consisting of the operators

o) = (P smaeor)s( @ smarer)e( @ smaren)
(&x)EMare £eTis cego
(4.13)
where A € 2 and (Sym A)(¢,-) is the matrix function z — (Sym A)(¢, z), with
2 € R. By Theorem 2.2, the homomorphism

¢ AT — B(Hy), AT — ¢(A™), (4.14)
is an isometric representation of 2™ in the Hilbert space Hy. Let
Py i R(M) — B(H,), Py : RON) — B(Hy) (4.15)

be the unique spectral measures associated to the representations (4.1) and (4.14)
of the commutative unital C*-algebra Z™ in the Hilbert spaces H,, and H, respec-
tively. According to (4.9), we introduce the following C*-subalgebras of ¢(B7):

Bare = alg { Po(Mare) 9(A7), Pp(Marc)p(Ug): A€, g€ G}, (4.16)
B 1= alg { Py (M1s)p(A™), Pp(Mis)p(UT) : A€, g€ G, (4.17)
B° = alg { P,(M°)p(A™), P,(M°)p(UF): A€, ge G}, (4.18)
B> = alg {Pcp(i)f)Too)ap(A”), Pip(i)fnoo)ap(U;) cAe ge G} (4.19)

of B(Pp(Mare)Hy), B(Po(Mi)Hy), B(P,(M°)YH,,), B(P,(MM™)H,,), respectively.

Since the spectral projections of the open sets Mgye, Mg, MO in Eﬁg(i)ﬁ)
given by (4.10) are not zero due to Lemma 2.5, we infer from the partition (4.9)
and Proposition 2.6 the following result.

Theorem 4.2 (Abstract Fredholm criterion for ®B). An operator B € B is Fredholm
on the space L*(T) if and only if the following conditions hold:

. .

(i) the operator P,(Marc)p(B™) is invertible on the Hilbert space Py(Mare)Hy,
(ii) the operator Pw(f)znls)go(B”) is invertible on the Hilbert space Pw(i?:nls)Hw
(iil) the operator P,(M°)p(BT) is invertible on the Hilbert space P,(OM°)H,,
(iv) of Pw‘(imoo) # 0, the operator P,(9M)(BT™) is invertible on the Hilbert space

P,(OM>®)H,,.
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For the spectral measure P, associated by (4.15) to the concrete representa-
tion (4.13)—(4.14), we easily see that

.

Pqﬁ(marc) = Ilore ® O1s @ Oo’ P(b(gznls) =Oure © I1s @ OO) (420)
Py(M°) = Oppe @ Ors @ I°,  Py(M>®) = Opre ® Ors ® O°, (4.21)

where O, and I, are, respectively, the zero and identity operators on the Hilbert
space ZQ(E)J?,”C7 (C2), Ors and I1s are the zero and identity operators on the Hilbert
space 1%(T1s, L3(R)), O° and I° denote the zero and identity operator on the
Hilbert space 1?(%°, L3(R)).

5. Symbol calculus and Fredholmness for the C'*-algebra B
5.1. The C*-algebra B,

Using the local-trajectory method we establish in this section an invertibility cri-
terion for the C*-algebra 9B,,.. defined by (4.16).
Fix a connected component v of the open set T \ A and define the sets

M, := Ut67 M,(SO(T)) x Rc 9, M, = Utew M;(SO(T)) x Rc 9m. (5.1)

The C*-algebra B., := P¢(95t7)<p(%”) can be viewed as the C*-subalgebra
alg (A, Uy(G)) of B(P, (95?7)’)'(80) generated by the C*-algebra 2, := P, (Sjty)w(i’l”)

and the group U, (G) of the unitary operators Uy ., := P, (M, )p(U]) (g € G). The

C*-algebra Z, := P,(9MM,)¢(Z7) is a central subalgebra of . By Lemma 2.5(ii),

Z., = C(9M,) where 90, := 9M,. As the set M, is open due to (5.1) , Lemma 2.5(iii)
implies in view of the topology (2.11) that

i, = 9, = M, U (Utea7 M,(SO(T)) x {oo}). (5.2)
For the open arc v := (¢;,t.) C T\ A, along with Dﬁw, we consider the set
M, = M, U (Ut687 M,(SO(T)) x {:i:oo}) com

equipped with the discrete topology. Given an operator A € 2, let us define, with
the help of Theorem 2.2, the matrix function Sym, 4 : M, — C?x2 by

(Sym,, A)(§, x) :=
(Sym A)(€,2) it (€,2) €M,
diag {(SymA)u(f,x), (Sym A)11 (€, —sc)} if (&,2) € M, (SO(T)) x {£o0},
diag {(SymA)gg(E7 —z), (Sym A)Qg(f,l')} if (&,2) € M, (SO(T)) x {:I:o?} |
5.3
where (Sym A);; (&, x) is the (j, j)-entry of the matrix (Sym A)(¢, ).
Since p(A™) = ¢(~A™) and the set 91.717 is open in M, we infer similarly to

. .

, eorem &.1| that = . Hence, taking into account
[5, Theorem 8.1 that P,(90,)(2A7) = Py(M,)6(A7). H king |
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(4.13) and (4.20), we conclude that the C*-algebra 2., 2 Py (90, )p(A™) is isomet-
rically *-isomorphic to the C'*-algebra of all matrix functions Sym A : M, — C2x2
for A € 2, which, in its turn, is isometrically *-isomorphic to the C*-algebra of
the matrix functions Sym., A : M., — C?*2? (A € A) defined by (5.3), because

sup [[(Sym A)(§; 2)|lsp = sup_ [[(Sym, A) (&, 2)[lsp (A€ )
(&z)EMy (€,z)eMm,
where || - ||sp is the spectral norm. Thus, by analogy with [5, Theorem 8.3], we
obtain the following result.

Theorem 5.1. The mapping
Sym., : 4, — BC(9M,,,C**?),  P,(9M,)p(A™) Sym.,, A, (5.4)
where Sym., A is given by (5.3), is an isometric C*-algebra homomorphism.

Consider now the C*-algebra B,,. For every g € G, the mapping
Qg,y - Pw(gjtv)%@(Aﬂ) = U‘JKY(P‘P(EI.RV)()O(ATF))U;A/
is a *-automorphism of the C*-algebras Z, and 2. Thus, condition (A1)—(A2) of
the local-trajectory method for the C*-algebra B, are satisfied. Each *-automor-
phism a4 (g € G) induces the homeomorphism

59,7 : ;)\j/t’y - %'yv (f,x) = 5g(£7x)» (5'5)

where 3, and 2)5?7 = M(Z,) are given by (4.4) and (5.2), respectively. The set
Ay = Uyep, Mi(SO(T)) x {oo} is the set of fixed points of all 8y (9 € G\ {e}).
Let us check condition (A3) of the local-trajectory method for the C*-algebra

B,. For each (§,z) € SI'RW, let Ji¢ ») be the smallest closed two-sided ideal of 2,

that contains the set {Pw(i):m,)ap(Z”) : Z € Z, (Sym, Z)(§,x) = O2x2}. The

set of all pure states of the C*-algebra 24, has the form Py = U(5 2)emt Pie.a)

where P(¢ .,y can be identified with the set of all pure states of the quotient C*-
algebra R4, /J¢ 2y (see, e.g., [17]). In its turn, the C*-algebra R4, /J¢ ;) is iso-
metrically *-isomorphic to (Sym®2)(§, z) if (§,z) € U, M:(SO(T)) x R, and to
(Sym., A)(§, +00) & (Sym, A)(&, —00) if (§,7) € U,y Me(SO(T)) x {0}, where
the mapping Sym., is defined by (5.5). Since 34(§,z) # (§,z) for all (§,z) €
Utey, Me(SO(T)) xR and all g € G\{e}, it remains to prove the approximability (in
the weak™® topology) of all states in P(¢ o) with § € M, (SO(T)) U M;, (SO(T)) by
states in P(¢ o) Where ¢ € e, M¢(SO(T)), which will give (A3) with Mo = 0,

By (2.5), (Sym A)(&, £00) are diagonal matrices for all ¢ € M(SO(T)). Hence,
we infer from (5.3) that the set P¢ o) with & € M;(SO(T)) consists, respectively,
of the pure states pgioo, pgioo if t € 7, pgioo if t =¢;, and pgioo if t = t,., where

Pt Wy — €, Po(9,)p(A™) > (Sym A)j;(€,+00) (j=1,2).  (5.6)
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According to [5, Theorem 5.2], every operator A € 2 is uniquely represented in

the form A = ay P + a_Py + Ha, where ax € PSO(T), P = (I + St)/2 and

(Sym H 4) (&, £00) = Oax5 for all £ € M(SO(T)). Thus, for such &, by (2.5), we get
(SymA)ll(gaioo) = a:l:(fv]-)v (SymA)QQ(gv :l:OO) = a;(f,O). (57)

Hence, taking into account (2.3), we infer from (5.7) and (5.6) that the pure states

pé )ioo with £ € Mtl(SO(T)) and pg)ioo with & € M; (SO(T)) are approximated,

respectively, by p< ioo and pg)ioo with ¢ € U, M:(SO(T)), which gives (A3).

For each (&, z) € M., we consider the representation

T(E,x) * Bare — B(ZQ(G, CQ)) (58)
given on the generators of the C*-algebra B,,.. by

(7. (P ( are)p((@)™) fl(9) = (Sym((acg)I))(&, ) f(g),
[7ea) (Po(Marc)p(ST)) fl(9) = (SymSt)(€,2)f(9), (5.9)
[ﬂ.(fvm)(P@( arc) (UiTLr)) ]() = f(gh)7

where a € PSO(T), g,h € G, f € I2(G,C?) and Mgy is given by (4.6).
Fix now a set Q.. C T, which contains exactly one point in each orbit
defined by the group of shifts G on Ty, = T \ A, and consider the set

Nare i= UTEOW M,.(SO(T)) x R. (5.10)

Theorem 5.2. For each B € 9B, the operator By, := Pw(ﬁjiarc)cp(B”) € Bure

is invertible on the space Psa(ﬁﬁwc)'f'(% if and only if for all (£,x) € Nype the
operators m¢ 4y (Bare) are invertible on the space 1*(G,C?) and

sup H(W(g,z)(Barc))_lH < 0. (5.11)
(&z)ENare

Proof. Since assumptions (Al)-(A3) are fulfilled for the C*-algebra B, we infer
from Theorem 2.4 by analogy with [5, Theorem 8.4] that, for every B € B, the
operator B, := P,(9M,)p(B™) € B, is invertible on the space P, (M, )H,, if and
only if for all (f,x) € Nare NI, (see (5.10) and (5.1)) the operators m¢ .)(B)
are invertible on the space I?(G, (C2) and the norms of their inverses are uniformly
bounded. Hence, taking into account the equality B,,.. = @7 B, where v runs
through all the connected components of the open set T\ A, we immediately obtain
the desired assertion for the C*-algebra B,,.. [l

5.2. The C*-algebra B,
By [5], with any isolated point ¢t € A and the C*-algebra 87 := P, (97 )p(B™) we
associate the Hilbert space H; = [?(M;(SO(T)), L3(R)) and the C*-algebra

U, (B5) = alg {T,(A™), U, (UT): AU ge G} CB(H)
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generated by the operators W;(A™) (A € /) and ¥, (U7) (g9 € G) where
V(A" = P SmAEN, WU = P emgnO), (512)
£eM,(SO(T)) €eM,(SO(T))
and ey, gy () := €n 9'® (z e R).
Theorem 5.3. [5, Theorem 9.5] For every t € Is A, the mapping

Po) (3 ATUT) (D0 ATUT) =Y WA (U)),

where I is a finite subset of G and Ay € 2 for g € F, extends to an isometric
C*-algebra homomorphism

U, : B — B(H;), BP:=P,(M)p(B™) — U,(B™) (B eB), (5.13)
where ¥y is a C*-algebra homomorphz’sm of the quotient C*-algebra B™ into B(H,),
and Wy (B™) = @¢enr, (sory) Bi (€)1 with BE(€,-) : R — C?*2 for any B € B.

As By, = Pq,(i)ﬁls)gp( ) = @1 Bf and 1*(Tys, L3(R)) = @, cqn He (see
(4.17) and (4.11)), Theorem 5.3 and Proposition 2.6 imply the following corollary.

Theorem 5.4. The map Vs = @ \Tlt is the isometric C*-algebra homomorphism
telsA

Uy, By — B(%(Z1s, LA(R))), Po(Mre)g - P BEIL
telsA £e M (SO(T))
For each B € B, the operator Bis := Pv(ﬁjtls)go(B”) € By, is invertible on the
space Pg,(i)ﬁtls)m, if and only if the operator Wis(Bis) is invertible on the space
ZZ(TIsaL%(R))7 that is, Zf

inf min inf ‘det °(£,x))| >0
telsA £eM,(SO(T)) z€R

5.3. The C*-algebra B°

Consider now the C*-algebra B° = alg (A°,U°(G )) B(P, (ETI)TO)H ) given by
(4.18). It is generated by the C*-algebra 2° := P,(9°)p(A™) and by the group
of unitary operators U°(G) := {Uy := P,(9°)¢ (U7): g€ G}.

Consider the Hilbert space H° := [?(%°, L3(R)), with T° defined by (4.11).
Since 9M° is an open subset of M, applying Lemma 2.7, (4.12) and (4.21), we
infer analogously to [5, Theorem 8.1] that P, (90°)@ (™) 2 Py(9°)¢(A). Hence,
taking into account (4.8), (4.13) and Theorem 2.2, we get the following result.

Theorem 5.5. The map Sym® : A° — B(H°), defined by
Py(M°) (A7) — P (Sym A)(&, )] for Ae, (5.14)
£exe

is an isometric C*-algebra homomorphism. An operator Py(9M°)p(A™) for A € A
1s invertible on the space P¢(95T°)H¢ if and only if

det ((Sym A)(&,2)) #0  for all (&,x) € M°.



C*-algebras of Singular Integral Operators with Shifts 21

Now we are going to extend the isometric C*-algebra homomorphism (5.14)
to all the C*-algebra 2°. To this end we define the closed two-sided ideal H™ of
the quotient C*-algebra Z™ that is generated by the cosets Hf, = Hp + K with
t € A"\ A° and P € P and by the cosets (cI)™ where ¢ € C(T) and suppc C A°
(sce (2.6)~(2.8)). Since Z7 is commutative, we deduce that $™ is the closure in Z7
of the set { >, ZF (c;:])™ + Y, > Z5 HE, k-atk} where Z;, Z; . € Z, t, € A\ A°,

Js

PireP, c;e C(T), ¢; =00n T\ A° and 4, j, k run finite subsets of N. Let

2(9310) = {Z’T € Z™ : suppz(+,-) C ome, z(&,x) € [0,1] for all (&, x) € im},
(5.15)

where z(-,-) € C(9M) is the Gelfand transform of the coset Z™ and Mo =T° x R
is the closure in 9 of the set M° defined in (4.7).

Lemma 5.6. The ideal 5%" possesses the properties:

(i) BTH™ = H™B™ € U™ for each coset B™ € B™ and each coset H™ € 9"

(i) Z(M°) C H™.
Proof. (i) By [5, Lemma 5.4], UTH}, = H, = HE U7 for all g € G, all P € P
and allt € A"\A° because ¢'(t) = 1 for such ¢. Further, U7 (cI)™ = (cI)™ = (cI)"UJ
for all ¢ € G and all ¢ € C(T) such that suppec C A°. Since Z7 is a central
subalgebra of 2™, from these relations it follows by definition of the ideal $™ that

UFH™ = H™ = H"UT forall g€ G andall H™ € §7, (5.16)

which immediately imply (i).
(ii) If H € Z and H™ € 97, then, by definition of H™ and Theorem 2.3,

diag{h(¢, x), h(&, )} if (&, 2) € M2,

O2x2 if (&) €\ e, (5.17)

(Sym H)(E, z) := {

where h(-,-) € C(9M) is the Gelfand transform of the coset H™. Further, as in [5,
Lemma 9.4(ii)], we deduce from (5.17), [5, Lemma 6.2] and the relations

(c)™$H™ = (cI)"Z™ (¢ € C(T), suppe C A°)

that the ideal 5” is isometrically *-isomorphic to the ideal of all continuous func-
tions on the compact 9T which vanish on 9t \ 9t°. Hence, making use of (5.15),
we obtain (ii). O

By analogy with Subsection 5.2, we now consider the C*-algebra
T°(B°) = alg {T°(A™), T(UF): A, ge G} CBH) (5.18)
generated by the operators
UO(A™) = (P (SymA)(&, )] (Ae), W(UT):=I° (g€G), (5.19)
gexe
where I° is the identity operator on the space H° = [2(%°, L3(R)).
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Theorem 5.7. The mapping

PR (X, 4507 ) = v (3, A5U5) = 30, e (),
(5.20)
where F' is a finite subset of G and Ay € A for g € F, extends to an isometric
C*-algebra homomorphism

U°: B° — B(H®), B°:=P,(M°)p(B™)— ¥ (B") (BeB), (521)

where ¥° is a C*-algebra homomorphism of the C*-algebra B™ into B(H®), and
U°(B™) = Deexo B°(& ) with B°(€,) - R — C**2 for any B € B. For each

B € B, the operator B° € B° is invertible on the space P,(IM°)H, if and only if
the operator W°(B™) € W°(B°) is invertible on the space 1?(T°, L3(R)), that is, if

det (B°(&,2)) #0  forall (€,2) € M° =T° x R. (5.22)

Proof. Fix an operator B = deF AgyU, € B, where F is a finite subset of G and
A, € A for g € F. Then we deduce from (5.20) and (5.19) that

VBT =) VAU =) W(47).

Let ¢° : A™ — B(H°) be the restriction of the representation (4.14) to the invariant

subspace H® of Hy. According to Lemma 5.6 (i), for each coset H™ € 9™ we get
BTH™ € ™. Hence, from (4.13), (5.16) and (5.19) it follows that

¢°(B"H™) = U°(B™)¢°(H™) forall H" € . (5.23)
Since 9M° is an open subset of 9 and the C*-algebras ¢(A™) and ¢(A™) are
isometrically *-isomorphic, using Lemma 2.7 we easily conclude that
1P, (1) (AT 5(34,.) = 1P () $(A™) 534y for all A € 2. (5.24)
Consequently, from (5.24) and (5.23) it follows that
[P () (BT H™) || 53¢, = |¥°(B™)¢°(H™) || ppey for all H™ € §7.  (5.25)

Since the set 9° is open and since P, (9M°)p(B™) = ¢(B™)P,(9M°), we infer
similarly to the proof of [5, Lemma 3.5] (cf. Lemma 2.7) that

|1 P (9o (B™) |5,y = sup  |[[p(B"Z7)B(#,); (5.26)
Zm ez (o)

where Z(901°) is the set (5.15). Because Z(9°) C 9™ (see Lemma 5.6) and because
P,(M°)p(B™Z™) = o(B™)P,(M°)p(Z™) = p(B™Z™) forall Z™ € Z(9M°),
we infer from (5.26) and (5.25) that

1P,()o(BM)Bre,y) = sup [[Po(9°)p(B™Z7)I502¢,.)
ZmeZ(IM°)

= sup [[9°(BT)6°(Z7)|lsoe)-
ZmeZ(9Mo)

(5.27)
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On the other hand, if 7 is the identical representation of the unital C*-algebra
U°(B°) given by (5.18) in the Hilbert space H°, then, by (5.19), ¢°(Z7) is a central
C*-subalgebra of U°(B°) with the same unit, whose maximal ideal space is e,
Since the spectral projection P; (imo) is the identity operator on Hilbert space H°
and since 9M° is an open subset of 957, we conclude from Lemma 2.7 that

19 (BT [s(e) = 1P (O0°) U (BT zeey = sup_ [[W(BT)¢°(Z7)l| (2o
ZTeZ(IM°)

which together with (5.27) implies that

1P, (1) o (B™) 53¢,y = 19°(B™) s (5.28)

for all finite sums B™ = 3° . A7UJ € B" with A7 € A". Because the set of
such finite sums is dense in B7™, we infer from (5.28) that the mapping ¥° given
by (5.19) uniquely extends to a C*-algebra homomorphism of 8™ into B(H°) and
the mapping (5.20) uniquely extends to a C*-algebra isomorphism T° of $B° onto
U (B°) = W°(B™) by the rule (5.21).

Thus, for every B € 9B, the operator B° := PW(DjTO)gp(B”) € B° is invertible
on the space P, (9°)H,, if and only if the operator W°(B™) € W°(B™) is invertible
on the space H° = [?(T°, L3(R)). Finally, using the Allan-Douglas local principle
(see, e.g., [10, Theorem 1.35]) for the C*-algebra \IIO(%O) = U°(B™) with the
central subalgebra W°(Z7) 2 C'(9°), we easily infer that the operator ¥°(B™) is
invertible on the space H° if and only if (5.22) holds. O

5.4. The C*-algebra 2B5°°

Finally we arrive to studying the C*-algebra B> C B(Pw(i)ﬁoo)Hq,) given by
(4.19). In contrast to the algebras B .., Bis and B° associated to the open subsets
in decomposition (4.9) of 9, the set M (see (4.7)) associated to the C*-algebra
B> is closed. Therefore, the study of the algebra B°° requires a methodology
different of those used for the previous algebras where Lemma 2.7 was crucial.

In this section we will show that for each operator B € B the invertibility of

the operators Bare = Pyp(Marc)p(B”™) € Bare and B° = P¢(SjT°)<p(B’T) € B° on
the spaces Pg,(i)jtam)H@ and Pw(ifﬁo)?-lw, respectively, implies the invertibility of
the operator B® := P,(9M>)p(B™) on the Hilbert space P,(M>)H,. To prove
this fact we consider the C*-algebra B = alg (PSO(T), St,Ug) as the C*-algebra
B = alg (A, St) generated by the C*-subalgebra A = alg (PSO(T), Ug) of func-
tional operators and by the Cauchy singular integral operator St. Writing the
C*-algebra B in the latter form, we start with establishing a general form of the
operators in B (cf. [5, Theorem 10.3]).

Let $ denote the closed two-sided ideal of B generated by all the commutators
aSt — Sral with a € PC(T), that is, the closure of the set

57)0 = {ZileiHiCi . B;,C; €8, H; = a;St — Sta;1, a; € PC(T), n e N}
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The ideal §) contains the ideal K of all compact operators on L?(T) (see, e.g., [13]).
Consequently, the commutators aSt —Sral (a € SO(T)) and Uy St—StUy (9 € G)
belong to the ideal § (see (2.9) and (4.2)). Thus, for all A € A the commutators
ASt — STA are in 9.

Let A be the C *-algebra of the 2 x 2 diagonal matrices with A-valued entries.
Similarly to [5], for the C*-algebra % we have the following result.

Theorem 5.8. FEvery operator B € B is uniquely represented in the form
B=A"Pf + A"P; + Hp, (5.29)

where AT are functional operators in the C*-algebra A, Pi (I £571)/2 are the
orthogonal projections associated with the Cauchy smgular integral operator St,
Hgp € 9, the mapping B — diag{ AT, A~} is a C*-algebra homomorphism of the
C*-algebra B onto the C*-algebra A with kernel $, and

|AE| < inf |B+ H| < |B|:= inf |B+ K]||. (5.30)
He$H KeKk
Proof. Every operator B € B of the form B = Z?:l Ti1Tio ... Ty, where n, j; € N

and T; i, are generators of B, is represented in the form (5.29). Thus, the mapping
B — diag{ AT, A}, defined on the generators of the algebra 9B by

al — diag{al,al}, U, — diag{U,, Uy}, St diag{l,—I},

is an algebraic homomorphism of the non-closed algebra BY, composed by all
operators B into .A and the kernel of this map is contained in §). To complete
the proof, it only remains to show (5.30) for all operators B e B°.

Since the ideal $ C B is generated by the commutators aSt — Stal with
a € PC(T) and, according to (2.5),

(Sym(aSt — Stal)) (€, +£00) = 0242 for all @ € PC(T) and all £ € M(SO(T)),
we infer from (5.9) and (5.19)—(5.20) that for any operator H € §),

(e, +o00) (Hare) =0 for all (&, +00) € Moy, (5.31)
H°(€,£00) = 02x2 for all (§,+o0) € M°, (5.32)

where Hupe := Ppy(Mare)p(H™) and H® := P,(9M°)p(H™). From (2.5) we also
deduce that, for all £ € M (SO(T)),

(Sym P)(€,+00) = diag{1,0}, (Sym Pj)(§, —o0) = diag{0, 1},
(Sym Pp)(§, —oo) = diag{1,0}, (Sym Py )(¢, +00) = diag{0, 1}.
Further, from (5.8)—(5.9), (3.13)—(3.14) and (5.19)—(5.20), (3.11) it follows that
Tiem) (AL,) = dlag{A(S 1 Ae, 0)} for all (&,z) € Myyre, (5.34)
(AF)°(g,z) = diag{Ai (&,1) Ai (&,0)} forall (&) € M°. (5.35)

(5.33)
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Hence, for every operator B = AtPf + APy + H 5 € BY we deduce from
(5.31)—(5.35) that
(e too) (Bare) = ding{A% ), A% o)} forall ¢ e U o MA(SO(T)), - (5.36)
B°(¢, +00) = diag{ A¥(£,1), AT(¢,0)} for all ¢ € UTEN M.(SO(T)). (5.37)
Therefore, for every H € $ and every € U, ey, M- (SO(T)), we obtain

+ + . g T
max { || Az 1) [, [|[ A o)} < [[Pe(Mare) (BT + HT)|| < [|B + Hl, (5.38)
and, for every £ € ., M- (SO(T)),
max {|AF(&, 1)], [AF(&,0)[} < [|P(M°)p(B™ + HT)|| < B+ H|.  (5.39)
By Lemma 3.2, we obtain
IA] = max {|IX°All, [XarcAll, [x+ A} for all A € A, (5.40)

where, by Theorems 3.3, 3.4 and the property x. A = x« al (a € PSO(T)),

IX°Al = max_ |A(§, W, xareAl = sup A, lx-All < max A€, p)l.
(emeM (e etane O (EmeM.

(5.41)
Finally, since M° U M, is contained in (.., M;(SO(T)) x {0,1}, we infer from
(5.38)~(5.41) that ||A*|| < ||B + H| for all B € 8° and all H € §, which imme-
diately implies (5.30). O

Similarly to [5, Lemma 10.5], one can prove the following result.
Lemma 5.9. For every 7 € T, Pw(f)j?oo)cp(Vf) = 0. Consequently, for all H € 9,
P,(IM°)p(H™) = 0. (5.42)

It follows from Lemma 5.9 that if an operator B € B is written in the form
(5.29), then according to (5.42),

B = P, (1) p(B") = P,(I)p(ATPf + APr)7),  (5.43)

which implies that the operators H € $) do not have influence on the operators in
the C*-algebra B°°. Finally we get the desired result.

Theorem 5.10. If B € B is written in the form (5.29) and the operators

Bare = Py(Mare)p(B™) and  B° = Py(M°)p(B™)
are invertible on the Hilbert spaces PW(SIRMC)'HW and P, (iI'TIO)H@, respectively, then
the operator B = P,(9MM>)p(B™) is invertible on the Hilbert space P,(9N>)H.,.

Proof. Suppose that the operators By, and B° are invertible on the Hilbert spaces
PW(Qj?arc)Hw and PW(QjTO)HW respectively. Then, by Theorem 5.2, the operators
T(¢,2)(Bare) are invertible on the Hilbert space 1?(G,C?) for all (§,z) € Mare
and condition (5.11) is fulfilled. Further, by Theorem 5.7, the matrices B°(¢, x)
are invertible for all (§,2) € 9M°. In particular, the operators 7(¢ +o0)(Barc) are
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invertible on the space [2(G, C?) for all (£, £00) € Rare (see (3.15)), and B° (&, £00)
are invertible for all { € (J,czs M¢(SO(T)). Hence, from (5.36) it follows that all
the operators A(iE ) are invertible on the space I2(G) for (£, 1) € Rare and

sup Ai -1 < 0.
(&u)emmH( (€7u)) H

On the other hand, we deduce from (5.37) and (5.22) that ;1}(5,#) # 0 for all
(&, 1) € Upers Mi(SO(T))x {0, 1}. Then, by Theorem 3.7, the functional operators
A¥ are invertible on the space L?(T), which implies the invertibility of the opera-
tors AL = P,(9M>)p((A*)™) on the Hilbert space P,(9M>)H,,. Let (AX)~! be
the inverses of the operators AL .

Finally, we only need to observe that the operator

(B) "= (AL) T P () ((PH)™) + (A%) ™ P () ((Pr)™)
is the inverse to the operator (5.43). This is a consequence of the equalities
P () p(AT)Pp(9)p((PF)™) = Po(9)((PF)™) P, (M) p(A™) (A € A),
Po(9) (P )™) Py (M) p((P)™) = Py (M) p((Pf Py)™) = 0
following from Lemma 5.9. O

5.5. Symbol calculus and a Fredholm criterion for the C*-algebra 25
Consider the C*-algebra B = alg (PSO(T), St,Ug) C B(L?(T)) and the sets

MNare =J_ o, M-(SO(T) xR, M= M-(SO(T)) xR,
me = v M- (SO(T)) <K,

related to the partition T = T,,.. UIsA UA’, where the set Oy C Ty contains
exactly one point in each orbit defined by the group of shifts G on Ty, = T \ A.
For each (£, ) € Myre, we introduce the representation

D¢, 1B — B(I*(G,C?), B ®¢o(B):= 7w (Bare) (5.44)
given on the generators of the C*-algebra 9B, according to (5.8)—(5.9) and (2.5),
by
[®¢.(al) fl(g) = diag{(a 0 g)(£,1). (a0 g)(£0) } (9),
e 501100 = ( (o) i) Sta). (549
[©e.o(Un) fl(g) = f(gh),

where a € PSO(T), a(&, ) is the value of the Gelfand transform of a at the point
(&, 1) € M(PSO(T)), g,h € G, and f € I*(G,C?).
For each (€, ) € My, we introduce the representation

B¢ B — B(C?), B BY(& )], (5.46)
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where ¢t € Is A is such that £ € M;(SO(T)) and, for all ({,z) € M (SO(T)) x R,
the 2 x 2 matrices By (£, z) are given for the generators of B, according to (5.12)
and Theorem 5.3, by

o _ (al(&1) 0 o _( tanh(mz)  i/cosh(mz)
(aD); (6 2) = ( 0 a 0)> » Sni62) = (—i/ cosh(nz) — tanh(rz) )’
(Un)i(&,x) = diag{e”lnhl(t)7eiwlnh/(t)}, where a € PSO(T), h € G. (5.47)

For each (&, z) € 9MM°, we introduce the representation

B¢ B — B(C?), B B°(&2)l, (5.48)

where the 2 x 2 matrices B°(&,z) are given for the generators of 9B, in view of
(5.19) and Theorem 5.7, by

o a(&, 1) 0 o tanh(mx) i/ cosh(mx)
(al)*(§,z) = ( 0 a(£70)> » (Sr)°(62) = (—z/ cosh(mz) —tanh(mc)) ’

(Un)°(&,x) = diag{1,1}, where a € PSO(T), h € G. (5.49)

Combining Theorems 4.2, 5.2, 5.4, 5.7 and 5.10, we get the following criterion.

Theorem 5.11. An operator B € B is Fredholm on the space L*(T) if and only if
the following three conditions are satisfied:

(i) for all (&, ) € Nype, the operators ®¢ . (B) are invertible on the space I?(G, C?)

and  sup  ||(P¢q(B)) 7| < oo;
(57I)emar0

(i) tgllsz €M, (SO(T) ;Ielﬂfx | det(By (¢, ))] > 0;

(iii) for all (&, x) € M°, det (B°(&,x)) # 0.

Consider now the Hilbert space

He:= P PGecHe EH c

(&,2)ENare (&,z) €M uIMe

Then the mapping

‘P:%—»B(H@), B»—>(I)(B) e @ q)g,z(B)’
(Ex)EUIMCUSIJIISUSUIO

where the operators ®¢ ,(B) are given by (5.44)—(5.49), is a representation of the
C*-algebra % in the Hilbert space He, with Ker ® = K. Since B™ = &(B), we
may refer the operator function ®(B) defined on the set 9, U Emls U M by
(&,x) — P¢(B) to as the symbol of an operator B € B. Hence, Theorem 5.11
can be rewritten in the following form.

Theorem 5.12. An operator B € B is Fredholm on the space L*(T) if and only if
its symbol ®(B) is invertible, that is, the operator ®(B) is invertible on the Hilbert
space He.
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