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Abstract

While on one hand, the exact distribution of the likelihood ratio test statistic for
testing the equality of several variance-covariance matrices, as it also happens with
several other likelihood ratio test statistics used in Multivariate Statistics, has a
non-manageable form, which does not allow for the computation of quantiles, even
for a small number of variables, on the other hand the asymptotic approximations
available do not have the necessary quality for small sample sizes. This way, the
development of near-exact approximations to the distribution of this statistic is a
good goal. Starting from a factorization of the exact characteristic function for the
statistic under study and by adequately replacing some of the factors, we obtain a
near-exact characteristic function which determines the near-exact distribution for
the statistic. This near-exact distribution takes the form of either a GNIG (Gener-
alized Near-Integer Gamma) distribution or a mixture of GNIG distributions. The
evaluation of the performance of the near-exact and asymptotic distributions devel-
oped is done through the use of two measures based on the charactersitic function
with which we are able to obtain good upper-bounds on the absolute value of the
difference between the exact and approximate probability density or cumulative dis-
tribution functions. As a reference we use the asymptotic distribution proposed by
Box.
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1 Introduction

The results presented in this paper, together with the ones already pub-
lished on the Wilks Λ statistic (Coelho, 2003, 2004; Alberto and Coelho, 2007;
Grilo and Coelho, 2007) and the ones on the sphericity likelihood ratio test
statistic (Marques and Coelho, 2007), are intended to be used as the basis for
two future works: one on a common approach for the more common likelihood
ratio test statistics used in Multivariate Analysis (the Wilks Λ statistic, the
statistic to test the equality of several variance-covariance matrices, the statis-
tic to test the equality of several multivariate Normal distributions and the
sphericity test statistic) which will recall the common traits of these statistics
both in terms of their exact and near-exact distributions, and the other on
a general approach for two families of generalized sphericity tests, which we
may call as multi-sample block-scalar and multi-sample block-matrix spericity
tests, their common links and particular cases.

In this paper we will be dealing with the likelihood ratio test statistic to
test the equality of several variance-covariance matrices, under the assump-
tion of underlying multivariate normal distributions. We will show how we
can see the exact distribution of this statistic as the distribution of a product
of independent Gamma random variables and then how we can factorize the
characteristic function of the logarithm of this statistic into a term that is the
characteristic function of a Generalized Integer Gamma distribution (Coelho,
1998) and another term that is the characteristic function of a sum of inde-
pendent random variables whose exponentials have Beta distributions. From
this decomposition we will be able to build near-exact distributions for the
logarithm of the likelihood ratio test statistic as well as for the statistic it-
self. The closeness of these approximate distributions to the exact distribution
will be assessed and measured through the use of two measures, presented in
Section 5, derived from inversion formulas, one of which has a link with the
Berry-Esseen bound.

Let us suppose that we have q independent samples from q multivariate
Normal distributions Np(µj, Σj) (j = 1, . . . , q), the j-th sample having size
n + 1, and that we want to test the null hypothesis

H0 : Σ1 = Σ2 = . . . = Σq (= Σ) (with Σ unspecified) . (1)

By using the modified likelihood ratio test statistic we obtain an unbiased
test (Bartlet, 1937; Muirhead, 1982, Sec. 8.2). The modified likelihood ratio
test statistic (where the sample sizes are replaced by the number of degrees
of freedom of the Wishart distributions) may be written as (Bartlett, 1937;

2



Anderson, 1958; Muirhead, 1982)

λ∗ =
(nq)npq/2

q∏
j=1

npn/2

q∏
j=1
|Aj|n/2

|A|nq/2
, (2)

where Aj is the matrix of corrected sums of squares and products formed from
the j-th sample and A = A1 + . . . + Aq.

The h-th moment of λ∗ in (2) is (Muirhead, 1982)

E
[
(λ∗)h

]
= qnpqh/2

p∏

j=1

Γ
(

nq
2

+ 1
2
− j

2

)

Γ
(

nq
2

+ 1
2
− j

2
+ nq

2
h

)

×
p∏

j=1

q∏

k=1

Γ
(

n
2

+ 1
2
− j

2
+ n

2
h

)

Γ
(

n
2

+ 1
2
− j

2

)

(
h > p−n−1

n

)
.

(3)

From (3) we may write the c.f. (characteristic function) for the r.v. (random
variable) W = − log(λ∗) as

ΦW (t) = E
[
eWit

]
= E

[
e− log(λ∗)it

]
= E

[
(λ∗)−it

]

= q−npqit/2
p∏

j=1

Γ
(

nq
2

+ 1
2
− j

2

)

Γ
(

nq
2

+ 1
2
− j

2
− nq

2
it

) (4)

×
p∏

j=1

q∏

k=1

Γ
(

n
2

+ 1
2
− j

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− j

2

) .

It will be based on this expression that we will obtain, in Section 3, decompo-
sitions of the c.f. of W that will be used to build near-exact distributions for
W and λ∗.

2 Asymptotic distributions

Box (1949) proposes for the statistic W = − log(λ∗) an asymptotic distri-
bution based on an expansion of the form

P (2ρW ≤ z) = (1− ω)P (χ2
g ≤ z) + ωP (χ2

g+4 ≤ z) + O
(
(nq)−3

)
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where

g =
1

2
(q − 1)p(p + 1) , ρ = 1− q + 1

nq

2p2 + 3p− 1

6(p + 1)

and

ω =
1

48ρ2
p(p + 1)

{
(p− 1)(P − 2)

q3 − 1

n2q2
− 6(q − 1)(1− ρ)2

}

and where P (χ2
g ≤ z) stands for the value of the c.d.f. (cumulative distribution

function) of a chi-square r.v. with g degrees of freedom evaluated at z(> 0).

However, taking into accout that

if X ∼ χ2
g ≡ Γ

(
g

2
,
1

2

)
then

X

2ρ
∼ Γ

(
g

2
, ρ

)
,

where we use the notation

X ∼ Γ(r, λ)

to denote the fact that the r.v. X has pdf (probability density function)

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0; r, λ > 0)

we may write

P (W ≤ z) ≈ (1− ω)P
(
Γ

(
g

2
, ρ

)
≤ z

)
+ ω P

(
Γ

(
g

2
+ 2, ρ

)
≤ z

)
,

where P (Γ (ν, ρ) ≤ z) stands for the value of the c.d.f. of a Γ(ν, ρ) distributed
r.v. evaluated at z(> 0).

We may thus write, for the c.f. of W ,

ΦW (t) ≈ ΦBox(t) = (1− ω)ρg/2(ρ− it)−g/2 + ω ρ2+g/2(ρ− it)−2−g/2 . (5)

Somehow inspired on this asymptotic approximation due to Box, which
ultimately approximates the exact c.f. of W by the c.f. of a mixture of Gamma
distributions and also on Box’s introduction of his 1949 paper (Box, 1949),
where he states that ”Although in many cases the exact distributions cannot
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be obtained in a form which is of practical use, it is usually possible to obtain
the moments, and these may be used to obtain approximations. In some cases,
for instance, a suitable power of the likelihood statistic has been found to be
distributed approximately in the type I form, and good approximations have
been obtained by equating the moments of the likelihood statistic to this
curve.”, we propose two other mixtures of Gamma distributions, all with the
same rate parameter, which match the first four or six exact moments to
approximate asymptotically the c.f. of W = − log(λ∗), for increasing values of
nq, the number of degrees of freedom of the Wishart distribution of matrix A.

These distributions are: the mixture of two Gamma distributions, both with
the same rate parameter, with characteristic function

ΦM2G(t) =
2∑

j=1

p 2,j λ
r2,j

2 (λ2 − it)−r2,j , (6)

where p 2,2 = 1− p 2,1 with p 2,j, r2,j, λ2 > 0, and the mixture of three Gamma
distributions, all with the same rate parameter, with characteristic function

ΦM3G(t) =
3∑

j=1

p 3,j λ
r3,j

3 (λ3 − it)−r3,j , (7)

where p 3,3 = 1− p 3,1 − p 3,2, with p 3,j, r3,j, λ3 > 0.

The parameters in (6) and (7) are respectively obtained by solving the
systems of equations

ih
k∑

j=1

pk,j
Γ(rk,j + h)

Γ(rk,j)
λ−h

k =
∂hΦMkG(t)

∂th

∣∣∣∣∣
t=0

=
∂hΦW (t)

∂th

∣∣∣∣∣
t=0

, (8)

with h = 1, . . . , 2k and making k = 2 for the parameters in (6) and k = 3 for
the parameters in (7).

Actually, since, as shown in Lemma 1 ahead, ΦW (t) is the characteristic
function of a sum of independent log Beta random variables, the approxima-
tion of the distribution of W by a mixture of Gamma distributions is a well
justified procedure, since as Coelho et al. (2006) proved, a log Beta distribu-
tion may be represented as an infinite mixture of Exponential distributions,
and as such a sum of independent log Beta random variables may be repre-
sented as an infinite mixture of sums of independent Exponential distributions,
which are particular Generalized Integer Gamma distributions (Coelho, 1998).
Thus, the use of a finite mixture of Gamma distributions to replace a log Beta
distribution seems to be a much adequate simplification.
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3 The characteristic function of W = − log(λ∗)

In this section we will present several results that will enable us to ob-
tain a decomposition of the c.f. of W that will be used to build near-exact
distributions for W and λ∗.

In a first step we will show how the characteristic function of W may be
split in two parts, one of them being the c.f. of the sum of independent Logbeta
r.v.’s and the other the c.f. of the sum of independent Exponential r.v.’s. In a
second step we will identify the Exponential distributions involved and devise
a method to count and obtain the corresponding analytic expressions for the
number of different Exponential distributions involved.

Lemma 1: The characteristic function of W = − log λ∗ may be written as

ΦW (t) =
bp/2c∏

j=1

q∏

k=1

Γ(aj + b∗jk)

Γ(aj)

Γ(aj − nit)

Γ(aj + b∗jk − nit)

×



q∏

k=1

Γ(ap + b∗pk)

Γ (ap)

Γ
(
ap − n

2
it

)

Γ(ap + b∗pk − n
2
it)




p⊥⊥2

︸ ︷︷ ︸
Φ1(t)

×
bp/2c∏

j=1

q∏

k=1

Γ(aj + bjk)

Γ(aj + b∗jk)

Γ(aj + b∗jk − nit)

Γ(aj + bjk − nit)

×



q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ(ap + b∗pk − n
2
it)

Γ
(
ap + bpk − n

2
it

)



p⊥⊥2

︸ ︷︷ ︸
Φ2(t)

,

(9)

where p ⊥⊥ 2 represents the remainder of the integer division of p by 2,

aj = n + 1− 2j , bjk = 2j − 1 +
k − 2j

q
, (10)

ap =
n + 1− p

2
, bpk =

pq − q − p + 2k − 1

2q
, (11)

b∗jk = bbjkc and b∗pk = bbpkc . (12)

Proof : Using the fact that

Γ(2z) = π−1/2 22z−1 Γ(z) Γ(z + 1/2)
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we may write the c.f. of W = − log λ∗ as

ΦW (t) = q−npqit/2
bp/2c∏

j=1





Γ
(

nq
2

+ 1
2
− 2j−1

2

)
Γ

(
nq
2

+ 1
2
− 2j

2

)

Γ
(

nq
2

+ 1
2
− 2j−1

2
− nq

2
it

)
Γ

(
nq
2

+ 1
2
− 2j

2
− nq

2
it

)

q∏

k=1

Γ
(

n
2

+ 1
2
− 2j−1

2
− n

2
it

)
Γ

(
n
2

+ 1
2
− 2j

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− 2j−1

2

)
Γ

(
n
2

+ 1
2
− 2j

2

)




×

 Γ

(
nq
2

+ 1
2
− p

2

)

Γ
(

nq
2

+ 1
2
− p

2
− nq

2
it

)
q∏

k=1

Γ
(

n
2

+ 1
2
− p

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− p

2

)



p⊥⊥2

= q−npqit/2
bp/2c∏

j=1

Γ(nq + 1− 2j)

Γ(nq + 1− 2j − nqit)

q∏

k=1

Γ(n + 1− 2j − nit)

Γ(n + 1− 2j)

×

 Γ

(
nq
2

+ 1
2
− p

2

)

Γ
(

nq
2

+ 1
2
− p

2
− nq

2
it

)
q∏

k=1

Γ
(

n
2

+ 1
2
− p

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− p

2

)



p⊥⊥2

.

Then, using

Γ(mz) = (2π)−
m−1

2 mmz−1/2
m∏

k=1

Γ

(
z +

k − 1

m

)

we may write

ΦW (t) = q−npqit/2

×
bp/2c∏

j=1

qnqit
q∏

k=1

Γ
(
n + 1

q
− 2j

q
+ k−1

q

)

Γ
(
n + 1

q
− 2j

q
+ k−1

q
− nit

) Γ(n + 1− 2j − nit)

Γ(n + 1− 2j)

×

q

nq
2

it
q∏

k=1

Γ
(

n
2

+ 1
2q
− p

2q
+ k−1

q

)

Γ
(

n
2

+ 1
2q
− p

2q
+ k−1

q
− n

2
it

)
Γ

(
n
2

+ 1
2
− p

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− p

2

)



p⊥⊥2

=
bp/2c∏

j=1

q∏

k=1

Γ
(
n + 1

q
− 2j

q
+ k−1

q

)

Γ
(
n + 1

q
− 2j

q
+ k−1

q
− nit

) Γ(n + 1− 2j − nit)

Γ(n + 1− 2j)

×



q∏

k=1

Γ
(

n
2

+ 1
2q
− p

2q
+ k−1

q

)

Γ
(

n
2

+ 1
2q
− p

2q
+ k−1

q
− n

2
it

)
Γ

(
n
2

+ 1
2
− p

2
− n

2
it

)

Γ
(

n
2

+ 1
2
− p

2

)



p⊥⊥2

considering that, since for any p ∈ IN , bp/2c+ b(p + 1)/2c = p,

q−npqit/2
(
q

nq
2

it
)b p+1

2
c−b p

2
c bp/2c∏

j=1

qnqit = q−npqit/2+nqbp/2cit/2+nqb p+1
2
cit/2 = 1 .
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Taking then aj, bjk, ap and bpk defined as in (10) and (11), we may write

ΦW (t)=
bp/2c∏

j=1

q∏

k=1

Γ(aj + bkj)

Γ(aj + bkj − nit)

Γ(aj − nit)

Γ(aj)

×



q∏

k=1

Γ(ap + bpk)

Γ
(
ap + bpk − n

2
it

)
Γ

(
ap − n

2
it

)

Γ(ap)




p⊥⊥2

that taking b∗jk and b∗pk given by (12) may be written as

ΦW (t) =
bp/2c∏

j=1

q∏

k=1

{
Γ(aj + b∗kj)

Γ(aj)

Γ(aj − nit)

Γ(aj + b∗kj − nit)

× Γ(aj + bkj)

Γ(aj + b∗kj)

Γ(aj + b∗kj − nit)

Γ(aj + bkj − nit)

}

×



q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ(ap + b∗pk − n
2
it)

Γ
(
ap + bpk − n

2
it

)



p⊥⊥2

×



q∏

k=1

Γ(ap + b∗pk)

Γ (ap)

Γ
(
ap − n

2
it

)

Γ(ap + b∗pk − n
2
it)




p⊥⊥2

,

what, after some small rearrangements yields (9).

Let us now take

Φ1(t) =
bp/2c∏

j=1

q∏

k=1

Γ(aj + b∗kj)

Γ(aj)

Γ(aj − nit)

Γ(aj + b∗kj − nit)
︸ ︷︷ ︸

Φ1,1(t)




q∏

k=1

Γ(ap + b∗pk)

Γ (ap)

Γ
(
ap − n

2
it

)

Γ(ap + b∗pk − n
2
it)




p⊥⊥2

︸ ︷︷ ︸
Φ1,2(t)

.

(13)

We will now show that Φ1(t) is indeed the c.f. of the sum of independent
Exponential r.v.’s and we will identify the different Exponential distributions
involved, by adequately decomposing first Φ1,1(t) and then Φ1,2(t).
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Lemma 2: We may write

Φ1,1(t) =
bp/2c∏

j=1

q∏

k=1

2j−1∏

l=1−b k−2j
q
c
(n− l) (n− l − nit)−1 .

Proof : Applying now

Γ(a + n)

Γ(a)
=

n−1∏

l=0

(a + l) (14)

and noticing that

b∗kj =

⌊
2j − 1 +

k − 2j

q

⌋
= 2j − 1 +

⌊
k − 2j

q

⌋
,

we may write

Φ1,1(t) =
bp/2c∏

j=1

q∏

k=1

Γ(aj + b∗kj)

Γ(aj)

Γ(aj − nit)

Γ(aj + b∗kj − nit)

=
bp/2c∏

j=1

q∏

k=1

b∗kj−1∏

l=0

(n− 2j + 1 + l) (n− 2j + 1 + l − nit)−1

=
bp/2c∏

j=1

q∏

k=1

b∗kj∏

l=1

(n− 2j + l) (n− 2j + l − nit)−1 (15)

=
bp/2c∏

j=1

q∏

k=1

2j−1+b k−2j
q
c∏

l=1

(n− 2j + l) (n− 2j + l − nit)−1

=
bp/2c∏

j=1

q∏

k=1

2j−1+b k−2j
q c∏

l=1

(
n− l +

⌊
k − 2j

q

⌋)

×

(
n− l +

⌊
k − 2j

q

⌋
− nit

)−1

,

that by a simple change in the limits of the last product yields the desired
result.

In the next two Lemmas we identify the different Exponential distributions
involved in Φ1,1(t) and obtain analytic expressions for their counts. The first
Lemma refers to even q and the second to odd q.
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Lemma 3: For even q we may write

Φ1,1(t) =
2bp/2c−1∏

j=α+2

(n− j)q(bp/2c−bj/2c) (n− j − nit)−q(bp/2c−bj/2c)

×
α+1∏

k=1

(n− k)ak+γk (n− k − nit)−(ak+γk)

(16)

where α =
⌊

p−1
q

⌋
,

γk = bq/2c((k − 1)q − 2bk/2c) (k = 1, . . . , α + 1) (17)

and

ak =





q2/4 k = 1, . . . , α

(q − (bp/2c − αbq/2c)) (bp/2c − αbq/2c) k = α + 1 .
(18)

Proof : Since for k = 1, . . . , q and j = 1, . . . , bp/2c, ν = −
⌊

k−2j
q

⌋
takes the

values 0, 1, 2, . . . , α, with α =
⌊

p−1
q

⌋
, we may write, from the result in Lemma

2,

Φ1,1(t) =
bp/2c∏

j=1

q∏

k=1

2j−1∏

l=1−b k−2j
q c

(n− l) (n− l − nit)−1

=
bp/2c∏

j=1

q∏

k=1




min(α+1,2j−1)∏

l=1−b k−2j
q c

(n− l) (n− l − nit)−1

×
2j−1∏

l=α+2

(n− l) (n− l − nit)−1


 (19)

=
bp/2c∏

j=1

2j−1∏

l=α+2

(n− l)q (n− l − nit)−q

×
bp/2c∏

j=1

q∏

k=1

min(α+1,2j−1)∏

l=1−b k−2j
q c

(n− l) (n− l − nit)−1

where
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bp/2c∏

j=1

2j−1∏

l=α+2

(n− l)q (n− l − nit)−q

=
2bp/2c−1∏

j=α+2

(n− j)q(bp/2c−bj/2c) (n− j − nit)−q(bp/2c−bj/2c)

(20)

and, for even q (for which although bq/2c = q/2, we will use the notation
bq/2c to make it more uniform with the notation for odd q)

bp/2c∏

j=1

q∏

k=1

min(α+1,2j−1)∏

l=1−b k−2j
q c

(n− l) (n− l − nit)−1

=
α−1∏

ν=0

(ν+1)bq/2c∏

j=1+νbq/2c




min(α+1,2j−1)∏

l=1+ν

(n− l)q−(2(j−νbq/2c)−1)

×(n− l − nit)−(q−(2(j−νbq/2c)−1))

×
min(α+1,2j−1)∏

l=2+ν

(n− l)2(j−νbq/2c)−1

×(n− l − nit)−(2(j−νbq/2c)−1)




×
bp/2c∏

j=1+αbq/2c




min(α+1,2j−1)∏

l=1+α

(n− l)q−(2(j−αbq/2c)−1)

×(n− l − nit)−(q−(2(j−αbq/2c)−1))

×
min(α+1,2j−1)∏

l=2+α

(n− l)2(j−αbq/2c)−1

×(n− l − nit)−(2(j−αbq/2c)−1)




=





α−1∏

ν=0

bq/2c∏

j=1




min(α+1,2(j+νbq/2c)−1)∏

l=1+ν

(n− l)q−(2j−1)

×(n− l − nit)−(q−(2j−1))




×



min(α+1,2(j+νbq/2c)−1)∏

l=2+ν

(n− l)2j−1

×(n− l − nit)−(2j−1)








×
bp/2c−αbq/2c∏

j=1

(n−(α+1))q−(2j−1) (n−(α+1)−nit)−(q−(2j−1))

11



=




bq/2c∏

j=1

α−1∏

ν=0

min(α+1,2j+νq−1)∏

l=2+ν

(n− l)q (n− l − nit)−q





×
bq/2c∏

j=1

α−1∏

ν=0

(n−(ν+1))q−(2j−1) (n−(ν+1)−nit)−(q−(2j−1))

×
bp/2c−αbq/2c∏

j=1

(n−(α+1))q−(2j−1) (n−(α+1)−nit)−(q−(2j−1))

where, for even q,

i)
bq/2c∏

j=1

α−1∏

ν=0

min(α+1,2j+νq−1)∏

l=2+ν

(n− l)q (n− l − nit)−q

=
α+1∏

k=2

(n− k)γk (n− k − nit)−γk ,

for γk = bq/2c ((k − 1)q − 2bk/2c) (k = 2, . . . , α + 1), as defined in (17),

ii)
bq/2c∏

j=1

α−1∏

ν=0

(n−(ν+1))q−(2j−1) (n−(ν+1)−nit)−(q−(2j−1))

=
α∏

k=1

(n− k)ak (n− k − nit)−ak ,

for ak given in (18), that is, for ak = q2/4 (k = 1, . . . , α),

iii)
bp/2c−αbq/2c∏

j=1

(n−(α+1))q−(2j−1) (n−(α+1)−nit)−(q−(2j−1))

= (n− (α + 1))aα+1 (n− (α + 1)− nit)−aα+1 ,

for aα+1 = (q−(bp/2c−αbq/2c)) (bp/2c−αbq/2c), as given in (18) ,

so that we may write Φ1,1(t) as in (16).

Lemma 4: For odd q, and once again for α =
⌊

p−1
q

⌋
, we may write

Φ1,1(t) =
2bp/2c−1∏

j=α+2

(n− j)q(bp/2c−bj/2c) (n− j − nit)−q(bp/2c−bj/2c)

α+1∏

k=1

(n− k)ak+γk (n− k − nit)−(ak+γk)

(21)

12



where

γk = bq/2c(k − 1)q (k = 1, . . . , α + 1) (22)

and

ak =





⌊
q
2

⌋ ⌊
q+k⊥⊥2

2

⌋
k = 1, . . . , α

(
q−

(⌊
p
2

⌋
−α

⌊
q
2

⌋
−

⌊
α
2

⌋)) (⌊
p
2

⌋
−α

⌊
q
2

⌋
−

⌊
α+1

2

⌋)
k = α + 1 .

(23)

Proof : Following the same lines used in the proof of Lemma 3, we obtain
once again expressions (19) and (20). Then, taking into account that

⌊
1 + ν

2

⌋
−⌊

ν+1
2

⌋
= (ν + 1) ⊥⊥ 2 and that for odd q, 2

⌊
q
2

⌋
= q − 1, we have,

bp/2c∏

j=1

q∏

k=1

min(α+1,2j−1)∏

l=1−b k−2j
q c

(n− l) (n− l − nit)−1

=
α−1∏

ν=0

(ν+1)bq/2c+b1+ν/2c∏

j=1+νbq/2c+b(1+ν)/2c




min(α+1,2j−1)∏

l=1+ν

(n− l)q−(2(j−νbq/2c)−(ν+1))

×(n− l − nit)−(q−(2(j−νbq/2c)−(ν+1)))

×
min(α+1,2j−1)∏

l=2+ν

(n− l)2(j−νbq/2c)−(ν+1)

×(n− l − nit)−(2(j−νbq/2c)−(ν+1))




×
bp/2c∏

j=1+αbq/2c+b(1+α)/2c




min(α+1,2j−1)∏

l=1+α

(n− l)q−(2(j−αbq/2c)−(α+1))

×(n− l − nit)−(q−(2(j−αbq/2c)−(α+1)))

×
min(α+1,2j−1)∏

l=2+α

(n− l)2(j−αbq/2c)−(α+1)

×(n− l − nit)−(2(j−αbq/2c)−(α+1))




=





α−1∏

ν=0

bq/2c+b1+ν/2c∏

j=1+b(1+ν)/2c




min(α+1,2(j+νbq/2c)−1)∏

l=1+ν

(n− l)q−(2j−(ν+1))

×(n− l − nit)−(q−(2j−(ν+1)))




13



×



min(α+1,2(j+νbq/2c)−1)∏

l=2+ν

(n− l)2j−(ν+1)

×(n− l − nit)−(2j−(ν+1))








×
bp/2c−αbq/2c∏

j=1+b(1+α)/2c
(n−(α+1))q−(2j−(α+1)) (n−(α+1)−nit)−(q−(2j−(α+1)))

=





α−1∏

ν=0

bq/2c+b1+ν/2c∏

j=1+b(1+ν)/2c

min(α+1,2j+νq−ν−1)∏

l=2+ν

(n− l)q (n− l − nit)−q





×
α−1∏

ν=0

bq/2c+b1+ν/2c∏

j=1+b(1+ν)/2c
(n−(ν+1))q−2j+ν+1 (n−(ν+1)−nit)−(q−2j+ν+1)

×
bp/2c−αbq/2c∏

j=1+b(1+α)/2c
(n−(α+1))q−2j+α+1 (n−(α+1)−nit)−(q−2j+α+1)

where, for odd q,

i)
α−1∏

ν=0

bq/2c+b1+ν/2c∏

j=1+b(1+ν)/2c

min(α+1,2j+νq−ν−1)∏

l=2+ν

(n− l)q (n− l − nit)−q

=
α−1∏

ν=0

bq/2c+((ν+1)⊥⊥2)∏

j=1

min(α+1,2j+νq−(ν+1)⊥⊥2)∏

l=2+ν

(n− l)q (n− l − nit)−q

=
α+1∏

k=2

(n− k)γk (n− k − nit)−γk ,

for γk = bq/2c(k − 1)q (k = 2, . . . , α + 1), as defined in (22),

ii)
α−1∏

ν=0

bq/2c+b1+ν/2c∏

j=1+b(1+ν)/2c
(n−(ν+1))q−2j+ν+1 (n−(ν+1)−nit)−(q−2j+ν+1)

=
α−1∏

ν=0

bq/2c+(ν+1)⊥⊥2∏

j=1

(n−(ν+1))q−2j−(ν⊥⊥2)+1 (n−(ν+1)−nit)−(q−2j−(ν⊥⊥2)+1)

=
α∏

k=1

(n− k)ak (n− k − nit)−ak ,

for ak given by (23), that is, for ak =
⌊

q
2

⌋ ⌊
q+k⊥⊥2

2

⌋
(k = 1, . . . , α),

iii)
bp/2c−αbq/2c∏

j=1+bα+1
2 c

(n−(α+1))q−2j+α+1 (n−(α+1)−nit)−(q−2j+α+1)

14



=

bp/2c−αbq/2c−bα+1
2 c∏

j=1

(n− (α + 1))q−2j−α⊥⊥2+1

(n− (α + 1)− nit)−(q−2j−α⊥⊥2+1)

= (n− (α + 1))aα+1 (n− (α + 1)− nit)−aα+1 ,

for aα+1 =
(
q−

(⌊
p
2

⌋
−α

⌊
q
2

⌋
−

⌊
α
2

⌋)) (⌊
p
2

⌋
−α

⌊
q
2

⌋
−

⌊
α+1

2

⌋)
, as given by (23) ,

so that we may write Φ1,1(t) as in (21).

Equalities i), ii) and iii) in the proofs of Lemmas 3 and 4 are quite straight-
forward to verify and may be proven by induction but the proofs are not shown
because they are a bit long and tedious.

In the next Corollary we show how we can put together in one single ex-
pression the results from Lemmas 3 and 4, for both even and odd q.

Corollary 1: For both even and odd q we may write

Φ1,1(t) =
2bp/2c−1∏

j=α+2

(n− j)q(bp/2c−bj/2c) (n− j − nit)−q(bp/2c−bj/2c)

α+1∏

k=1

(n− k)ak+γk (n− k − nit)−(ak+γk)

(24)

where

γk =
⌊
q

2

⌋ (
(k − 1)q − 2 ((q + 1) ⊥⊥ 2)

⌊
k

2

⌋)
(k = 1, . . . , α + 1) (25)

and

ak =





⌊
q
2

⌋ ⌊
q+k⊥⊥2

2

⌋
k = 1, ... , α

(
q−

(⌊
p
2

⌋
−α

⌊
q
2

⌋)) (⌊
p
2

⌋
−α

⌊
q
2

⌋)

+(q⊥⊥2)
(
α

⌊
p
2

⌋
−α2

⌊
q
2

⌋
− α2

4
+ α⊥⊥2

4
−q

⌊
α+1

2

⌋)
k = α + 1 .

(26)

Proof : Since for k ∈ IN0 and even q we have
⌊

q+k⊥⊥2
2

⌋
=

⌊
q
2

⌋
, and since for

even q we also have

q2

4
=

⌊
q

2

⌋ ⌊
q

2

⌋
,
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from (18) and (23), for any q, even or odd, we may write

ak =
⌊
q

2

⌋ ⌊
q + k ⊥⊥ 2

2

⌋
, k = 1, . . . , α ,

while from (17) and (22) we may write (25). Finally, since

⌊
α + 1

2

⌋ ⌊
α

2

⌋
= α

and

⌊
α

2

⌋ ⌊
α + 1

2

⌋
=





α2

4
α even

α2−1
4

α odd

we have
(
q −

(⌊
p

2

⌋
− α

⌊
q

2

⌋
−

⌊
α

2

⌋)) (⌊
p

2

⌋
− α

⌊
q

2

⌋
−

⌊
α + 1

2

⌋)

=
(
q −

(⌊
p

2

⌋
− α

⌊
q

2

⌋)) (⌊
p

2

⌋
− α

⌊
q

2

⌋)
− q

⌊
α+1

2

⌋
+

⌊
p

2

⌋⌊
α+1

2

⌋

−α
⌊
q

2

⌋ ⌊
α+1

2

⌋
−

⌊
α

2

⌋⌊
α+1

2

⌋
+

⌊
p

2

⌋ ⌊
α

2

⌋
− α

⌊
q

2

⌋ ⌊
α

2

⌋

=
(
q −

(⌊
p

2

⌋
− α

⌊
q

2

⌋)) (⌊
p

2

⌋
− α

⌊
q

2

⌋)
− q

⌊
α + 1

2

⌋
+

⌊
p

2

⌋
α

−
⌊
q

2

⌋
α2 − α2

4
+

α ⊥⊥ 2

4
.

In the next Lemma we show how Φ1,2(t) may also be seen as the c.f. of the
sum of independent Exponential r.v.’s. We identify the different Exponential
distributions involved and obtain analytic expressions for their counts.

Lemma 5: We may write, for ap and b∗pk defined in (11) and (12),

Φ∗
1,2(t) =

q∏

k=1

Γ(ap + b∗pk)

Γ (ap)

Γ
(
ap − n

2
it

)

Γ(ap + b∗pk − n
2
it)

=

(
n− k∗

n

)γ(α2−α1) (
n− k∗

n
− it

)−γ(α2−α1)

×
p−1∏

l=1+p−2α1

step 2

(
n− l

n

)q (
n− l

n
− it

)−q

,

(27)
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where

γ = q −
(

p− 1

2
− β

)
, with β =

⌊
p

2q

⌋
q , (28)

and

k∗ = 1 + p− 2α2 , α1 =

⌊
q − 1

q

p− 1

2

⌋
, α2 =

⌊
q − 1

q

p + 1

2

⌋
. (29)

Proof : Using (14) we may always write,

Φ∗
1,2(t) =

q∏

k=1

Γ(ap + b∗pk) Γ
(
ap − n

2
it

)

Γ(ap) Γ
(
ap + b∗pk − n

2
it

)

=
q∏

k=1

b∗pk∏

l=1

(ap + l − 1)
(
ap + l − 1− n

2
it

)−1

,

where b∗pk = bbpkc, with

bpk =
pq − q − p + 2k − 1

2q
=

q − 1

q

p− 1

2
+

k − 1

q

so that, given that here p is odd and thus p−1
2

is an integer,

b∗pk =

⌊
q − 1

q

p− 1

2
+

k − 1

q

⌋
=





α1 for k = 1, . . . , p−1
2
− β

α2 for k = p+1
2
− β, . . . , q

with β given by (28) and α1 and α2 given by (29).
We may thus write, taking into account the definitions of ap in (11), γ in (28)
and α1 and α2 in (29),

Φ∗
12(t)=

p−1
2
−β∏

k=1

α1∏

l=1

(ap + l − 1)
(
ap + l − 1− n

2
it

)−1

×
q∏

k= p+1
2
−β

α2∏

l=1

(ap + l − 1)
(
ap + l − 1− n

2
it

)−1

=
α1∏

l=1

(ap + l − 1)
p−1
2
−β

(
ap + l − 1− n

2
it

)−( p−1
2
−β)
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×
α2∏

l=1

(ap + l − 1)q−( p+1
2
−β)

(
ap + l − 1− n

2
it

)−q+( p+1
2
−β)

=
α1∏

l=1

(
n + 1− p

2
+ l − 1

)q (
n + 1− p

2
+ l − 1− n

2
it

)−q

×
(

n + 1− p

2
+ α2 − 1

)γ(α2−α1)

×
(

n + 1− p

2
+ α2 − 1− n

2
it

)−γ(α2−α1)

=
α1∏

l=1

(
n− p− 1 + 2l

n

)q (
n− p− 1 + 2l

n
− it

)−q

×
(

n− p− 1 + 2α2

n

)γ(α2−α1) (
n− p− 1 + 2α2

n
− it

)−γ(α2−α1)

=
α1∏

l=1

(
n− (p + 1− 2l)

n

)q (
n− (p + 1− 2l)

n
− it

)−q

×

(
n− (p + 1− 2α2)

n

)γ(α2−α1)

×

(
n− (p + 1− 2α2)

n
− it

)−γ(α2−α1)

=
p−1∏

l∗=p+1−2α1

step 2

(
n− l∗

n

)q (
n− l∗

n
− it

)−q

×

(
n− k∗

n

)γ(α2−α1) (
n− k∗

n
− it

)−γ(α2−α1)

where the last equality is obtained by taking l∗ = p + 1 − 2l and taking into
account the definition of k∗ in (29).

Corollary 2: Using the results in Lemmas 1 through 5, we may finally
write

ΦW (t) =
p−1∏

k=1

(
n− k

n

)rk
(

n− k

n
− it

)−rk

︸ ︷︷ ︸
Φ1(t)

×
bp/2c∏

j=1

q∏

k=1

Γ(aj + bjk)

Γ(aj + b∗jk)

Γ(aj + b∗jk − nit)

Γ(aj + bjk − nit)

×



q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ(ap + b∗pk − n
2
it)

Γ
(
ap + bpk − n

2
it

)



p⊥⊥2

︸ ︷︷ ︸
Φ2(t)

,

(30)
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where

rk =





r∗k for k = 1, . . . , p− 1,

except for k = p−1−2α1

r∗k+(p⊥⊥2)(α2 − α1)(
q− p−1

2
+ q

⌊
p
2q

⌋)
for k = p− 1− 2α1

(31)

with

r∗k =





ak + γk for k = 1, . . . , α + 1

q
(⌊

p
2

⌋
−

⌊
k
2

⌋)
for k = α + 2, ... , min(p− 2α1, p− 1)

and k = 2+p−2α1, ... , 2
⌊

p
2

⌋
−1, step 2

q
(⌊

p+1
2

⌋
−

⌊
k
2

⌋)
for k = 1+p−2α1, ... , p−1, step 2 ,

(32)

and

α =

⌊
p− 1

q

⌋
, α1 =

⌊
q − 1

q

p− 1

2

⌋
, α2 =

⌊
q − 1

q

p + 1

2

⌋
,

where, from (25) and (26),

ak + γk =
⌊
q

2

⌋ (
(k−1)q−2 ((q+1)⊥⊥2)

⌊
k

2

⌋)
+

⌊
q

2

⌋⌊
q + k ⊥⊥ 2

2

⌋

for k=1, ... , α

and

aα+1 + γα+1 =
(⌊

p

2

⌋
− α

⌊
q

2

⌋)2

+ q
(⌊

p

2

⌋
−

⌊
α + 1

2

⌋)

+(q⊥⊥2)

(
α

⌊
p

2

⌋
+

α ⊥⊥ 2

4
− α2

4
− α2

⌊
q

2

⌋)
.

(33)

Proof : First of all we have to notice that

(n− k)rk(n− k − nit)−rk =

(
n− k

n

)rk
(

n− k

n
− it

)−rk

.
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Then, while for k = 1, ... , α, rk is obtained just by adding γk in (25) and
ak in the first row of (26) in Corollary 1, for k = α + 1 we have, from (26),

aα+1 =
(
q−

(⌊
p

2

⌋
−α

⌊
q

2

⌋)) (⌊
p

2

⌋
−α

⌊
q

2

⌋)

+(q⊥⊥2)

(
α

⌊
p

2

⌋
−α2

⌊
q

2

⌋
−α2

4
+

α ⊥⊥ 2

4
−q

⌊
α + 1

2

⌋)

= q
⌊
p

2

⌋
− qα

⌊
q

2

⌋
−

(⌊
p

2

⌋
−α

⌊
q

2

⌋)2

− (q ⊥⊥ 2)q
⌊
α + 1

2

⌋

+(q⊥⊥2)

(
α

⌊
p

2

⌋
−α2

⌊
q

2

⌋
−α2

4
+

α ⊥⊥ 2

4

)

while, from (25),

γα+1 = qα
⌊
q

2

⌋
− 2

⌊
q

2

⌋ ⌊
α + 1

2

⌋
((q + 1) ⊥⊥ 2) ,

where

2
⌊
q

2

⌋ ⌊
α + 1

2

⌋
((q + 1) ⊥⊥ 2) =





0, odd q

q
⌊

α+1
2

⌋
, even q

= ((q + 1) ⊥⊥ 2) q
⌊
α + 1

2

⌋

so that aα+1 + γα+1 comes given by (33), since

(q ⊥⊥ 2)q
⌊
α + 1

2

⌋
+ ((q + 1) ⊥⊥ 2) q

⌊
α + 1

2

⌋
= q

⌊
α + 1

2

⌋
.

For k = α + 2, ... , min(p − 2α1, p − 1) and k = 2 + p − 2α1, ... , 2
⌊

p
2

⌋
− 1,

with step 2, we have to consider the result in the first row in (24) in Corollary
1, while for k = 1 + p − 2α1, ... , p − 1, with step 2, we have to consider this
same result together with the result in Lemma 5 and notice that

Φ1,2(t) =
(
Φ∗

1,2(t)
)p⊥⊥2

and that, as such, the exponent q in (27) in Lemma 5 only appears for odd p
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and that

q

(⌊
p

2

⌋
−

⌊
k

2

⌋)
+ q(p ⊥⊥ 2) =





q p
2
− q

⌊
k
2

⌋
for even q

q
(

p−1
2

+ 1
)
− q

⌊
k
2

⌋
for odd q

= q

(⌊
p + 1

2

⌋
−

⌊
k

2

⌋)
.

Finally, from (27) and (29) in Lemma 5, we see that for k = p+1− 2α2 we

have to add, for odd p, γ(α2−α1), where γ = q−
(

p−1
2
− q

⌊
p
2q

⌋)
, to the value of

rk to obtain r∗k. It happens that the only possible values for α2−α1 are either
zero or 1, so that it will be only for α2 − α1 = 1 or 1 + p− 2α2 = p− 1− 2α1

that we will have to add γ(α2 − α1) to rk.

4 Near-exact distributions for W and λ∗

In all cases where we are able to factorize a c.f. into two factors, one of
which corresponds to a manageable well known distribution and the other
to a distribution that although giving us some problems in terms of being
convoluted with the first factor, may however be adequately asymptoticaly
replaced by another c.f. in such a way that the overall c.f. obtained by leaving
the first factor unchanged and adequately replacing the second factor may
then correspond to a known manageable distribution. This way we will be
able to obtain what we call a near-exact c.f. for the random variable under
study.

This is exactly what happens with the c.f. of W . In this Section we will show
how by keeping Φ1(t) in the characteristic function of W in (30) unchanged
and replacing Φ2(t) by the c.f. of a Gamma distribution or the mixture of
two or three Gamma distributions, matching the first two, four or six deriva-
tives of Φ2(t) in order to t at t = 0, we will be able to obtain high quality
near-exact distributions for W under the form of a GNIG (Generalized Near-
Integer Gamma) distribution or mixtures of GNIG distributions. From these
distributions we may then easily obtain near-exact distributions for λ∗ = e−W ,
as it is shown in the next section.

The GNIG distribution of depth g + 1 (Coelho, 2004) is the distribution of
the r.v.

Z = Y +
g∑

i=1

Xi

where the g + 1 random variables Y and Xi (i = 1, . . . , g) are all independent
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with Gamma distributions, Y with shape parameter r, a positive non-integer,
and rate parameter λ and each Xi (i = 1, . . . , g) with an integer shape param-
eter ri and rate parameter λi, being all the g + 1 rate parameters different.
The p.d.f. (probability density function) of Z is given by

fZ(z|r1, . . . , rg, r; λ1, . . . , λg, λ) =

Kλr
g∑

j=1

e−λjz
rj∑

k=1

{
cj,k

Γ(k)

Γ(k+r)
zk+r−1

1F1(r, k+r,−(λ−λj)z)

}
,

(z > 0)

(34)

and the c.d.f. (cumulative distribution function) given by

FZ(z|r1, . . . , rg, r; λ1, . . . , λg, λ) = λr zr

Γ(r+1)
1F1(r, r+1,−λz)

−Kλr
g∑

j=1

e−λjz
rj∑

k=1

c∗j,k
k−1∑

i=0

zr+iλi
j

Γ(r+1+i)
1F1(r, r+1+i,−(λ− λj)z)

(z > 0)

(35)

where

K =
g∏

j=1

λ
rj

j and c∗j,k =
cj,k

λk
j

Γ(k)

with cj,k given by (11) through (13) in Coelho (1998). In the above expressions

1F1(a, b; z) is the Kummer confluent hypergeometric function. This function
has usually very good convergence properties and is nowadays easily handled
by a number of software packages.

In the next Theorem we develop near-exact distributions for W .

Theorem 1: Using for Φ2(t) in the characteristic function of W = − log λ
the approximations:

i) λs(λ− it)−s with s, λ > 0, such that

∂h

∂th
λs(λ− it)−s

∣∣∣∣∣
t=0

=
∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

for h = 1, 2 ; (36)

22



ii)
2∑

k=1

θk µsk(µ− it)−sk , where θ2 = 1− θ1 with θk, sk, µ > 0 , such that

∂h

∂th

2∑

k=1

θk µsk(µ− it)−sk

∣∣∣∣∣
t=0

=
∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

for h = 1, . . . , 4 ; (37)

iii)
3∑

k=1

θ∗k νs∗k(ν − it)−s∗k , where θ∗3 = 1− θ∗1 − θ∗2 with θ∗k, s∗k, ν > 0 , such that

∂h

∂th

3∑

k=1

θ∗k νs∗k(ν − it)−s∗k

∣∣∣∣∣
t=0

=
∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

for h = 1, . . . , 6 ; (38)

we obtain as near-exact distributions for W , respectively,

i) a GNIG distribution of depth p with cdf

F (w|r1, . . . , rp−1, s; λ1, . . . , λp−1, λ) , (39)

where the rj (j = 1, ... , p− 1) are given in (31) and

λj =
n−j

n
, (j = 1, ... , p− 1), (40)

and

λ =
m1

m2 −m2
1

and s =
m2

1

m2 −m2
1

(41)

with

mh = i−h ∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

, h = 1, 2 ;

ii) a mixture of two GNIG distributions of depth p, with cdf

2∑

k=1

θk F (w|r1, . . . , rp−1, sk; λ1, . . . , λp−1, µ) , (42)

where rj and λj (j = 1, . . . , p − 1) are given in (31) and (40) and θ1, µ, r1

and r2 are

obtained from the numerical solution of the system of four equations

2∑

k=1

θk
Γ(rk + h)

Γ(rk)
µ−h = i−h ∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

(h = 1, . . . , 4) (43)

for these parameters, with θ2 = 1− θ1;
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iii) or a mixture of three GNIG distributions of depth p− 1, with cdf

3∑

k=1

θ∗k F (w|r1, . . . , rp−2, s
∗
k; λ1, . . . , λp−2, ν) , (44)

with rj and λj (j = 1, . . . , p− 2) given by (31) and (40) and θ∗1, θ∗2, ν, s∗1, s∗2
and s∗3 obtained from the numerical solution of the system of six equations

3∑

k=1

θ∗j
Γ(r∗k + h)

Γ(r∗k)
ν−h = i−h ∂h

∂th
Φ2(t)

∣∣∣∣∣
t=0

(h = 1, . . . , 6) (45)

for these parameters, with θ∗3 = 1− θ∗1 − θ∗2.

Proof : If in the c.f. of W we replace Φ2(t) by λs(λ− it)−s we obtain

ΦW (t) ≈ λs(λ− it)−s
p−1∏

k=1

(
n− k

n

)rk
(

n− k

n
− it

)−rk

︸ ︷︷ ︸
Φ1(t)

,

that is the c.f. of the sum of p − 1 independent Gamma random variables,
p− 2 of which with integer shape parameters rj and rate parameters λj given
by (31) and (40), and a further Gamma random variable with rate parameter
s > 0 and shape parameter λ. This c.f. is thus the c.f. of the GNIG distribution
of depth p with distribution function given in (39). The parameters s and λ
are determined in such a way that (36) holds. This compels s and λ to be
given by (41) and makes the two first moments of this near-exact distribution
for W to be the same as the two first exact moments of W .

If in the c.f. of W we replace Φ2(t) by
2∑

k=1
θk µrk(µ− it)−rk we obtain

ΦW (t) ≈
2∑

k=1

θk µrk(µ− it)−rk

p−1∏

k=1

(
n− k

n

)rk
(

n− k

n
− it

)−rk

︸ ︷︷ ︸
Φ1(t)

,

that is the c.f. of the mixture of two GNIG distributions of depth p with
distribution function given in (42). The parameters θ1, µ, r1 and r2 are defined
in such a way that (37) holds, giving rise to the evaluation of these parameters
as the numerical solution of the system of equations in (37) and to a near-exact
distribution that matches the first four exact moments of W .
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If in the c.f. of W we replace Φ2(t) by
3∑

k=1
θ∗k νr∗k(ν − it)−r∗k we obtain

ΦW (t) ≈
3∑

k=1

θ∗k νr∗k(ν − it)−r∗k
p−1∏

k=1

(
n− k

n

)rk
(

n− k

n
− it

)−rk

︸ ︷︷ ︸
Φ1(t)

,

that is the characteristic function of the mixture of three GNIG distributions
of depth p with distribution function given in (44). The parameters θ∗1, θ∗2,
ν, r∗1, r∗2 and r∗3 are defined in such a way that (38) holds, what gives rise to
the evaluation of these parameters as the numerical solution of the system of
equations in (38), giving rise to a near-exact distribution that matches the
first six exact moments of W .

We should note here that the replacement of the characteristic function of
a sum of Logbeta random variables by the characteristic function of a single
Gamma random variable or the characteristic function of a mixture of two or
three of such random variables has already been well justified at the end of
Section 2.

Corollary 3: Distributions with cdf’s given by

i) 1− F (− log z|r1, . . . , rp−1, s; λ1, . . . , λp−1, λ) ,

ii) 1−
2∑

k=1

θk F (− log z|r1, . . . , rp−1, sk; λ1, . . . , λp−1, µ) , or

iii) 1−
3∑

k=1

θ∗k F (− log z|r1, . . . , rp−1, s
∗
k; λ1, . . . , λp−1, ν) ,

where the parameters are the same as in Theorem 1, and 0 < z < 1 repre-
sents the running value of the statistic λ∗ = e−W , may be used as near-exact
distributions for this statistic.

Proof : Since the near-exact distributions developed in Theorem 1 were for the
random variable W = − log(λ∗) we only need to mind the relation

Fλ∗(z) = 1− FW (− log z)

where Fλ∗(·) is the cumulative distribution function of λ∗ and FW (·) is the
cumulative distribution function of W , in order to obtain the corresponding
near-exact distributions for λ∗.

We should also stress that although we advocate the numerical solution of
systems of equations (8), (43) and (45), the remarks in Marques and Coelho
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(2007), at the end of Section 3, also apply here.

5 Numerical studies

In order to evaluate the quality of the approximations developed we use
two measures of proximity between characteristic functions which are also
measures of proximity between distribution functions or densities.

Let Y be a continuous random variable defined on S with distribution
function FY (y), density function fY (y) and characteristic function φY (t), and
let φn(t), Fn(y) and fn(y) be respectively the characteristic, distribution and
density function of a random variable Xn. The two measures are

∆1 =
1

2π

∞∫

−∞
|φY (t)− φn(t)| dt and ∆2 =

1

2π

∞∫

−∞

∣∣∣∣∣
φY (t)− φn(t)

t

∣∣∣∣∣ dt ,

with

max
y∈S

|fY (y)− fn(y)| ≤ ∆1 ; max
y∈S

|FY (y)− Fn(y)| ≤ ∆2 . (46)

We should note that for continuous random variables,

lim
n→∞∆1 = 0 ⇐⇒ lim

n→∞∆2 = 0 (47)

and either one of the limits above imply that

Xn
d−→ Y . (48)

Indeed both measures and both relations in (46) may be derived directly
from inversion formulas, and ∆2 may be seen as based on the Berry-Esseen
upper bound on |FY (y)−Fn(y)| (Berry, 1941; Esseen, 1945; Loève, 1977, Chap.
VI, Sec. 21; Hwang, 1998) which may, for any b > 1/(2π) and any T > 0, be
written as

max
y∈S

|FY (y)− Fn(y)| ≤ b

T∫

−T

∣∣∣∣∣
φY (t)− φn(t)

t

∣∣∣∣∣ dt + C(b)
M

T
(49)

where M = maxy∈Sfn(y) and C(b) is a positive constant that only depends of
b. If in (49) above we take T → ∞ then we will have ∆2, since then we may
take b = 1/(2π).
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These measures were used by Grilo and Coelho (2007) to study near-exact
approximations to the distribution of the product of independent Beta ran-
dom variables and by Marques and Coelho (2007) to the study of near-exact
distributions for the sphericity likelihood ratio test statistic.

In this section we will denote Box’s asymptotic distribution by ’Box’, by
’M2G’ and ’M3G’ respectively the asymptotic mixture of two and three Gamma
distributions proposed in Section 2 and by ’GNIG’, ’M2GNIG’ and ’M3GNIG’
the near-exact single GNIG distribution and the mixtures of two and three
GNIG distributions.

We show in this section the Tables for values of ∆2 while in Appendix A
are the corresponding Tables for the values of ∆1.

In Table 1, we may see that for increasing p (number of variables), with
the sample size remaining close to p (n− p = 2), the continuous degradation
(increase) of the values of the measure ∆2 for Box’s asymptotic distribution,
even with a value which does not make much sense for p = 50 (since ∆2 is an
upper-bound on the absolute value of the difference between the approximate
and the exact c.d.f.). Actually, in many cases where n is close to p, Box’s
asymptotic distribution does not even correspond to a true distribution (see
Appendix B). Also the two asymptotic distributions M2G and M3G show
slightly increasing values for ∆2, although remaining within much low values.
For the distribution M3G it was not possible to obtain the convergence for
the solutions for p = 20 and p = 50, but this distribution, for values of p ≤ 7
even shows lower values of ∆2 then the GNIG near-exact distribution.

Opposite to this behavior, all three near-exact distributions show a sharp
improvement (decrease) in their values for ∆2 for increasing values of p, only
with some minor fluctuations for consecutive even and odd values of p, showing
the asymptotic character of these distributions for increasing values of p.

Table 1 – Values of the measure ∆2 for increasing values of p, with small sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 1.364×10−1 2.601×10−4 2.826×10−5 3.461×10−4 4.503×10−6 4.503×10−6

4 2 6 2.058×10−1 1.417×10−4 9.342×10−6 9.733×10−5 1.623×10−7 9.621×10−10

5 2 7 2.690×10−1 2.092×10−4 1.940×10−5 1.952×10−5 2.261×10−7 9.605×10−9

6 2 8 3.256×10−1 2.601×10−4 2.826×10−5 6.091×10−5 4.167×10−7 3.404×10−9

7 2 9 3.762×10−1 3.000×10−4 3.579×10−5 1.022×10−4 1.037×10−6 1.537×10−8

8 2 10 4.214×10−1 3.319×10−4 4.216×10−5 3.493×10−5 1.906×10−7 1.492×10−9

9 2 11 4.621×10−1 3.579×10−4 4.755×10−5 2.244×10−5 6.825×10−8 1.940×10−10

10 2 12 4.986×10−1 3.794×10−4 5.213×10−5 2.141×10−5 8.573×10−8 5.282×10−10

20 2 22 7.099×10−1 4.749×10−4 ——×— 4.070×10−6 4.854×10−9 9.293×10−12

50 2 52 1.286×100 4.864×10−4 ——×— 4.184×10−7 9.503×10−11 3.325×10−14

27



Table A.1 in Appendix A, has the corresponding values for ∆1 and would
lead us to draw similar conclusions.

In Tables 2 and A.2 we may see the clear asymptotic character of the
near-exact distributions for increasing values of q (the number of matrices
being tested), with a similar but less marked behavior of the M2G and M3G
asymptotic distributions, opposite to what happens with Box’s asymptotic
distribution.

In Tables 3 and A.3 we may see how, for increasing sample sizes, the asymp-
totic character is stronger for the near-exact distributions than for the asymp-
totic distributions. This asymptotic character being more marked for the near-
exact distributions based on mixtures. However, the M3G asymptotic distri-
bution for p = 7, q = 2 and n = 50 even beats the M2GNIG near-exact
distribution and the M2G asymptotic distribution performs better than the
GNIG near-exact distriution for most of the cases, namely those with larger
sample sizes.

Table 2 – Values of the measure ∆2 for increasing values of q, with small sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 1.364×10−1 2.601×10−4 2.826×10−5 3.461×10−4 4.503×10−6 4.503×10−6

3 5 5 1.669×10−1 3.947×10−5 1.697×10−6 4.234×10−4 8.892×10−6 3.004×10−7

3 7 5 1.869×10−1 3.283×10−5 1.423×10−6 2.870×10−4 4.725×10−6 1.320×10−7

3 10 5 2.143×10−1 2.633×10−5 1.111×10−6 1.796×10−4 2.168×10−6 4.610×10−8

10 2 12 4.986×10−1 3.794×10−4 5.213×10−5 2.141×10−5 8.573×10−8 9.293×10−10

10 5 12 5.820×10−1 1.796×10−4 ——×— 8.878×10−7 2.092×10−10 3.988×10−14

10 7 12 6.376×10−1 1.389×10−4 ——×— 4.090×10−7 6.378×10−11 1.125×10−14

10 10 12 7.066×10−1 1.056×10−4 ——×— 1.657×10−7 6.354×10−12 9.907×10−16

Table 3 – Values of the measure ∆2 for increasing sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 1.364×10−1 2.601×10−4 2.826×10−5 3.461×10−4 4.503×10−6 4.503×10−6

3 2 20 4.629×10−3 2.186×10−8 ——×— 2.010×10−5 1.250×10−7 1.040×10−9

3 2 50 6.684×10−4 4.014×10−9 ——×— 3.033×10−6 6.261×10−9 5.697×10−12

7 2 9 3.762×10−1 3.000×10−4 3.579×10−5 1.022×10−4 1.037×10−6 1.537×10−8

7 2 20 3.897×10−2 3.912×10−6 5.604×10−8 2.059×10−5 4.180×10−8 7.620×10−11

7 2 50 4.829×10−3 7.172×10−8 8.263×10−11 3.021×10−6 9.071×10−10 4.811×10−14

10 2 12 4.986×10−1 3.794×10−4 5.213×10−5 2.141×10−5 8.573×10−8 5.282×10−10

10 2 50 1.090×10−2 2.093×10−7 ——×— 1.844×10−6 5.352×10−10 1.601×10−13

10 2 100 2.433×10−3 1.159×10−8 ——×— 4.595×10−7 3.272×10−11 2.338×10−15
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In Tables 4 and A.4, if we compare the values of ∆2 for different values
of p and the same sample size, we may see how, opposite to the asymptotic
distributions, the near-exact distributions show a clear asymptotic character
for increasing values of p.

Table 4 – Values of the measure ∆2 for large q and large sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 10 20 8.659×10−3 7.104×10−8 1.313×10−9 5.882×10−6 9.890×10−9 3.224×10−11

3 10 50 1.283×10−3 1.852×10−9 1.330×10−11 8.294×10−7 4.831×10−10 6.378×10−13

7 10 20 6.879×10−2 1.099×10−6 ——×— 1.226×10−6 3.699×10−10 1.942×10−13

7 10 50 8.980×10−3 2.574×10−8 ——×— 2.172×10−7 1.753×10−11 5.605×10−15

10 10 50 2.007×10−2 6.342×10−8 ——×— 3.343×10−8 1.458×10−13 ——×—

10 10 100 4.565×10−3 4.263×10−9 ——×— 9.210×10−9 4.031×10−14 ——×—

6 Conclusions

All the near-exact distributions show a very good performance, with the
ones based on mixtures showing an outstanding behaviour. For the approxi-
mate distributions developed in this paper, the near-exact distributions, which
also have a more elaborate structure, clearly outperform their asymptotic
counterparts, for a given number of exact moments matched.

Moreover, opposite to the usual asymptotic distributions, the near-exact
distributions developed show a marked asymptotic behavior not only for in-
creasing sample sizes but also for increasing values of p (the number of vari-
ables) and for increasing values of q (the number of matrices being tested).
Yet, all the near-exact distributions proposed may be easily used to compute
near-exact quantiles.

We should stress here that also the two new asymptotic distributions pro-
posed show an asymptotic behavior for increasing values of q (the number of
matrices being tested).

Thus, as a final comment, and given the values of the measures ∆1 and ∆2

obtained for the distributions, we would say that we may use the asymptotic
distributions proposed in this paper in practical applications that may need a
not so high degree of precision, although higher than the one that the usual
asymptotic distributions deliver. For applications that may need a high de-
gree of precision in the computation of quantiles we may then use the more
elaborate near-exact distributions, mainly those based on mixtures of GNIG
distributions, which anyway allow for an easy computation of quantiles. The
distribution M3GNIG, given its excellent performance and manageability, may
even be used as a replacement of the exact distribution.
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Appendix A
Tables with values of ∆1

Table A.1 – Values of the measure ∆1 for increasing values of p, with small sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 5.100×10−2 1.057×10−4 1.378×10−5 3.926×10−4 8.756×10−6 8.756×10−6

4 2 6 5.151×10−2 1.134×10−4 9.118×10−6 6.086×10−5 1.413×10−7 1.085×10−9

5 2 7 5.094×10−2 1.128×10−4 1.261×10−5 8.648×10−6 1.461×10−7 8.152×10−9

6 2 8 4.955×10−2 1.057×10−4 1.378×10−5 1.991×10−5 1.904×10−7 1.932×10−9

7 2 9 4.773×10−2 9.760×10−5 1.394×10−5 2.653×10−5 3.726×10−7 6.828×10−9

8 2 10 4.571×10−2 8.984×10−5 1.365×10−5 7.580×10−6 5.747×10−8 5.580×10−10

9 2 11 4.362×10−2 8.276×10−5 1.314×10−5 4.152×10−6 1.751×10−8 6.154×10−11

10 2 12 4.152×10−2 7.642×10−5 1.256×10−5 3.431×10−6 1.898×10−8 1.447×10−10

20 2 22 2.377×10−2 4.022×10−5 ——×— 2.666×10−7 4.324×10−10 1.012×10−12

50 2 52 1.523×10−2 1.382×10−5 ——×— 8.971×10−9 2.741×10−12 1.161×10−15

Table A.2 – Values of the measure ∆1 for increasing values of q, with small sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 5.100×10−2 1.057×10−4 1.378×10−5 3.926×10−4 8.756×10−6 8.756×10−6

3 5 5 2.929×10−2 1.938×10−5 1.007×10−6 1.566×10−4 4.447×10−6 1.830×10−7

3 7 5 2.687×10−2 1.280×10−5 6.685×10−7 8.435×10−5 1.872×10−6 6.352×10−8

3 10 5 2.524×10−2 8.247×10−6 4.191×10−7 4.238×10−5 6.879×10−7 1.771×10−8

10 2 12 4.152×10−2 7.642×10−5 1.256×10−5 3.431×10−6 1.898×10−8 1.447×10−10

10 5 12 2.563×10−2 2.008×10−5 ——×— 7.559×10−8 2.407×10−11 5.573×10−15

10 7 12 2.257×10−2 1.292×10−5 ——×— 2.875×10−8 6.034×10−12 1.288×10−15

10 10 12 1.974×10−2 8.127×10−6 ——×— 9.588×10−9 4.935×10−13 9.298×10−17

Table A.3 – Values of the measure ∆1 for increasing sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 2 5 5.100×10−2 1.057×10−4 1.378×10−5 3.926×10−4 8.756×10−6 8.756×10−6

3 2 20 2.355×10−3 5.564×10−8 ——×— 3.040×10−5 2.849×10−7 3.113×10−9

3 2 50 3.581×10−4 9.763×10−9 ——×— 4.826×10−6 1.498×10−8 1.768×10−11

7 2 9 4.773×10−2 9.760×10−5 1.394×10−5 2.653×10−5 3.726×10−7 6.828×10−9

7 2 20 6.963×10−3 1.980×10−6 3.425×10−8 7.832×10−6 2.157×10−8 4.763×10−11

7 2 50 9.812×10−4 4.175×10−8 5.771×10−11 1.309×10−6 5.310×10−10 3.406×10−14

10 2 12 4.152×10−2 7.642×10−5 1.256×10−5 3.431×10−6 1.898×10−8 1.447×10−10

10 2 50 1.506×10−3 7.965×10−8 ——×— 5.258×10−7 2.051×10−10 7.399×10−14

10 2 100 3.559×10−4 4.684×10−9 ——×— 1.387×10−7 1.326×10−11 1.141×10−15
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Table A.4 – Values of the measure ∆1 for large q and large sample sizes

p q n Box M2G M3G GNIG M2GNIG M3GNIG

3 10 20 1.268×10−3 2.872×10−8 6.017×10−10 1.776×10−6 4.018×10−9 1.588×10−11

3 10 50 1.951×10−4 7.791×10−10 6.342×10−12 2.602×10−7 2.040×10−10 3.269×10−13

7 10 20 4.219×10−3 1.794×10−7 ——×— 1.503×10−7 6.064×10−11 3.831×10−14

7 10 50 6.052×10−4 4.654×10−9 ——×— 2.946×10−8 3.176×10−12 1.222×10−15

10 10 50 9.398×10−4 7.933×10−9 ——×— 3.137×10−9 1.828×10−14 ——×—

10 10 100 2.229×10−4 5.569×10−10 ——×— 9.023×10−10 5.274×10−15 ——×—

Appendix B

Plots of p.d.f.’s and c.d.f.’s of Box’s asymptotic distribution for
W = − log(λ∗)

In this Appendix we show some plots of p.d.f.’s and c.d.f.’s of Box’s asymp-
totic distribution corresponding to the c.f. in (5) for W = − log(λ∗), for a
few combinations of p, q and n for which this distribution is not a proper
distribution. In all the four cases presented the p.d.f. goes below zero and for
p = 5, 7 and 10 the c.d.f. goes above 1, while for p = 50 it has negative values
for smaller values of the argument, as it is shown in Figures B.1 and B.2.
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Figure B.1 – Plots of p.d.f.’s of Box’s asymptotic distribution for

W = − log(λ∗) for q = 2 and n = p + 2.

31



p = 5 p = 7

10 20 30 40 50

0.2

0.4

0.6

0.8

1

10 20 30 40 50

0.2

0.4

0.6

0.8

1

p = 10 p = 50

20 40 60 80

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400

-0.2

0.2

0.4

0.6

0.8

1

Figure B.2 – Plots of c.d.f.’s of Box’s asymptotic distribution for

W = − log(λ∗) for q = 2 and n = p + 2.
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