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Abstract. In this paper we introduce the notion of normally ordered block-group as
a natural extension of the notion of normally ordered inverse semigroup considered
previously by the author. We prove that the class NOS of all normally ordered block-
groups forms a pseudovariety of semigroups and, by using the Munn representation of
a block-group, we deduce the decompositions in Mal’cev products NOS = EI©m POI

and NOS ∩ A = N ©m POI, where A, EI and N denote the pseudovarieties of all
aperiodic semigroups, all semigroups with just one idempotent and all nilpotent
semigroups, respectively, and POI denotes the pseudovariety of semigroups generated
all semigroups of injective order-preserving partial transformations on a finite chain.
These relations are obtained after showing that BG = EI©m Ecom = N©m Ecom, where
BG and Ecom denote the pseudovarieties of all block-groups and all semigroups with
commuting idempotents, respectively.

2000 Mathematics subject classification: 20M07, 20M18, 20M20.

Introduction and preliminaries

Let X be a set. We denote by PT (X) the monoid (under composition) of all
partial transformations on X, by T (X) the submonoid of PT (X) of all full
transformations on X and by I(X) the symmetric inverse semigroup on X, i.e.
the inverse submonoid of PT (X) of all injective partial transformations on X.
If X is a finite set with n elements, we denote PT (X), T (X) and I(X) simply
by PTn, Tn and In, respectively. Now, suppose that X is a finite chain with n
element, say X = {1 < 2 < · · · < n}. We say that a transformation s in PTn

is order-preserving if x ≤ y implies xs ≤ ys, for all x, y ∈ Dom(s), and denote
by POn the submonoid of PTn of all partial order-preserving transformations.
As usual, On denotes the monoid POn ∩ Tn of all full transformations of Xn

that preserve the order and the injective counterpart of On, i.e. the inverse
monoid POn ∩ In, is denoted by POIn.

A pseudovariety of [inverse] semigroups is a class of finite [inverse] semi-
groups closed under homomorphic images of [inverse] subsemigroups and fini-
tary direct products.

1The author gratefully acknowledges support of FCT and FEDER, within the project
POCTI-ISFL-1-143 of CAUL.
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In the 1987 “Szeged International Semigroup Colloquium” J.-E. Pin asked
for an effective description of the pseudovariety (i.e. an algorithm to decide
whether or not a finite semigroup belongs to the pseudovariety) of semigroups
O generated by the semigroups On, with n ∈ N. This problem only had es-
sential progresses after 1995. First, Higgins [10] proved that O is self-dual and
does not contain all R-trivial semigroups (and so O is properly contained in A,
the pseudovariety of all finite aperiodic semigroups, i.e. H-trivial semigroups),
although every finite band belongs to O. Next, Vernitskii and Volkov [17] gen-
eralized Higgins’s result by showing that every finite semigroup whose idempo-
tents form an ideal is in O and in [5] the author proved that the pseudovariety of
semigroups POI generated by the semigroups POIn, with n ∈ N, is a (proper)
subpseudovariety of O. On the other hand, Almeida and Volkov [2] showed
that the interval [O, A] of the lattice of all pseudovarieties of semigroups has
the cardinality of the continuum and Repnitskĭı and Volkov [15] proved that
O is not finitely based. In fact, moreover, Repnitskĭı and Volkov proved in [15]
that any pseudovariety of semigroups V such that POI ⊆ V ⊆ O∨R∨L, where
R and L are the pseudovarieties of semigroups of all R-trivial semigroups and of
all L-trivial semigroups, respectively, is not finitely based. Another contribu-
tion to the resolution of Pin’s problem was given by the author [7] who showed
that O contains all semidirect products of a chain (considered as a semilattice)
by a semigroup of injective order-preserving partial transformations on a finite
chain. Nevertheless, Pin’s question is still unanswered.

The inverse counterpart of Pin’s problem can be formulated by asking for
an effective description of the pseudovariety of inverse semigroups PCS gener-
ated by {POIn | n ∈ N}. In [3] Cowan and Reilly proved that PCS is properly
contained in A and also that the interval [PCS, A] of the lattice of all pseu-
dovarieties of inverse semigroups has the cardinality of the continuum. From
Cowan and Reilly’s results it can be deduced that a finite inverse semigroup
with n elements belongs to PCS if and only if it can be embedded into the
semigroup POIn. This is in fact an effective description of PCS. On the other
hand, in [6] the author introduced the class NO of all normally ordered inverse
semigroups. This notion is deeply related with the Munn representation of an
inverse semigroup S, an idempotent-separating homomorphism that may be
defined by

φ : S → I(E)
s 7→ φs : Ess−1 → Es−1s

e 7→ s−1es ,

with E the semilattice of all idempotents of S. Notice that, the kernel of φ
is µ, the maximum idempotent-separating congruence on S. Therefore, φ is
an injective homomorphism if and only if S is a fundamental semigroup, (see
[11] or [12], for more details). Observe that by a fundamental semigroup we
mean any semigroup without non-trivial idempotent-separating congruences.
Now, a finite inverse semigroup S is said to be normally ordered if there exists
a linear order v in the semilattice E of the idempotents of S preserved by all
partial injective mappings φs (i.e. for e, f ∈ Ess−1, e v f implies eδs v fδs),
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s ∈ S. It was proved in [6] that NO is a pseudovariety of inverse semigroups
and also that the class of all fundamental normally ordered inverse semigroups
consists of all aperiodic normally ordered inverse semigroups. Moreover, the
author showed that PCS = NO ∩ A, giving this way a Cowan and Reilly
alternative (effective) description of PCS. In fact, this also led the author [6]
to the following refinement of Cowan and Reilly’s description of PCS: a finite
inverse semigroup with n idempotents belongs to PCS if and only if it can be
embedded into POIn. Another refinement (in fact, the best possible) will be
give in this paper. Notice that, in [6] it was also proved that NO = PCS ∨ G
(the join of PCS and G, the pseudovariety of all groups).

The work presented in this paper was strongly motivated by the author’s
attempt to obtain an effective description for the pseudovariety of semigroups
POI, generalizing the ideas of [6]. Notice that POI is a subpseudovariety of
Ecom, the pseudovariety of all idempotent commuting semigroups, whence in
order to accomplish this aim, a Munn type representation for, at least, idempo-
tent commuting semigroups is required. Such representation was constructed
by the author [8] for a wider class of semigroups: BG, the class of all block-
groups. Recall that a block-group is a finite semigroup whose elements have
at most one inverse. Clearly, a finite semigroup is a block-group if and only if
each L-class and each R-class contains at most one idempotent. Observe that
BG is a pseudovariety of semigroups, which plays a main role in the following
celebrated result: ♦G = PG = J ∗ G = J©m G = BG = EJ, where J denotes
the pseudovariety of all J-trivial semigroups, PG and ♦G denote the pseudova-
rieties generated by all power monoids of groups and by all Schützenberger
products of groups, respectively, and, finally, EJ denotes the pseudovariety of
all semigroups whose idempotents generate a J-trivial semigroup. See [14] for
precise definitions and for a complete story of these equalities.

Next, we recall our extension of the Munn representation for block-groups.
Let S be a semigroup. We denote by E(S) the set of all idempotents of S and
by Reg(S) the set of all regular elements of S. Recall the definition of the quasi-
orders ≤R and ≤L associated to the Green relations R and L, respectively: for
all s, t ∈ S, s ≤R t if and only if sS1 ⊆ tS1 and s ≤L t if and only if S1s ⊆
S1t, where S1 denotes the monoid obtained from S through the adjoining of
an identity if S has none and denotes S otherwise. To each element s ∈ S,
we associate the following two subsets of E(S): R(s) = {e ∈ E(S) | e ≤R s}
and L(s) = {e ∈ E(S) | e ≤L s}. Clearly, if e ∈ R(s) then es ∈ Reg(S) and,
dually, if e ∈ L(s) then se ∈ Reg(S). Now, let S be a block-group and let s−1

denote the unique inverse of a regular element s ∈ S. Then, given s ∈ S, the
maps δs : R(s) → L(s), e 7→ (es)−1(es), and δ̄s : L(s) → R(s), e 7→ (se)(se)−1,
are mutually inverse bijections that preserve D-classes. Moreover, being E =
E(S), the mapping

δ : S → I(E)
s 7→ δs : R(s) → L(s)

e 7→ (es)−1(es)
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is an idempotent-separating homomorphism, which we call the Munn represen-
tation of S. Notice that δ coincides with the (usual) Munn representation of an
inverse semigroup S. Furthermore, as for inverse semigroups, the kernel of the
Munn representation of a block-group is the maximum idempotent-separating
congruence of S (see [8] for details). Now, we can extend, naturally, the con-
cept of “normally ordered” from inverse semigroups to block-groups. We say
that a block-group is normally ordered if there exists a normal order in S, i.e.
a linear order v in E(S) preserved by all partial injective mappings δs, s ∈ S,
of the Munn representation of S. We denote by NOS the class of all normally
ordered block-groups.

The remaining of this paper is organized as follows. In Section 1 we study
the class NOS; in particular, we show that NOS is a (decidable) pseudovariety
of semigroups. Also in this section we present a refinement of the descriptions
of PCS mentioned above. In the next and last section, by using the Munn rep-
resentation of a block-group, we show the following decompositions in Mal’cev
products of the pseudovariety of block-groups: BG = EI©m Ecom = N©m Ecom,
where EI and N denote the pseudovarieties of all semigroups with just one idem-
potent and all nilpotent semigroups, respectively. Furthermore, in Section 2,
we deduce also the equalities NOS = EI©m POI and NOS ∩ A = N©m POI.

We assume some knowledge on semigroups, namely on Green’s relations,
regular elements and inverse semigroups. Possible references are [11, 12]. For
general background on pseudovarieties, pseudoidentities and other stuff on
finite semigroups, we refer the reader to Almeida’s book [1]. All semigroups
considered in this paper are finite.

1 Normally ordered block-groups

In this section we study the class NOS of all normally ordered block-groups. In
particular, we show that NOS is a pseudovariety of semigroups. Notice that,
an inverse semigroup belongs to the class NOS if and only if it belongs to the
pseudovariety of inverse semigroups NO.

We begin by recalling the following lemma, which proof can be found in
[16].

Lemma 1.1 Let ϕ : S −→ T be an onto homomorphism of semigroups and let
J ′ be a J-class of T . Then J ′ϕ−1 = J1 ∪ · · · ∪ Jk, for some J-classes J1, . . . , Jk

of S, and if Ji (1 ≤ i ≤ k) is ≤J-minimal among J1, . . . , Jk, then Jiϕ = J ′.
Furthermore, if J ′ is regular, then the index i is uniquely determined (i.e. Ji

is ≤J-minimum among J1, . . . , Jk), and Ji is itself regular.

Next, recall that, given two elements a and b of an arbitrary semigroup S,
it is well known that ab ∈ Ra∩Lb if and only if La∩Rb contains an idempotent.
Moreover, if S is finite and a J b, then ab ∈ Ra ∩ Lb if and only if ab J a (see
[13]).
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The next two lemmas help us to show that NOS is closed under homomor-
phic images.

Lemma 1.2 Let S and T be two block-groups and let ϕ : S −→ T be an onto
homomorphism. Let J ′ be a regular J-class of T and J the J-class of S ≤J-
minimum among the J-classes Q of S such that Qϕ ⊆ J ′. Then ϕ induces a
bijection from J ∩ E(S) onto J ′ ∩ E(T ).

Proof. First, notice that J is regular and Jϕ = J ′. Let e′ ∈ J ′ ∩ E(T ) and
let x ∈ J be such that xϕ = e′. Take e = xω. Then eϕ = e′ and Jeϕ ⊆ J ′.
By the minimality of J , we have J ≤J Je. On the other hand Je ≤J Jx = J
and so Je = J . Hence e ∈ J ∩ E(S). Thus J ′ ∩ E(T ) ⊆ (J ∩ E(S))ϕ and,
since the other inclusion is clear, it follows that (J ∩ E(S))ϕ = J ′ ∩ E(T ). In
order to prove that ϕ is injective in J ∩E(S), let e, f ∈ J ∩E(S) be such that
eϕ = fϕ = e′. Then (ef)ϕ = e′, and so, again by the minimality of J , we
have J ≤J Jef ≤J Je = J . Hence ef ∈ J . As e, f, ef ∈ J , then ef ∈ Re ∩ Lf ,
whence Le ∩ Rf contains an idempotent g. Now, since each R-class and each

L-class of S contains at most one idempotent, we conclude that e = g = f , as
required.

Let S and T be two block-groups and let ϕ : S −→ T be an onto homo-
morphism. Denote by Eϕ(S) the subset of E(S) of all idempotents e such that
the J-class Je is ≤J-minimum among the J-classes Q of S such that Qϕ ⊆ Jeϕ.
Therefore, by the previous lemma, the restriction ϕ|Eϕ(S) : Eϕ(S) −→ E(T ) is
a bijection from Eϕ(S) onto E(T ). Furthermore, given s ∈ S and e ∈ R(s), as
e J (es)−1(es), we have e ∈ Eϕ(S) if and only if (es)−1(es) ∈ Eϕ(S).

Next, observe that, since any homomorphism maps an inverse of a regular
element into an inverse of its image, in particular given a homomorphism
ϕ : S −→ T between block-groups, we have (s−1)ϕ = (sϕ)−1, for any regular
element s ∈ S.

Lemma 1.3 Let S and T be two block-groups and let ϕ : S −→ T be an onto
homomorphism. Let s ∈ S, t = sϕ, a ∈ R(t) and e ∈ Eϕ(S) ∩ aϕ−1. Then
e ∈ R(s).

Proof. Since a ∈ R(t) then at is regular and a = t(at)−1 = (at)(at)−1. More-
over, at ∈ Ja and (es)ϕ = at. Then, by the minimality of Je, we have Je ≤J Jes,
whence Je = Jes. In particular, es is regular and so (es)−1ϕ = ((es)ϕ)−1 =
(at)−1. Then, we have eϕ = a = t(at)−1 = sϕ(es)−1ϕ = (s(es)−1)ϕ and so
eϕ = (s(es)−1)ωϕ. Thus, again by the minimality of Je, it follows that Je ≤J

J(s(es)−1)ω and, on the other hand, J(s(es)−1)ω ≤J Js(es)−1 = Js(es)−1(es)(es)−1 ≤J

Je. Then Je = J(s(es)−1)ω and thence e = (s(es)−1)ω. Therefore e ∈ R(s), as
required.

Now, we can prove:
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Proposition 1.4 Any homomorphic image of a normally ordered block-group
is a normally ordered block-group.

Proof. Let T be a semigroup, let S be a normally ordered block-group and
let ϕ : S −→ T be an onto homomorphism. Denote by v the normal order of
S. As ϕ is a bijection from Eϕ(S) onto E(T ), we may define a linear order v
in E(T ) by eϕ v fϕ if and only if e v f , for all e, f ∈ Eϕ(S).

Now, let t ∈ T and consider a, b ∈ R(t) such that a v b. We aim to show
that (at)−1(at) v (bt)−1(bt). Take e, f ∈ Eϕ(S) such that a = eϕ and b = fϕ.
Then e v f , by definition. Let s ∈ tϕ−1. By Lemma 1.3, it follows that
e, f ∈ R(s) and, as v is a normal order of S, we have (es)−1(es) v (fs)−1(fs).
Since also (es)−1(es), (fs)−1(fs) ∈ Eϕ(S), then (at)−1(at) = (es)−1ϕ(es)ϕ =
((es)−1(es))ϕ v ((fs)−1(fs))ϕ = (fs)−1ϕ(fs)ϕ = (bt)−1(bt), as required.

Let S be a normally ordered block-group and let T be a subsemigroup of
S. Then, it is clear that the order induced on E(T ) by the normal order of S
is a normal order in T . Hence T is also a normally ordered block-group.

On the other hand, consider n normally ordered block-groups S1, S2, . . . , Sn.
For i ∈ {1, 2, . . . n}, denote by vi the normal order of Si. Take S = S1 × S2 ×
· · ·×Sn. Since E(S) = E(S1)×E(S2)×· · ·×E(Sn), we may consider in E(S)
the lexicographic order vlex induced by the orders v1,v2, . . . ,vn, i.e. given
e = (e1, e2, . . . , en), f = (f1, f2, . . . , fn) ∈ E(S), we have e vlex f if and only if
e = f or, for some p ∈ {1, 2, . . . n}, ei = fi, with 1 ≤ i ≤ p−1, and ep <p fp. It
is routine to show that vlex is a normal order in S, whence the direct product
of S1, S2, . . . , Sn is also a normally ordered block-group.

The previous two observations together with Proposition 1.4 allow us to
conclude:

Theorem 1.5 The class NOS is a pseudovariety of semigroups.

Observe that, as POIn ∈ NO [6], for all n ∈ N, we have:

Corollary 1.6 POI ⊆ NOS ∩ Ecom ∩ A.

As for inverse semigroups [6], we have:

Proposition 1.7 Let S and T be two block-groups and let ϕ : S −→ T be
an onto idempotent-separating homomorphism. Then, S ∈ NOS if and only
T ∈ NOS.

Proof. By Proposition 1.4, it remains to prove that T ∈ NOS implies S ∈
NOS. Then, suppose that T ∈ NOS and let v be the normal order of T . Define
a relation v in E(S) by e v f if and only if eϕ v fϕ, for all e, f ∈ E(S).
As ϕ separates idempotents, then ϕ induces a bijection from E(S) onto E(T )
and thence v is a linear order of E(S). Moreover, v is a normal order in S.
Indeed, take s ∈ S and e, f ∈ R(s) such that e v f . Then eϕ, fϕ ∈ R(sϕ)
and, by definition, eϕ v fϕ. Hence, (eϕsϕ)−1(eϕsϕ) v (fϕsϕ)−1(fϕsϕ),
i.e., ((es)−1(es))ϕ v ((fs)−1(fs))ϕ, since es and fs are regular elements of S.
Thus, we have (es)−1(es) v (fs)−1(fs), as required.
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As the kernel of the Munn representation of a block-group S is the (maxi-
mum) idempotent-separating congruence µ of S, we have, by Proposition 1.7,
S ∈ NOS if and only if S/µ ∈ NOS. On the other hand, if S ∈ NOS, then S/µ
is, up to an isomorphism, a subsemigroup of I(E(S)) whose elements preserve
the normal order of S (a linear order in E(S)). Therefore, we have:

Corollary 1.8 Let S be a block-group and let µ be the maximum idempotent-
separating congruence of S. Then, S ∈ NOS if and only if S/µ ∈ POI.

And so, we have:

Corollary 1.9 Every fundamental normally ordered block-group belongs to
POI.

Notice that any aperiodic inverse semigroup is fundamental. Moreover, a
normally ordered inverse semigroup is aperiodic if and only if it is fundamen-
tal [6]. Unfortunately, in general, an aperiodic normally ordered block-group
must not be fundamental; for instance, this is the case of a non-trivial zero
semigroup. Nevertheless, it seems reasonable to make the following guess:

Conjecture 1.10 POI = NOS ∩ Ecom ∩ A.

Observe that, if S ∈ NOS ∩ Ecom ∩ A, then clearly Reg(S) ∈ POI.

We finish this section by presenting a refinement of the author’s description
[6] (and of Cowan and Reilly’s description [3]) of the pseudovariety of inverse
semigroups PCS.

First, recall the following refinement of the Munn representation of a block-
group S presented by the author in [8]: the mapping

ϑ : S → I(Irr(E(S)))
s 7→ ϑs : Irr(R(s)) → Irr(L(s))

e 7→ (es)−1(es) ,

is an idempotent-separating homomorphism, where Irr(X) denotes the set of
all join irreducible idempotents belonging to X, for any subset X of E(S).

Theorem 1.11 A finite inverse semigroup S with n join irreducible idem-
potents belongs to PCS if and only if S is isomorphic to a subsemigroup of
POIn.

Proof. If S is isomorphic to a subsemigroup of POIn, then it is clear that
S ∈ PCS. Conversely, if S ∈ PCS, then the author showed in [6] that there
exists a linear order v in E(S) preserved by the mappings φs (= δs), s ∈ S,
of the Munn representation of S. Thus, for all s ∈ S, the mapping ϑs is an
injective order-preserving partial transformation on the subchain Irr(E(S)) of
(E(S),v). Since Irr(E(S)) has n elements, we may consider POIn built over
this chain and look at ϑs as an element of POIn, for all s ∈ S. On the other
hand, as S is aperiodic, then S is fundamental, whence the homomorphism
ϑ : S → POIn, s 7→ ϑs, is injective, and the result follows.
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Observe that Easdown showed in [4] that the least non-negative integer n
such that a fundamental inverse semigroup S embeds in PTn is the number
of join irreducible idempotents of S, whence Theorem 1.11 gives us the best
possible refinement of the prior descriptions of PCS.

2 Mal’cev decompositions

Given a pseudovariety of semigroups V, a semigroup S is called a V-extension
of a semigroup T if there exists an onto homomorphism ϕ : S −→ T such
that, for every idempotent e of T , the subsemigroup eϕ−1 of S belongs to V.
Let W be another pseudovariety of semigroups. The Mal’cev product V ©m W
is the pseudovariety of semigroups generated by all V-extensions of elements
of W. One can define alternatively the Mal’cev product by using “relational
morphisms”. Recall that a relational morphism τ : S−→◦ T from a semigroup
S into a semigroup T is a function τ from S into the power set P(T ) of T such
that: (1) aτ 6= ∅, for a ∈ S; and aτbτ ⊆ (ab)τ , for a, b ∈ S. Observe that, for
each idempotent e of T , the set eτ−1 is either empty or a subsemigroup of S.
Then, a semigroup S belongs to V©m W if and only if there exists a relational
morphism τ from S into a member T of W such that, for each idempotent e
of T , if eτ−1 is nonempty then eτ−1 ∈ V (see [13, 9]).

Now, recall that the pseudovarieties BG, Ecom, EI and N can be defined by
just one pseudoidentity: Ecom = Jxωyω = yωxωK, BG = J(xωyω)ω = (yωxω)ωK,
EI = Jxω = yωK and N = Jxω = 0K. Notice also that EI is equal to the join
G ∨ N. See [1].

Let S ∈ BG and E = E(S). Since the Munn representation δ : S →
I(E) of S is an idempotent-separating homomorphism and I(E) ∈ Ecom,
we immediately have S ∈ EI ©m Ecom. Hence BG ⊆ EI ©m Ecom. Next, by
recalling that BG = J ©m G, we can consider a relational morphism ξ from
S into some group G such that 1ξ−1 ∈ J. Define a function τ from S into
P(I(E) × G) by sτ = {(sδ, g) ∈ I(E) × G | g ∈ sξ}, for all s ∈ S. It is
easy to show that τ is a relational morphism and, given an idempotent e of
Im δ, (e, 1)τ−1 = eδ−1 ∩ 1ξ−1 ∈ EI ∩ J. Since I(E) × G is an idempotent
commuting semigroup and EI∩ J = N (in fact, we also have EI∩ A = N: recall
that J = J(xy)ω = (yx)ω, xω+1 = xωK and A = Jxω+1 = xωK [1]), we deduce that
S ∈ N©m Ecom and so we also have BG ⊆ N©m Ecom.

On the other hand, let S be an EI-extension of an idempotent commuting
semigroup T and let ϕ : S −→ T be an onto homomorphism such that, for ev-
ery idempotent e of T , eϕ−1 ∈ EI (i.e. S is an arbitrary generator of EI©m Ecom).
Take x, y ∈ S. Then xωϕ, yωϕ ∈ E(T ), whence e = (xωyω)ϕ = xωϕyωϕ =
yωϕxωϕ = (yωxω)ϕ is an idempotent of T . Therefore (xωyω)ω, (yωxω)ω ∈ eϕ−1

and, since eϕ−1 ∈ EI, we have (xωyω)ω = (yωxω)ω. Thus S ∈ BG and so
EI©m Ecom ⊆ BG.

As N ⊆ EI, then N©m Ecom ⊆ EI©m Ecom and so we have proved:

Theorem 2.1 BG = EI©m Ecom = N©m Ecom.
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This result allows us to conclude that block-groups is the largest class of
finite semigroups for which one can consider a Munn type representation, i.e.
an idempotent-separating representation by partial injective transformations.

Now, let S be a normally ordered block-group and let δ : S −→ I(E(S))
be the Munn representation of S. As already observed, the semigroup Sδ is a
subsemigroup of I(E(S)) whose elements preserve the normal order of S, which
is a linear order in E(S), and so Sδ ∈ POI. Since δ separates idempotents,
it follows that S ∈ EI ©m POI. Hence, NOS ⊆ EI ©m POI. On the other hand,
let S be an EI-extension of a semigroup T ∈ POI and let ϕ : S −→ T be
an onto homomorphism such that, for every idempotent e of T , eϕ−1 ∈ EI
(i.e. S is an arbitrary generator of EI©m POI). Then, ϕ separates idempotents,
T ∈ POI ⊆ NOS and S ∈ EI©m POI ⊆ EI©m Ecom = BG, whence S ∈ NOS, by
Proposition 1.7. Therefore, EI©m POI ⊆ NOS and so we have proved:

Theorem 2.2 NOS = EI©m POI.

Next, observe that any aperiodic extension of an aperiodic semigroup is
an aperiodic semigroup. In fact, let T be an aperiodic semigroup and let
ϕ : S −→ T be an onto homomorphism such that, for every idempotent e
of T , eϕ−1 ∈ A. Take x ∈ S and let e = (xω)ϕ. Then, as T ∈ A, we
have e = (xω)ϕ = (xϕ)ω = (xϕ)ω+1 = (xω+1)ϕ, whence xω+1 ∈ eϕ−1. Then
(xω+1)ω+1 = (xω+1)ω, since eϕ−1 ∈ A, and so xω = (xω+1)ω = (xω+1)ω+1 =
xω+1, by definition. Thus S ∈ A, as required.

Now, as N = EI ∩ A, we have N ©m POI ⊆ A ∩ (EI ©m POI) = A ∩ NOS, by
the above observation and Theorem 2.2. On the other hand, let S ∈ NOS∩A.
Considering again the Munn representation δ : S −→ I(E(S)) of S, we have,
as above, Sδ ∈ POI and eϕ−1 ∈ EI, for all e ∈ E(T ). Since S is aperiodic, we
have also eϕ−1 ∈ A, for all e ∈ E(T ), and so S ∈ (EI ∩ A)©m POI = N©m POI.
Thus, we have proved:

Theorem 2.3 NOS ∩ A = N©m POI.
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