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SYNOPTIC ABSTRACT 

 

We develop the exact distribution of the Wilks Lambda statistic to test the independence of two sets of 

variables, both with an odd number of variables, under the form of an infinite mixture of Generalized 

Integer Gamma distributions. Based on truncations of the exact characteristic function, for the product of 

independent Beta random variables, we obtain near-exact distributions for such product and then by direct 

application of these results, and once again based on truncations, we develop near-exact distributions for 

the Wilks Lambda statistic. These near-exact distributions are finite mixtures of Generalized Integer 

Gamma and Generalized Near-Integer Gamma distributions. By construction, the two first moments of 

these approximations are equal to the exact moments. These distributions are manageable and relatively 

easy to implement computationally, allowing for the computation of near-exact quantiles which may 

indeed be regarded as virtually exact, given the good convergence properties of the series involved, 

mainly when the difference between the sample size and the overall number of variables involved is 

rather small. We assess the proximity between these near-exact distributions and the exact distribution by 

using two measures based on the Berry-Esseen bounds. 

 

 

Key words and Phrases: Beta and Gamma random variables, sum of log Beta and sum of Gamma random 

variables, mixtures, Wilks Lambda statistic, proximity measures. 
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1. INTRODUCTION 
 

The purpose of this paper is to study the distribution of the Wilks Λ statistic, (Wilks, 1932, 1935) used in 

the test of independence of two sets of random variables (r.v.’s), both with an odd number of variables, in 

cases where the exact distributions are not known, or being known are too complicated to handle for 

practical use.  

 

Let X  be a random vector with dimension p, where the r.v.’s have a joint Normal p-multivariate 

distribution, ( , )
p

N µ Σ . Let us consider X  split in two subvectores, where the k-th subvector has 

( 1,2)
k

p k =  variables and 
1 2

p p p= +  is the overall number of variables. Then, each subvector 

( 1,2)kX k =  will have a joint Normal 
k

p - multivariate distribution, ( , )
kp k kkN µ Σ . Symbolically, 

 ( )1 2[ , ] ~ ,pX X X N µ′ ′ ′= Σ  (1) 

where 

 
11 12

1 2
21 22

[ , ] ,                     µ µ µ
Σ Σ ′ ′ ′= Σ =  Σ Σ 

. 

The Wilks Λ statistic is then defined as 

11 22

| |

| || |

V

V V
Λ = , 

where  .  stands for the determinant and V is either the Maximum Likelihood Estimator (MLE) of ∑ or 

the sample variance-covariance matrix of X , and Vkk is either the MLE of Σkk or the sample 

variance-covariance matrix of ( 1,2)kX k = . For a sample of size n, the Wilks Λ statistic is the (2/n)th 

power of the likelihood ratio test statistic to test the null hypothesis of independence of the two sets of 

variables, that is 

 
0 11 22

: diag( , )H Σ = Σ Σ . (2) 

According to Theorem 9.3.3 in Anderson (1984), under the null hypothesis (2), the Wilks Λ statistic has 

the same distribution as 
1

1

p

jj
X

=∏ ; where, for a sample of size n + 1, and 
1 2

n p p≥ + , Xj 1
( 1,..., )j p=  are 

1
p  independent Beta r.v.’s with, 

 2 2
1

1
, ,    1,...,

2 2
j

n p j p
X Beta j p

+ − − 
= 

 
∼ . (3) 

Then, for a sample of size n + 1, we may write the h-th moment of the Wilks Λ statistic, under (2), as 

 
1

2

1 2

11

22
( )

1 1

2 2

p

h

j

n p jn j
h

E
n j n p j

h=

+ − −+ −   
Γ +Γ    

   Λ =
+ − + − −   

Γ + Γ   
   

∏  (4) 

and, since the Gamma functions in (4) are still valid for any strictly complex h, for a sample of size n + 1, 

the characteristic function (c.f.) of the r.v. lnW = − Λ  is given by  

 
1

2

i i ln i

1 2

11
i

22
( ) (e ) (e ) ( )

1 1
i

2 2

p

tW t t

W

j

n p jn j
t

t E E E
n j n p j

t

ϕ − Λ −

=

+ − −+ −   
Γ −Γ   

   = = = Λ =
+ − + − −   

Γ − Γ   
   

∏ , (5) 

where 1/ 2i ( 1)= −  and t ∈�  (where �  is the set of reals). 

 

We start by developing the exact distribution for the product of an odd number of independent Beta r.v.’s 

with distributions given by (3). By direct application of this result, and taking the c.f. in (5) as a basis, we 

then develop the exact distribution for the Wilks Λ statistic (Grilo, 2005). These distributions are 

manageable and expressed under the form of an infinite mixture of Generalized Integer Gamma (GIG) 

distributions, where the associate series have better convergence properties than the mixtures of GIG 

distributions obtained by Coelho et al. (2006). We also obtain a family of near-exact distributions, based 

on truncations of the exact c.f., as a finite mixture of GIG distributions and Generalized Near-Integer 
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Gamma (GNIG) distributions. These near-exact distributions are built in the following way: one of the 

factors of the original c.f., that corresponds to the c.f. of a log Beta r.v. (a r.v. which Exponential has a 

Beta distribution), is expressed as an infinite mixture of Exponential distributions; then we truncate the 

associated series and we approximate the rest by the c.f. of a Gamma distribution that matches the two 

first moments; by joining this changed factor with the remaining unchanged part of the original c.f., we 

get what we call a near-exact c.f. that corresponds to a near-exact distribution expressed under the form of 

a finite mixture (Grilo, 2005). 

 

These approximations lay closer to the exact distributions than the near-exact distributions based on 

factorizations of the exact c.f. (Coelho, 2003, 2004; Grilo, 2005; Grilo and Coelho, 2007; Alberto and 

Coelho, 2007) and correspond to a probability density function (p.d.f.) and a cumulative distribution 

function (c.d.f.) which are practical to use, allowing for an easy determination of quantiles. We analyze 

the behavior of these near-exact distributions, based on truncations of the exact c.f., by using two 

measures of proximity and we also compare them with the recent near-exact distributions, based on 

factorizations of the exact c.f., obtained by Grilo and Coelho (2007) for the product of an odd number of 

particular independent Beta r.v.’s and Alberto and Coelho (2007) for the Wilks Λ statistic. 

 

 

2. SOME USEFUL DISTRIBUTIONS 
 

Since our near-exact distributions are finite mixtures of GIG and GNIG distributions we introduce them 

now and also the useful log Beta distribution. 

 

Let 
1
,...,

g
X X be g independent Gamma r.v.’s with shape parameters 

1
,...,

g
r r ∈�  (where �  is the set of 

positive integers) and all different rate parameters 
1
,...,

g
λ λ +∈� , then 

1

g

i

i

Z X
=

=∑  is a r.v. with a GIG 

distribution of depth g (Coelho, 1998, 2003), denoted by 

 

1 1
( ,... ; ,..., )

g g
Z GIG r r λ λ∼ . 

The p.d.f. of Z is given by 

 
1

( ) ( )e ,          ( 0)i

g
z

Z i

i

f z K P z z
λ−

=

= >∑  (6) 

where 

 
1

i

g
r

i

i

K λ
=

= ∏  (7) 

and ( )
i

P z  is a polynomial of degree 1
i

r −  in z, which may be written as 

 1

,

1

( )
ir

k

i i k

k

P z c z −

=

=∑  (8) 

where 

 ,

1

1
( )

( 1)!

j

i

g
r

i r j i

ji
j i

c
r

λ λ
−

=
≠

= −
−

∏  (9) 

and, for 1,..., 1
i

k r= − , 

 , , ( )

1

( 1)!1
( 1, )

( 1)!i i

k
i

i r k i r k j

j i

r k j
c R j i c

k r k
− − −

=

− + −
= −

− −
∑ , (10) 

where 

 
1

1

( , ) ( ) ,   ( 0,..., 1)
g

n

i j i i

i
i j

R n j r n rλ λ − −

=
≠

= − = −∑ . (11) 

The c.d.f. of Z is given by 

 *

1

( ) ( ),           ( 0)
g

Z i

i

F z K P z z
=

= >∑  (12) 

with K given by (7) and where 
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1

*

,

1 0

( 1)!
( ) 1 e

!

i

i

j jr k
zi

i i k k
k ji

zk
P z c

j

λλ

λ

−
−

= =

  −
= −  

   
∑ ∑  (13) 

with 
,

  ( 1,..., ; 1,..., )
i k i

c i g k r= =  given by (9) through (11). 

 

If the r.v. Z has a distribution that is a mixture, with k components, each of which is a GIG distribution, 

the j-th component with weight 
j

π  and depth gj , we denote this fact by 

1 11 11 1 11 1 1 1( ; ,..., ; ,..., | ... | ; ,..., ; ,..., )
k kg g k k g k k g kZ MkGIG r r r rπ λ λ π λ λ∼ . 

 

Let us consider, now, 
1 1

( ,... ; ,..., )
g g

Z GIG r r λ λ∼  and ( , )X Gamma r λ∼  two independent r.v.’s with  

\r
+∈� �  and ,  { 1,..., }

j j
j gλ λ≠ ∀ ∈ = . Then the r.v. W Z X= +  has a GNIG distribution with depth 

g + 1 (Coelho, 2004). Symbolically, 

 
1 1

( ,... , ; ,..., , )
g g

W GNIG r r r λ λ λ∼ . (14) 

The p.d.f. of W is given by 

 1

, 1 1

1 1

( )
( ) e ( , , ( ) ) ,        ( 0)

( )

j

j

rg
wr k r

W j k j

j k

k
f w K c w F r k r w w

k r

λ
λ λ λ

− + −

= =

 Γ
= + − − > 

Γ + 
∑ ∑  (15) 

and the c.d.f. by 

 

1 1

1
*

, 1 1

1 1 0

( ) ( , 1, )
( 1)

            e ( , 1 , ( ) ),         ( 0)
( 1 )

j

j

r
r

W

r i irg k
w jr

j k j

j k i

w
F w F r r w

r

w
K c F r r i w w

r i

λ

λ λ

λ
λ λ λ

+−
−

= = =

= + −
Γ +

− + + − − >
Γ + +

∑ ∑ ∑
 (16) 

where 

1

j

g
r

j

j

K λ
=

= ∏    and   *
( )

jk

jk k

j

c
c k

λ
= Γ  

with cj,k given by (9) through (11). In the above expressions 

1 1

0

1

1 1

0

( ) ( )
( , , )

( ) ( ) !

( )
                  = e (1 )      ( )

( ) ( )

j

j

zt a b a

b a j z
F a b z

a b j j

b
t t dt a b

b a a

∞

=

− − −

Γ Γ +
=

Γ Γ +

Γ
− ≠

Γ − Γ

∑

∫

 

is the Kummer confluent hypergeometric function (Abramowitz and Stegun, 1974) that has good 

convergence properties and is nowadays handled by a number of software packages, like Mathematica. 

 

The c.f. of W is given by 

 
1

( ) ( i ) ( i )j j

g
r rr r

W j j

j

t t tϕ λ λ λ λ
−−

=

= − −∏ , (17) 

where \r
+∈� � , λ +∈� , 

j
r ∈�  and ,  {1,..., }

j
j gλ λ≠ ∀ ∈ . If r ∈�  then the GNIG distribution of 

depth 1g +  reduces to a GIG distribution of depth 1g + . This way we may look at the GNIG distribution 

as a generalization of the GIG distribution. 

 

Let X be a r.v. with a Beta distribution, with parameters 0 and 0α β> > , what we denote by 

( , )X Beta α β∼ . 

The h-th moment of X is 

 
( , ) ( ) ( )

( )           ( )
( , ) ( ) ( )

h B h h
E X h

B h

α β α β α
α

α β α α β

+ Γ + Γ +
= = > −

Γ Γ + +
. (18) 

Then lnY X= −  is a r.v. with a log Beta distribution with parameters  and α β  (Johnson et al., 1995), 

denoted by 
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 log ( , )Y Beta α β∼ . (19) 

The p.d.f. of Y is 

 
11

( ) e (1 e ) ,           ( 0)
( , )

y y

Yf y y
B

α β

α β
− − −= − > . (20) 

Since the Gamma functions in (18) are still defined for any strictly complex h, the c.f. of Y is given by 

i i ln i ( ) ( i )
( ) (e ) (e ) ( )

( ) ( i )

tY t X t

Y

t
t E E E X

t

α β α
ϕ

α α β
− − Γ + Γ −

= = = =
Γ Γ + −

 (21) 

where 1/ 2i ( 1)= −  and t ∈� . 

 

We may also write the c.f. of Y in (19) as (Coelho et al., 2006), 

 
1

0

1 1 (1 )
( ) ( )( i )

( , ) (1 ) ! ( )
Y

j

j
t j j t

B j j

β
ϕ α α

α β β α

∞
−

=

Γ − +
= + + −

Γ − +
∑ , (22) 

which is the c.f. of an infinite mixture of (1, ) ( )Gamma j Exponential jα α+ ≡ +  distributions with 

weights given by, 

( )
( )

( )

11
  ( 0,1,...).

, 1 !( )
j

j
j

B j j

β
π

α β β α

Γ − +
= =

Γ − +
 

 

 

3. THE EXACT AND NEAR-EXACT DISTRIBUTIONS OF THE PRODUCT OF AN ODD NUMBER OF PARTICULAR 

INDEPENDENT BETA RANDOM VARIABLES 
 

3.1. THE EXACT DISTRIBUTION FOR THE PRODUCT OF VARIABLES WITH BETA DISTRIBUTION 

 

In Theorem 1 we present the exact distribution of the product of an odd number of independent r.v.’s with 

Beta distribution, expressed under the form of an infinite mixture of GIG distributions. 

 

Theorem 1. Let 

 ,  ,     1,...,
2

j j

b
X Beta a j p

 
= 

 
∼  (23) 

be p independent r.v.’s where p and b are both positive odd integers, with 3b ≥ , and 

2 2
  ( 1,..., ),

p j

j
a c j p= + − =  with  c

+∈� . Let us consider the r.v.’s 

1

1

p

j

j

W X
=

′= ∏      and    1 1

1

ln ln
p

j

j

W W X
=

′= − = −∑ . 

Let us, also, consider b independent r.v.’s 

 
* *

,  ,     1,...,
2

j j

p
X Beta a j b

 
= 

 
∼ , (24) 

where 
* *

2 2
  ( 1,..., ),

jb
j

a c j b= + − =  with 
*

c
+∈� , and let 

*

2

1

b

j

j

W X
=

′ = ∏      and    
*

2 2

1

ln ln
b

j

j

W W X
=

′= − = −∑ . 

Then the exact distribution of W1 and W2 is 

* *

,1 , 3 1 3

1 2 1

1
1 2

; ,..., ; ,..., 1,..., 2 ;
!( ) 2

, 1
2 2

                                                                    ,..., ; ,...,

l k k p b p b

p b

b
k

p b
W MGIG r r k

b b k c k
B c

r r

λ λ

λ

+ − + −

+ −

  
Γ − +  +   = − 

+      Γ −   
   

∼

2
; 0, 1  ,  ( 1, 2)

2
p b

p b
k k lλ + −


+ 

= ≥ − = 
 




 (25) 
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which is an infinite mixture of GIG distributions, 
2

2
p b+

−  of them with depth 3p b+ −  and the 

remaining with depth 2p b+ − . For 
2

1,..., 2
p b

k
+

= −  the rate parameters are 

     ( 1,..., 3)
2

j

j
c j p bλ = + = + − , (26) 

and the shape parameters are 

 *
1   2

1,..., 3; 2

j

k j

j

r j k
r

r j p b j k

+ =
= 

= + − ≠
 (27) 

where 

 
2

  1, 2

3,..., 3

j

j

j j

h j
r

r h j p b−

=
= 

+ = + −
 (28) 

with 

 

 1   1,  ...,min( 1, )

 0   1 min( 1, ),  ...,  max( 1, )

-1   1 max( 1, ),  ...,  3

j

j p b

h j p b p b

j p b p b

= −


= = + − −
 = + − + −

 (29) 

or, alternatively, 

 (  of elements of { 1, } ) 1
j

h p b j= # − ≥ − ; (30) 

and, for 0k =  and 
2

1
p b

k
+

≥ −  the shape parameters  ( 1,..., 3)
j

r j p b= + −  are given by (28) through 

(30) and 
2

1
p b

r + − = , the rate parameters  ( 1,..., 3)
j

j p bλ = + −  are given by (26) and 
2p b

c kλ + − = + . 

 

The distribution of 
2

W  is the same as the distribution of 
1

W   and thus, also the distribution of 
2

W ′  is the 

same as the distribution of 
1

W ′ . 

 

Proof. Based on (18), we have 

( )2
( ) ,     ( ),      1,...,

( )

2

j
jh

j j

j
j

b
a

a h
E X h a j p

ba
a h

 
Γ +  Γ + = > − =

Γ  
Γ + + 
 

 

and given the independence of the p r.v.’s  ( 1,..., )
j

X j p= , 

 
1

1 1 1

( )2
( ) ( )      ( ).

( )

2

jp p p
jh h h

j j p

j j j j
j

b
a

a h
E W E X E X h a

ba
a h= = =

 
Γ +  Γ +   ′ = = = > − 

Γ    Γ + + 
 

∏ ∏ ∏  (31) 

Since the Gamma functions in (31) are still defined for any strictly complex h, the c.f. of W1 is then given 

by 

 1 1

1

i i ln

1

1

( i )2
( ) (e ) (e ) ( )

( )
i

2

jp
jtW t W it

W

j j
j

b
a

a t
t E E E W

ba
a t

ϕ ′− −

=

 
Γ +  Γ − ′= = = =

Γ  
Γ + − 
 

∏ , (32) 

where 1/ 2i ( 1)= −  and t ∈� . 

 

Replacing in (32), the c.f. of the p-th log Beta by (22) with parameters α = c and β = b/2 and considering 

the result of Section 4 in Coelho (2004), a by-product of the proof of Theorem 2 in Coelho (1998), which 

for even p states that for 
2 2

p j

j
a c= + − , 
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2

1 1 1

12 2 2 2

( ) 2 2

2 2

jrjp p p b

j j jj

b p j b
a c

j
c

p ja
c

+ −

= = =

   
Γ + Γ + − +   

    = = + − 
Γ    Γ + − 

 

∏ ∏ ∏  

where 

 
2

  1 2

  3,..., 2

j

j

j j

h j ,
r

r h j p b−

=
= 

+ = + −
 (33) 

with 

 (  of elements of { , } ) 1
j

h p b j= # ≥ − , (34) 

what for odd p yields 

 
1 1 3

1 1 1

1 1

2 2 2 2 2

1 1( ) 2

2 2 2

jrjp p p b

j j jj

b p j b
a c

j
c

p ja
c

− − + −

= = =

−   
Γ + Γ + + − +   

    = = + −Γ    Γ + + − 
 

∏ ∏ ∏ , (35) 

with 
j

r  given by (33) and (34), with p replaced by 1p − , the c.f. of 
1

W  may be written as 

 

1

1

1

1

( i )2
( )

( )
i

2

( i ) ( i )2 2
        

( ) ( )
i i

2 2

1
1 1 2

        
!(

, 1
2 2

jp
j

W

j j
j

p jp
p j

jp j
p j

b
a

a t
t

ba
a t

b b
a a

a t a t

b ba a
a t a t

b
k

b b k c k
B c

ϕ
=

−

=

 
Γ +  Γ − =

Γ  
Γ + − 
 

   
Γ + Γ +   Γ − Γ −   =

Γ Γ   
Γ + − Γ + −   
   

 
Γ − + 
 =

+   
Γ −   

   

∏

∏

* *

3
1

0 1

2
32

1 1

( )( i ) i
) 2 2

1
1 1 2

        i
!( ) 2 2

, 1
2 2

1

                            

j j

k j k j

r rp b

k j

p b
r rp b

k j

j j
c k c k t c c t

b
k

j j
c c t

b b k c k
B c

−+ −∞
−

= =

+
− −+ −

= =

   
+ + − + + −   

   

  
Γ − +      = + + −   

+        Γ −        

Γ −

+

∑ ∏

∑ ∏

3
1

1
0, 1

2

2
( )( i ) i

!( ) 2 2

j jr rp b

p b j
k k

b
k

j j
c k c k t c c t

k c k

−+ −∞
−

+ =
= ≥ −

 
+       + + − + + −   

+    



∑ ∏
 (36) 

which is the c.f. of an infinite mixture of GIG distributions, 
2

2
p b+

−  of them with depth 3p b+ − , with 

shape parameters 
*

k j
r  given by (27) through (30) and rate parameters 

j
λ  given by  (26) 

2
( 1,..., 2;  1,..., 3)

p b
k j p b

+
= − = + − , and the remaining GIG distributions with depth 2p b+ − , with shape 

parameters 
j

r  given by (28) through (30) and 
2

1
p b

r + − = , and the rate parameters 
j

λ  given by (26) and 

2p b
c kλ + − = +  

2
( 0, 1;  1,..., 3)

p b
k k j p b

+
= ≥ − = + − . 

 

To confirm that the c.f. of W2 is the same as the c.f. of W1 (and, consequently, p and b are 

interchangeable) we just have to consider the equality (Coelho, 1998, 1999), 
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1 1

2 2 2 2 2 2

2 2 2 2

p b

j j

p j b b j p
c c

p j b j
c c= =

   
Γ + − + Γ + − +   
   =
   

Γ + − Γ + −   
   

∏ ∏ , 

which is valid for p and b positive integers and c
+∈� . Then, a direct application of this result to the c.f. 

of W2 leads us immediately to the c.f. of W1, 

 

2

2

*
*

i

*
*1

1

( i )2
( ) (e )

( )
i

2

i
2 2 2 2 2

                          

i
2 2 2 2 2

2 2
                          

jb
jtW

W

j j
j

b

j

p
a

a t
t E

pa
a t

p j b p j
c c t

p j p j b
c c t

b j
c

ϕ
=

=

 
Γ +  Γ − = =

Γ  
Γ + − 
 

   
Γ + − + Γ + − −   
   =
   

Γ + − Γ + − + −   
   

Γ + −

=

∏

∏

1

1

1

i
2 2 2

i
2 2 2 2 2

( i )2
                          ( ).

( )
i

2

p

j

jp
j

W

j j
j

p b j
c t

b j b j p
c c t

b
a

a t
t

ba
a t

ϕ

=

=

   
+ Γ + − −   

   

   
Γ + − Γ + − + −   
   

 
Γ +  Γ − = =

Γ  
Γ + − 
 

∏

∏

 (37) 

Since 
1 2
( ) ( )W Wt tϕ ϕ=  then W1 and W2 have the same distribution and consequently 

1
W ′ and 

2
W ′  also have 

the same distribution. ñ 

 

Based on (25) and (6), the expression for the exact p.d.f. of W1 is then given by 

1

2
32

1 1

0, 1
2

1
1 2

( ) ( )e
!( )

, 1
2 2

1
2

                                                                       ( )
!( )

j

p b

p b
w

W k k j

k j

j
p b

k k

b
k

f w K P w
b b k c k

B c

b
k

K P w
k c k

λ

+
−

+ −
−

= =

∞

+
= ≥ −

  
Γ − + 
 =

+    
Γ −        

 
Γ − + 
 +

+

∑ ∑

∑
2

1

e j

p b
w

j

λ
+ −

−

=







∑

 

where, 

*
3

1

k j

p b
r

k j

j

K λ
+ −

=

= ∏ ,               

*

1

,

1

( )
k jr

i

k j k j i

i

P w c w −

=

=∑ , 

and  

2

1

j

p b
r

j

j

K λ
+ −

=

= ∏ ,               1

,

1

( )
jr

m

j j m

m

P w c w −

=

=∑ , 

and, based on (12), the expression for the exact c.d.f. of 1W  is given by 



The exact and near-exact distributions for the Wilks Lambda statistic used in the test of independence 

of two sets of variables 

 

9 

1

2
32

*

1 1

*

1
0, 1

2

1
1 2

( ) ( )
!( )

, 1
2 2

1
2

                                                                       ( )
!( )

p b

p b

W k k j

k j

j
p b j

k k

b
k

F w K P w
b b k c k

B c

b
k

K P w
k c k

+
−

+ −

= =

∞

+ =
= ≥ −

  
Γ − + 
 =

+    
Γ −        

 
Γ − + 
 +

+

∑ ∑

∑
2p b+ −







∑

 

where, 

* **

*

*

3 1
*

, *
11 0

( 1)!
,          ( ) 1 e

!

k j

k j j

i irp b i
r wj

k j k j k j i i
ij ij

wi
K P w c

i

λλ
λ

λ

+ − −
−

== =

  −
  = = −

    
∑ ∑∏ , 

and 

2 1
*

,

1 01

( 1)!
,          ( ) 1 e

!

j

j j

i irp b m
r wj

j j j m m
m ij j

wm
K P w c

i

λλ
λ

λ

+ − −
−

= ==

  −
= = −      

∑ ∑∏ . 

For 0k =  and 
2

1
p b

k
+

≥ −  the shape parameters  ( 1,..., 3)
j

r j p b= + −  are given by (28) through (30) and 

2
1

p b
r + − = ; the rate parameters  ( 1,..., 3)

j
j p bλ = + −  are given by (26); 

2p b
c kλ + − = +  and 

,
  ( 1,..., 2; 1,..., )

j m j
c j p b m r= + − =  are given by (9) through (11). For 

2
1,..., 2

p b
k

+
= −  the shape 

parameters 
*

 ( 1,..., 3)
k j

r j p b= + −  are given by (27) through (30) and the rates  ( 1,..., 3)
j

j p bλ = + −  are 

given by (26); and, with 
*

,
  ( 1,..., 3; 1,..., )

k j i k j
c j p b i r= + − =  based on (9) through (11), given by 

 
*

*

3

*,
1

1
( )

( 1)!
ki

kj

p b
r

i jkj r
ikj
i j

c
r

λ λ
+ −

−

=
≠

= −
−

∏  (38) 

and, for 
*

1,..., 1
kj

rτ = − , 

 * *

*

*, , ( )
1

( 1)!1
( 1, )

( 1)!kj kj

kj

kj r kj r i
i kj

r i
c R i j c

r

τ

τ τ

τ

τ τ− − −
=

− + −
= −

− −
∑ , (39) 

where 

 
3

* 1 *

1

( , ) ( ) ,   ( 0,..., 1)
p b

n

ki j i ki

i
i j

R n j r n rλ λ
+ −

− −

=
≠

= − = −∑ . (40) 

The exact distributions of 
1

W ′  and 
2

W ′  could be easily obtained through the transformation 

e   ( 1,2)kW

k
W k

−′ = = . 

 

 

3.2. NEAR-EXACT DISTRIBUTIONS FOR THE PRODUCT OF VARIABLES WITH BETA DISTRIBUTION 

 

Based on truncations of the exact distribution we may obtain near-exact distributions, expressed as finite 

mixtures, that equate the two first exact moments and which allow for the computation of near-exact 

quantiles. These distributions are obtained in Theorem 2. 

 

Theorem 2. Let 
j

X  and 
*

j
X  be defined as in Theorem 1, in (23) and (24), respectively, and let 

 1 1 1

11

,          ln ln
p p

j j

jj

W X W W X
==

′ ′= = − = −∑∏ , (41) 

and also 
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*

2

1

b

j

j

W X
=

′ = ∏ ,          
*

2 2

1

ln ln .
b

j

j

W W X
=

′= − = −∑  

Then, a family of near-exact distributions for W1 and W2 is given by 

* * * *

1 , 2 1 2
( 1) ( ; ,..., ; ,..., ; 0,..., 1),         1, 2

ne

l k k k p b p b
W M n GIG GNIG r r k n lπ λ λ+ − + −+ + = + =∼  

with 

*

1
2

  ( 0,..., )

, 1 !( )
2 2

k

b
k

k n
b b

B c k c k

π

 
Γ − + 
 = =

   
Γ − +   

   

      and     

*

*
1

0

1
n

kn
k

π π
+

=

= −∑ , 

which is a finite mixture of 
* 2n +  distributions, where 

* 1n +  components are GIG distributions and the 

last component is a GNIG distribution with depth 2p b+ − . 

 

For 
*

2
2

p b
n

+
< −  we have a mixture of 

* 1n +  GIG distributions ( *
n of them with depth 3p b+ −  and one 

with depth 2p b+ − ) and one GNIG distribution with depth 2p b+ − . For 
*

2
1,..., 2

p b
k n

+
= < − , the 

shape parameters 
*

k j
r  are given by (27) through (30) and the rates jλ  ( 1,..., 3)j p b= + −  are given by 

(26); for 0k = , the 
*

kj j
r r=  are given by (28) through (30) and 

2
1

p b
r + − = , since the rates 

j
λ ( 1,..., 3)j p b= + −  are given by (26)  and 

2p b
cλ + − = . 

 

For 
*

2
2

p b
n

+
≥ −  we have a mixture of 

* 2n +  distributions, where 
* 1n +  components are GIG 

distributions (
2

2
p b+ −  with depth 3p b+ −  and ( )*

2
1 2

p b
n

+
+ − −  with depth 2p b+ − ) and the last one 

is a GNIG distribution of depth 2p b+ − . For 
2

1,..., 2
p b

k
+

= −  the parameters 
*

k j
r  are given by (27) 

through (30) and the rates 
j

λ ( 1,..., 3)j p b= + −  are given by (26); for 0k =  and 
2

1
p b

k
+

≥ − , the 
*

kj j
r r=  

are given by (28) through (30) and 
2

1
p b

r + − = , since the rates 
j

λ  are given by (26)  and 
2p b

c kλ + − = + . 

 

Both for 
*

2
2

p b
n

+
< −  and for 

*

2
2

p b
n

+
≥ −  we have in the last component of the mixture (i.e., the GNIG 

distribution with depth 2p b+ − ) the 
*

kj j
r r=  given by (28) through (30) and the rates 

j
λ ( 1,..., 3)j p b= + −  given by (26). The parameters 

*

, 2k p b
r r+ − =  and 

2p b
λ λ+ − =  of GNIG distribution 

are obtained in such way that the two first moments of the near-exact distributions are equal to the two 

first exact moments. 

 

Proof. From (36) we may write the c.f. of 
1

W  as  

1

3
1

0 1

( )

( )

1
1 2

( ) ( )( i ) i  ,
!( ) 2 2

, 1
2 2

j jr rp b

W

k j

t

t

b
k

j j
t c k c k t c c t

b b k c k
B c

ϕ

ϕ

ϕ
−+ −∞

−

= =

′′

′

 
Γ − + 

    = + + − + + −   
+       Γ −   

   

∑ ∏
�������������

�����������������������

 

where we will truncate the infinite mixture of Exponential distributions relative to the p-th log Beta and 

write, 

( ) ( )

*

*

* *

0 0 1

( ) ( ) ( ) ( )
k k k

n n

n

k X k X k X

k k k n

T t R t

t t t tϕ π ϕ π ϕ π ϕ
∞ ∞

= = = +

′ = = +∑ ∑ ∑
����� �������

, 

where ( )
kX tϕ  is the c.f. of ( )  ( 0,1,...)

k
X Exponential c k k+ =∼  and the weights 

k
π  are given by 
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1
2

  ( 0,1,...)

, 1 !( )
2 2

k

b
k

k
b b

B c k c k

π

 
Γ − + 
 = =

   
Γ − +   

   

. 

Then we approximate * ( )
n

R t  by 
1
( )tθϕ , where 

1
( ) ( i )r rt tϕ λ λ −= −  is the c.f. of a ( , )Gamma r λ  r.v. and 

the weigth θ is given by 

*

* 01

1
n

k k

kk n

θ π π
∞

== +

= = −∑ ∑ . The parameters r and λ of the Gamma distribution are 

obtained in such a way that the two first derivatives of * ( )
n

R t  and 
1
( )tθϕ  with respect to t, at 0t = , are 

equal, i.e., in such a way that 

* *1 1

0 0 0 0 0

( ) ( )     '( ) ( ) ( )     ( 1,2),
h h h h h

h h h h hn n

t t t t t

d d d d d
R t t t T t t h

dt dt dt dt dt
θ ϕ ϕ θ ϕ

= = = = =

= ⇔ − = =  

where 

*

1

00 t=0

'( ) ( ) ( )    ( 1,2),
k

h h n

k Xh h
kt

d d
t t t h

dt dt
ϕ π ϕ θϕ

==

 
= + = 

 
∑  

that is, the two first moments of the exact and near-exact distributions are equal. 

 

This way, we approximate ( )tϕ ′  by  

*

*

1

1

0

1
1 1 2

( ) ( ) ( )( i ) ( i )
!( )

, 1
2 2

n
r r

n
k

b
k

T t t c k c k t t
b b k c k

B c

θϕ θλ λ− −

=

  
Γ − +  
  + = + + − + −

+    
Γ −    

    

∑ , 

and consequently, the near-exact c.f. of 
1

W  is given by  

 

*

*

1

0

1

0

1
1 1 2

( )( i ) ( i ) ( )
!( )

, 1
2 2

1
1 1 2

         ( )( i ) (
!( )

, 1
2 2

n
r r

k

n
r

k

b
k

c k c k t t t
b b k c k

B c

b
k

c k c k t
b b k c k

B c

θλ λ ϕ

θλ

− −

=

−

=

   
Γ − +   
    ′′+ + − + − ×

+     
Γ −            

  
Γ − +  
  = + + − +

+    
Γ −    

    

∑

∑

3

1

i )

                                                                                i
2 2

1
1 1 2

         ( )(
!( )

, 1
2 2

j j

r

r rp b

j

t

j j
c c t

b
k

c k c k
b b k c k

B c

λ −

−+ −

=

 
 
 −
 
 
 

   
× + + −   

   

 
Γ − + 
 = + +

+   
Γ −   

   

∏

* 3
1

0 1

3

1

i ) i
2 2

                                                                                ( i ) i ,
2 2

j j

j j

r rp bn

k j

r rp b
r r

j

j j
t c c t

j j
t c c tθλ λ

−+ −
−

= =

−+ −
−

=

 
     − + + −   
    
  

   
+ − + + −   

   

∑ ∏

∏

 (42) 

which is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  of them are GIG distributions 

and the last one is a GNIG distribution. We denote these near-exact distributions by M(n
*
+1)GIG+GNIG. 
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Then, we have to consider two situations: 

 

• *

2
2

p b
n

+
< − , where (42) may be written as 

* *
* 3

1 1

3
1

1

1
1 1 2

i
!( ) 2 2

, 1
2 2

1
2

    ( i ) i ( i ) i
2 2 2 2

k j k j

j j j

r rp bn

k j

r r rp b
r r

j

b
k

j j
c c t

b b k c k
B c

b

j j j j
c c t c c t t c c t

c
θλ λ

−+ −

= =

−+ −
− −

=

  
Γ − +       + + −   

+        Γ −        

 
Γ −          + − + + − + − + + −      

      


∑ ∏

∏
3

1

jrp b

j

−+ −

=





∏

 (43) 

which is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  components are GIG 

distributions ( *
n  of them with depth 3p b+ −  and one with depth 2p b+ − ) and the last one is a GNIG 

distribution of depth 2p b+ − , with shape and rate parameters mentioned in the body of Theorem 2; 

 

• *

2
2

p b
n

+
≥ − , where (42) may be written as 

 

* *

*

2
32

1 1

3
1

1
0, 1

2

1
1 1 2

i
!( ) 2 2

, 1
2 2

1
2

( )( i ) i       !( ) 2 2

k j k j

j j

p b
r rp b

k j

r rp bn

p b j
k k

b
k

j j
c c t

b b k c k
B c

b
k

j j
c k c k t c c t

k c k

+
− −+ −

= =

−+ −
−

+ =
= ≥ −

  
Γ − +       + + −   

+        Γ −        

 
Γ − +       + + − + + −   + +    



∑ ∏

∑ ∏

3

1

                                                      ( i ) i
2 2

j jr rp b
r r

j

j j
t c c tθλ λ

−+ −
−

=





   
+ − + + −   

   
∏

 (44) 

which is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  of them are GIG distributions, 

(
2

2
p b+ −  with depth 3p b+ −  and ( )*

2
1 2

p b
n

+
+ − −  with depth 2p b+ − ) and the last one is a GNIG 

distribution of depth 2p b+ − , with shape and rate parameters mentioned in the body of Theorem 2. ñ 

 

The near-exact c.f.’s obtained in this way are asymptotic for increasing values of n
*
, in the sense that they 

converge to the exact c.f., 
1
( )W tϕ , when *

n → +∞ . 

 

 

4. THE EXACT AND NEAR-EXACT DISTRIBUTIONS FOR THE WILKS LAMBDA STATISTIC FOR TWO SETS 

OF VARIABLES WITH AN ODD NUMBER OF VARIABLES 

 

4.1. THE EXACT DISTRIBUTION FOR THE WILKS LAMBDA STATISTIC 

 

In Theorem 3 we present the exact distribution for the Wilks Lambda statistic for the case of two sets of 

variables, both with an odd number of variables. This distribution, expressed under the form of an infinite 

mixture of GIG distributions, is developed by direct application of the exact distribution of the product of 

an odd number of independent r.v.’s with Beta distributions (Theorem 1). 

 

Theorem 3. If the two sets of variables both have an odd number of variables, then, under (2) and for a 

sample of size 1n + , the exact distribution of lnW = − Λ  is an infinite mixture of GIG distributions, 

2
2

p −  with depth 3p −  and the remaining with depth 2p − : 
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2

* *

1 , 3 1 3

2 2

1 2 1

1
1 2

; ,..., ; ,..., 1,..., 2 ;
!( ) 2

, 1
2 2

                                                                                ,..., ;

k k p p

p

p
k

p
W MGIG r r k

p p k c k
B c

r r

λ λ

λ

− −

−

  
Γ − +  

   = − 
+     Γ −   

   

∼

2
,..., 0, 1

2
p

p
k kλ −


 

= ≥ −  
 




 

where 
1

2

n p
c

+ −
=  and 

1 2
p p p= + . For 

2
1,..., 2

p
k = −  the rate parameters are given by 

 

 ,         1,..., 3
2

j

j
c j pλ = + = −  (45) 

and  the shape parameters are 

 *
1   2

{1,..., 3} \{2 }

j

k j

j

r j k
r

r j p k

+ =
= 

∈ −
 (46) 

where 

 
2

  1, 2

3,..., 3

j

j

j j

h j
r

r h j p−

=
= 

+ = −
 (47) 

with 

 
1 2

(  of elements of { 1, } ) 1
j

h p p j= # − ≥ − . (48) 

For 0k =  and 
2

1
p

k ≥ −  the shape parameters  ( 1,..., 3)
j

r j p= −  are given by (47) and (48) and 

2
1

p
r − = ; the rate parameters  ( 1,..., 3)

j
j pλ = −  are given by (45)  and 

2p
c kλ − = + . 

 

Proof. In order to prove this theorem we just have to consider Theorem 1 and establish the following 

equivalencies (bearing in mind that while in Theorem 1, p denotes the number of Beta r.v.’s involved, in 

this theorem p denotes the overall number of variables): 

 
Product of Beta variables  Wilks ΛΛΛΛ statistic   

p ↔ p1 

b ↔ p2 

p b+  ↔ 1 2p p p+ =  

aj ↔ 21

2

n p j+ − −
 

2 2

p j

jc a= − +  ↔ 1 21 1

2 2
.

n p p n p+ − − + −
=  

 

The c.f. of W may then be written as 

 

* *
2

2
32

1 12 2

2

1

1
1 1 2

( ) i
!( ) 2 2

, 1
2 2

1
2

( )( i ) i                            
!( ) 2 2

k j k j

j j

p
r rp

W

k j

r r

j

p
k

j j
t c c t

p p k c k
B c

p
k

j j
c k c k t c c t

k c k

ϕ

− −−

= =

−

−

  
Γ − +      = + + −   

+        Γ −        

 
Γ − + 

     + + − + + −+    
+    

∑ ∏

3

1
0, 1

2

,

p

p
k k

−∞

=
= ≥ −








∑ ∏

 (49) 

which is the c.f. of an infinite mixture of GIG distributions, 
2

2
p

−  with depth 3p − , with shape 

parameters 
*

k j
r  given by (46) through (48) and rates 

j
λ  given by (45) 

2
( 1,..., 2;  1,..., 3)

p
k j p= − = − , and 

the remaining GIG distributions have depth 2p − , with shape parameters 
j

r  given by (47) and (48) and 

2
1

p
r − = , since the rates 

j
λ  are given by (45) and 

2p
c kλ − = +  

2
( 0, 1;  1,..., 3)

p
k k j p= ≥ − = − . ñ 
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4.2. NEAR-EXACT DISTRIBUTIONS FOR THE WILKS LAMBDA STATISTIC 

 

Once again, based on truncations of the exact distribution and following the procedure used in Theorem 2 

we obtain near-exact distributions, expressed as finite mixtures, that equate the two first exact moments 

and allows for the computation of near-exact quantiles. This way, we have the Theorem 4. 

 

Theorem 4. If the two sets of variables both have an odd number of variables, then, under (2) and for a 

sample of size 1n + , a family of  near-exact distributions for lnW = − Λ  may be obtained under the form 

* * * *

1 , 2 1 2
( 1) ( ; ,..., ; ,..., ; 0,..., 1)

ne

k k k p p
W M n GIG GNIG r r k nπ λ λ− −+ + = +∼  

with 

2

*

2 2

1
1 2

  ( 0,..., )

, 1 !( )
2 2

k

p
k

k n
p p

B c k c k

π

 
Γ − + 
 = =

   
Γ − +   

   

     and     

*

*
1

0

1
n

kn
k

π π
+

=

= −∑ , 

which is a finite mixture of 
* 2n +  distributions, where 

* 1n +  components are GIG distributions and the 

last component is a GNIG distribution. 

 

For 
*

2
2

p
n < −  we have a finite mixture of 

* 1n +  GIG distributions ( *
n  with depth 3p −  and one with 

depth 2p − ) and one GNIG distribution of depth 2p − . For 
*

2
1,..., 2

p
k n= < −  the shape parameters 

*

k j
r  are given by (46) through (48) and the rates 

j
λ  ( 1,..., 3)j p= −  are given by (45); for 0k = , the 

*

kj j
r r=  are given by (47) and (48) and 

2
1

p
r − = , where the rates jλ ( 1,..., 3)j p= −  are given by (45) and 

2p
cλ − = . 

 

For 
*

2
2

p
n ≥ −  we have a finite mixture of 

* 1n +  GIG distributions (
2

2
p −  with depth 3p −  and 

( )*

2
1 2

p
n + − −  with depth 2p − ) and one GNIG distribution of depth 2p − . For 

2
1,..., 2

p
k = −  the 

parameters 
*

k j
r  are given by (46) through (48) and the rates 

j
λ ( 1,..., 3)j p= −  are given by (45); for 

0k =  and 
2

1
p

k ≥ − , the 
*

kj j
r r=  are given by (47) and (48) and 

2
1

p
r − = , with rates 

j
λ  given by (45)  and 

2p
c kλ − = + .  

 

Both for 
*

2
2

p
n < −  and 

*

2
2

p
n ≥ −  we have for the last component of the mixture (i.e., in the GNIG 

distribution of depth 2p − ) the 
*

kj j
r r=  given by (47) and (48) and the rate parameters 

j
λ ( 1,..., 3)j p= −  given by (45). The parameters 

*

, 2k p
r r− =  and 

2p
λ λ− =  of the GNIG distribution are 

obtained in such way that the two first exact moments are equal. 

 

Proof. Appling the result in (42) and using the equivalences in the proof of Theorem 3, we may write the 

c.f. of W under the form 

 

*

2

3
1

0 12 2

1
1 1 2

( )( i ) i
!( ) 2 2

, 1
2 2

                                                           ( i )
2

j j

j

r rpn

k j

r

r r

p
k

j j
c k c k t c c t

p p k c k
B c

j
t c cθλ λ

−−
−

= =

−

  
Γ − +       + + − + + −   

+        Γ −          

 
+ − + + 

 

∑ ∏

3

1

i ,
2

jrp

j

j
t

−−

=

 
− 

 
∏

 (50) 

wich is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  components are GIG distributions 

and the last one is a GNIG distribution.  
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Again, as in Theorem 2, we have to consider two situations: 

 

• *

2
2

p
n < − , where  (50) may be written as 

 

* *
*

2

3

1 12 2

2

3
1

1

1
1 1 2

i
!( ) 2 2

, 1
2 2

1
2

           ( i ) i ( i )
2 2 2

k j k j

j j j

r rpn

k j

r r rp
r r

j

p
k

j j
c c t

p p k c k
B c

p

j j j j
c c t c c t t c c

c
θλ λ

−−

= =

−−
− −

=

  
Γ − +       + + −   

+        Γ −        

 
Γ −         + − + + − + − + +     

     



∑ ∏

∏
3

1

i ,
2

jrp

j

t

−−

=

 
− 

 
∏

(51) 

which is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  components are GIG 

distributions (n
*
 with depth 3p −  and one with depth 2p − ) and the last one is a GNIG distribution of 

depth 2p − , with shape and rate parameters mentioned in the body of Theorem 4; 

 

• *

2
2

p
n ≥ − , where  (50) may be written as 

 

* *

*

2
2

32

1 12 2

2

3
1

1
0, 1

2

1
1 1 2

i
!( ) 2 2

, 1
2 2

1
2

( )( i ) i       !( ) 2 2

 

k j k j

j j

p
r rp

k j

r rpn

p j
k k

p
k

j j
c c t

p p k c k
B c

p
k

j j
c k c k t c c t

k c k

− −−

= =

−−
−

=
= ≥ −

  
Γ − +       + + −   

+        Γ −        

 
Γ − +       + + − + + −   + +    




∑ ∏

∑ ∏

3

1

                                  ( i ) i
2 2

j jr rp
r r

j

j j
t c c tθλ λ

−−
−

=

   
+ − + + −   

   
∏

 (52) 

which is the c.f. of a finite mixture of * 2n +  distributions, where * 1n +  components are GIG 

distributions (
2

2
p −  with depth 3p −  and ( )*

2
1 2

p
n + − −  with depth 2p − ) and the last one is a GNIG 

distribution of depth 2p − , with shape and rate parameters mentioned in the body of Theorem 4. ñ 

 

The near-exact c.f.’s obtained in such a way are asymptotic (as the ones presented in Theorem 2) for 

increasing values of n
*
, in a sense that they converge for the exact c.f., ( )

W
tϕ , when *

n → +∞ . 

 

 

5. COMPARATIVE NUMERICAL STUDIES 
 

In order to assess the behaviour of the near-exact distributions developed we use two proximity measures, 

1
∆  and 

2
∆ , already used by Grilo and Coelho (2007). These two measures are directly derived from the 

inversion formulas respectively for the p.d.f. and the c.d.f., and their expressions are 

 1

1
( ) ( )

2
W t t dtϕ ϕ

π

+∞

−∞

∆ = −∫  (53) 

and 

 2

( ) ( )1

2

W
t t

dt
t

ϕ ϕ

π

+∞

−∞

−
∆ = ∫  (54) 

where ( )
W

tϕ represents the exact c.f. of the r.v. W and ( )tϕ  the near-exact c.f. under study. The measure 

2∆  in (54) may be seen as directly related to the Berry-Esseen bound. The use of the measures ∆1 and ∆2 
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enables us to obtain an upper bound on the absolute value of the difference of the density or the 

cumulative function, respectively. More precisely, 

 
0

1max ( ) ( )
w

Wf w f w
>

− ≤ ∆    and     
0

2max ( ) ( )
w

WF w F w
>

− ≤ ∆ , 

where ( )
W

f w  and ( )
W

F w  are, respectively, the exact p.d.f. and c.d.f. of W evaluated at 0w >  and ( )f w  

and ( )F w  are, respectively, the near-exact p.d.f. and c.d.f. of W.  

 

Smaller values of the measures 
1

∆  and 
2

∆  correspond to better approximations; this way, these measures 

are an useful tool for evaluating and comparing the performance of the near-exact distributions proposed. 

 

 

5.1 NEAR-EXACT DISTRIBUTIONS FOR THE PRODUCT OF VARIABLES WITH BETA DISTRIBUTION 
 

At this stage we use the two proximity measures to evaluate the proximity of the near-exact distributions 

M(n
*
+1)GIG+GNIG, which equate the first 2 moments, to the exact distribution and also to compare than 

with the near-exact distributions GNIG and M2GNIG developed by Grilo and Coelho (2007), which 

equate respectively the first 3 and 4 exact moments. We also analyze the precision of these near-exact 

distributions in terms of quantiles. 

 

In Table 1 we have the values of both proximity measures for two members of the family of near-exact 

distributions M(n
*
+1)GIG+GNIG, developed in Theorem 2 in Section 3. For the truncations n

*
+1 = 24 

and n
*
+1 = 49 we obtain respectively the distributions M24GIG+GNIG and M49GIG+GNIG. In those 

calculations we use the exact c.f. in (32) and the near-exact c.f. in (42) and we consider some different 

values for the parameters p, b and c. As we expected, the values of the measures confirm that the near-

exact distributions M(n
*
+1)GIG+GNIG are asymptotic for increasing values of n

*
 (number of terms), 

with the M49GIG+GNIG distribution beating the M24GIG+GNIG distribution, for any combination of 

the parameters p, b and c. The quality of the near-exact distributions M(n
*
+1)GIG+GNIG improve when 

p or b increase. But, when the value of c increases, from 0.5 to 1.0 or from 0.5 to 2.5, keeping fixed the 

values of the parameters p and b, the values of the measures increase, i.e., we have a decrease in the 

quality of the near-exact distributions. 

 

In Table 2 we have the proximity measures for the near-exact distributions GNIG and M2GNIG used by 

Grilo and Coelho (2007). Computations are done for the same combinations of values of the parameters 

p, b and c as in Table 1. In terms of the variations of the values of these parameters we have a similar 

behavior as the near-exact distributions M24GIG+GNIG and M49GIG+GNIG. However, when the value 

of c increases above a certain level, the quality of the near-exact distributions GNIG and M2GNIG 

improves, with this last one always showing lower values for the proximity measures (see Table 4), in 

agreement with the conclusions obtained in the comparative analysis of moments in Grilo and Coelho 

(2007). 

 

From the comparison of the values of the measures in the Tables 1 and 2 we can conclude that, for any 

combination of the parameters involved, the near-exact distributions based on truncations always show 

lower values of the proximity measures. This way, we can say that the near-exact distributions based on 

truncations are more precise (i.e., closer to the exact distribution) than the near-exact distributions based 

on factorizations, although these last ones equated more moments. All the near-exact distributions show 

an asymptotic behavior for increasing number of Beta r.v.’s. 

 
Table 1. Values of measures ∆1 and ∆2, obtained with p and b odd, for some examples of near-exact distributions, 

based on truncations of the exact c.f.: M24GIG+MGNIG and M49GIG+MGNIG. 
 

 Near-exact M24GIG+GNIG Near-exact M49GIG+GNIG 

p b c 1∆  2∆  1∆  2∆  

3 15 0.5 1.836E-15 1.123E-15 6.187E-19 3.770E-19 

3 15 1.0 1.868E-14 9.569E-15 6.641E-18 3.388E-18 

5 15 0.5 5.430E-16 4.834E-16 1.820E-19 1.622E-19 

15 15 0.5 1.806E-16 2.213E-16 6.043E-20 7.402E-20 

25 15 0.5 1.423E-16 1.862E-16 4.762E-20 6.228E-20 

5 25 0.5 1.545E-16 1.474E-17 4.150E-23 3.904E-23 

5 25 2.5 2.086E-14 1.196E-14 6.870E-20 3.930E-20 
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                Table 2. Values of measures ∆1 and ∆2, obtained with p and b odd, for some examples of near-exact 

distributions, based on factorization of the exact c.f.: GNIG and M2GNIG. 
 

 Near-exact GNIG Near-exact M2GNIG 

p b c 1∆  2∆  1∆  2∆  

3 15 0.5 4.087E-10 3.251E-10 9.544E-13 6.232E-13 

3 15 1.0 1.083E-09 6.917E-10 2.838E-12 1.519E-12 

5 15 0.5 4.898E-11 4.854E-11 1.191E-13 9.927E-14 

15 15 0.5 9.249E-13 1.153E-12 7.449E-16 7.964E-16 

25 15 0.5 8.895E-14 1.168E-13 3.648E-17 4.121E-17 

5 25 0.5 2.578E-12 2.667E-12 1.922E-15 1.677E-15 

5 25 2.5 2.764E-11 1.594E-11 2.821E-14 1.415E-14 

 

In Table 3 we have the quantiles computed for the same combinations of values of the parameters p, b 

and c as in Table 1 and 2. In these examples the weights in the mixture will vanish rather quickly so that a 

few terms in the mixture may be enough to obtain a very accurate result. In the last column of the table 

we have the number of terms needed to stabilize the first fifteen decimal places of quantiles of the near-

exact distributions M(n
*
+1)GIG+GNIG. Taking this fact into account, these near-exact quantiles may 

indeed be regarded as virtually exact, given the good convergence properties of the series involved. When 

we increase the value of c (from 0.5 to 1.0 or from 0.5 to 2.5) the number of terms needed to obtain the 

desired convergence of the series also increases. 

 

Using the virtually exact quantiles of the M(n
*
+1)GIG+GNIG, we can see that the near-exact quantiles of 

the GNIG and M2GNIG display a good quality of approximation (once again, the near-exact distribution 

based on a mixture, M2GNIG, is more precise). 

 
Table 3. Quantiles (qα) of some examples, obtained with p and b odd, for the near-exact distributions: 

GNIG, M2GNIG and M(n*+1)GIG+GNIG. 
 

p b c qα  
Near-exact 

GNIG  

Near-exact 

M2GNIG 

Near-exact 

M(n*+1)GIG+GNIG 

No. of 

terms (n*+1) 

3 15 0.5 0.90 12.232137405284773 12.232137405198539 12.232137405199049  

   0.95 13.689451147392434 13.689451146907433 13.689451146907453 21 

   0.99 16.964548406041502 16.964548405149140 16.964548405148528  

        

3 15 1.0 0.90 8.768751109405600 8.768751109981488 8.768751109984258  

   0.95 9.605166238056734 9.605166237391850 9.605166237393618 39 

   0.99 11.392758529180804 11.392758526021177 11.392758526018796  

        

5 15 0.5 0.90 15.766703028422185 15.766703028417300 15.766703028417470  

   0.95 17.247066255829877 17.247066255666547 17.247066255666580 27 

   0.99 20.542428502938455 20.542428502588221 20.542428502588027  

        

15 15 0.5 0.90 25.962744221484464 25.962744221485059 25.962744221485061  

   0.95 27.480762583918854 27.480762583914082 27.480762583914083 25 

   0.99 30.811290143362668 30.811290143350415 30.811290143350412  

        

25 15 0.5 0.90 31.832735492207600 31.832735492207671 31.832735492207671  

   0.95 33.362684554131993 33.362684554131506 33.362684554131506 25 

   0.99 36.704902646544632 36.704902646543340 36.704902646543339  

        

5 25 0.5 0.90 18.135351985604587 18.135351985604009 18.135351985604012  

   0.95 19.620476655328868 19.620476655322552 19.620476655322552 19 

   0.99 22.920056799971283 22.920056799958249 22.920056799958245  

        

5 25 2.5 0.90 9.890322906372548 9.890322906404629 9.890322906373449  

   0.95 10.401843841474107 10.401843841474313 10.401843841471693 27 

   0.99 11.424649925108542 11.424649924998074 11.424649924998035  
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5.2 NEAR-EXACT DISTRIBUTIONS FOR THE WILKS LAMBDA STATISTIC 
 

Here we consider variations on the number of variables per set and on the sample size and we compare 

the near-exact distributions M(n
*
+1)GIG+GNIG, GNIG and M2GNIG. 

The exact distribution of the Wilks Λ statistic used to test the independence of two sets of variables both 

with an odd number of variables (say p1 and p2) and also the near-exact distributions 

M(n
*
+1)GIG+GNIG, were developed in Section 4, by direct application of the results obtained for the 

distribution of the product of independent number of r.v.’s Beta, in Section 3. This way, if we note that 

the parameters p, b and c of Section 3 are now, respectively, 
1 2

 ,  p p  and 1 21 ( )

2

n p p+ − +
, we may consider the 

quantiles for different examples in Table 3, as quantiles for the Wilks Λ statistic, taking 
1 2

 ,  p p p b= =  

and 
1 2

2 ( ) 1n c p p= + + − . In order to assess the quality of the near-exact distributions 

M(n
*
+1)GIG+GNIG we use the exact distribution in Alberto (1998) and Alberto and Coelho (2007), in a 

manageable form, which makes possible the computation of quantiles for the particular case of 
1

3p =  

and 2p  odd. Then, we verify in Table 3 that for 
1

3p =  the quantiles obtained for the family members of 

the near-exact distribution M(n
*
+1)GIG+GNIG, which we designated as virtually exact quantiles, have 

the first fifteen decimal places equal to the exact quantiles. 

 

In table 4 we may see the computed values of the two proximity measures for two other examples where 

the exact distribution is known, which correspond to situations where both sets have an odd number of 

variables (close to each other), one of them with three variables. We may confirm that, when the sample 

size increases (and, consequently, the value of c) the quality of approximation of the near-exact 

distribution M499GIG+GNIG becomes a bet worse (the values of both measures increase). However, we 

can surpass this minor drawback increasing the number of terms considered in the truncations. As 

expected, when we increase the number of variables in one of the sets, keeping constant the difference     

n - p, the performance of all near-exact distributions becomes even better. 

 

We may see the better performance of the near-exact distributions based on truncations, with lower values 

for both proximity measures, when the values of n and p are close or even equal (Table 1 and 4). 

 
Table 4. Values of measures ∆1 and ∆2, obtained with p1 = 3 and p2 odd, for some examples of near-exact distributions:  

M499GIG+MGNIG, GNIG and M2GNIG. 
 

    Near-exact 

M499GIG+GNIG  

Near-exact  

GNIG  

Near-exact  

M2GNIG 

p1 p2 c n  
1∆  2∆  1∆  2∆  1∆  2∆  

3 5 1 9 4.296E-17 8.843E-18 6.214E-07 3.102E-07 4.322E-09 1.633E-09 

3 5 46 99 1.844E-08 2.275E-10 3.162E-08 8.039E-10 6.945E-11 1.556E-12 

3 7 1 11 6.440E-20 2.277E-20 8.601E-08 4.745E-08 8.269E-10 3.754E-10 

3 7 45 99 2.324E-10 5.014E-12 1.225E-08 3.947E-10 2.341E-11 6.650E-13 

                              

In Table 5 we have the quantiles for the same examples studied in Table 4. Once again, we use the exact 

quantiles obtained with the exact distribution, in Alberto (1998) and Alberto and Coelho (2007), to 

compare with our virtually exact quantiles obtained with the near-exact distributions 

M(n
*
+1)GIG+GNIG. For the cases where p2 = 5 or 7 and n – p = 1, we used as a stop criterion the 

number of terms needed to equate the first fifteen decimal places, which we obtain with 500 terms. 

However, with one hundred terms we already equated at least the first ten decimal places.  For the cases 

where n – p = 91 and n – p = 89, the virtually exact quantiles equate at most the first ten decimal places of 

the exact quantiles, considering the same number of terms. 
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Based on different family members of the near-exact distribution M(n
*
+1)GIG+GNIG evidence is given 

that, when we have 1p  and 2p  small and close to each other or when the difference between the total 

number of variables and the sample size, n – p, is relatively high, we have to consider more terms in the 

series involved in order to increase the quality of the quantiles (see Table 3 and Table 5). The results 

obtained for the proximity measures, in Tables 1 and 4, corroborate these conclusions. 

 
Table 5. Quantiles (qα) of some examples, obtained with p1 = 3 and p2 odd, for near-exact distributions: 

M499GIG+GNIG, GNIG and M2GNIG. 
 

p1 p2 c n  qα  
Near-exact 

M499GIG+GNIG 

Near-exact 

GNIG 

Near-exact 

M2GQIG 

3 5 1 9 0.90 5.902424173900701 5.902424705542200 5.902424172750858 

    0.95 6.708991141654191 6.708991203754051 6.708991143494366 

    0.99 8.458264467172885 8.458263267281493 8.458264470394018 

        

3 5 46 99 0.90 0.236128176914884 0.236128176955616 0.236128176816062 

    0.95 0.264594184788194 0.264594184882131 0.264594184679287 

    0.99 0.323698431665835 0.323698431554972 0.323698431562073 

        

3 7 1 11 0.90 6.737900958585013 6.737901023198875 6.737900957949009 

    0.95 7.556390637123642 7.556390623356051 7.556390636602448 

    0.99 9.320950830762371 9.320950634927288 9.320950831144527 

        

3 7 45 99 0.90 0.316922153184000 0.316922153194397 0.316922153096966 

    0.95 0.349631778898221 0.349631778491605 0.349631778378447 

    0.99 0.416670444515805 0.416670444275518 0.416670444318288 

 

Since for p1 ≥ 3 and p2 odd the exact distribution is not available in a manageable form, adequate for the 

expedite computation of quantiles, the near-exact distributions presented are then an excellent option. The 

quantiles obtained with the near-exact distributions GNIG and M2GNIG show a very regular behavior for 

different variations in the number of variables per set and on the sample size, where we notice the quality 

of approximation of the near-exact distribution M2GNIG. But, we have to point out the excellent 

performance of the members family of the near-exact distribution M(n
*
+1)GIG+GNIG which allows us to 

obtain virtually exact quantiles. They are particularly adequate and useful for cases where n p−  is small. 

 

 

6. CONCLUSIONS AND FINAL REMARKS 
 

Once the exact distribution of the Wilks Lambda statistic is expressed under the form of an infinite 

mixture of GIG distributions, where the associated series has good convergence properties, we are able to 

obtain the family of near-exact distributions M(n
*
+1)GIG+GNIG, based on truncations of the exact c.f., 

which is relatively easy to implement computationally and allows for the computation of virtually exact 

quantiles. These near-exact distributions are obtained in a manageable form and by construction the first 

two moments are equal to the exact ones. 

 

Based on cases where the exact distribution is known, some evidence is given that the measures ∆1 and ∆2 

are accurate to evaluate the proximity of quantiles (smaller values of the proposed measures are 

associated with smaller differences among quantiles). 

 

The family members of the near-exact distribution M(n
*
+1)GIG+GNIG proposed in this paper displaying 

an asymptotic behavior for increasing number of variables. We also have to stress the outstanding 

performance of these near-exact distributions for small values of n, or should we rather say, for small 

values of n – p, what makes these approximations particularly useful in situations of small sample sizes, 

situations in which even the best asymptotic distributions available perform not too well. For higher 

values of n – p, we may consider the near-exact distributions GNIG and M2GNIG as an alternative to the 

near-exact distributions M(n
*
+1)GIG+GNIG. These approximations lay very close to the exact 

distribution in terms of c.f.’s, p.d.f.’s, c.d.f.’s, moments and quantiles. 
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