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Abstract. In this paper we obtain an answer to the question in Problem 288,
the book Open Problems in Topology by Jan van Mill and George M Reed,
p. 131. Namely, we prove that a Hausdorff first countable, countably compact
topological space is ω-bounded. We also point out errors occurring in the
literature concerning the Ostaszewski spaces.

1. Introduction

We prove that any Hausdorff (C1) countably compact space is in fact ω-
bounded. In the Preliminaries, paragraph 2., we state the definitions concerning
Problem 288 in [5] and properties that we use to obtain Corollary 1. in paragraph
3., the Results. This work is on Topology and assumes the Axiomatics of Set Theory
as in [1], [2]; it does not concern the different, although related, difficult subject
of Logic and the Theory of Sets namely, models in ZFC. Still in paragraph 3., we
prove that it is wrong to assume that the γN space in [5], p.133 is both Hausdorff
and countably compact and that [4], p. 652 contains a contradiction; hence those
matters do not really contradict Corollary 1. Also, we show that separation is
essential in Corollary 1.

2. Preliminaries

Recall that a topological space (X,T ) is first countable or a (C1) space if
each point has a countable base of neighborhoods. (X,T ) is said a (T1) space if
for every pair of distinct points x, y ∈ X there exist open sets Wx,Wy ⊂ X such
that x ∈ Wx (y ∈ Wy) whereas y /∈ Wx (x /∈ Wy) and, it is Hausdorff space or
a (T2) space if two any different points have disjoint neighborhoods. Clearly any
(T2) space is a (T1) space.

Definition 1. (Following [1]) We say that the Hausdorff space (X,T ) is countably
compact if any countable open cover of X has a finite subcover.

Remark 1. According to [1], Chap. XI, Sec. 3 (pp. 233) if (X, T ) is metrizable
and countably compact, then (X, T ) is compact.
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Definition 2. (Following [5], p. 131) A topological space (X,T ) is said to be
ω-bounded if each countable subset of X has compact closure.

Following [2] (pp. 331) the base B for the topological space (X, T ) is called
regular if for every point x ∈ X and any neighborhood U of x there is a neighbor-
hood V ⊂ U of the point x such that the set of all members of B that meet both
V and X\U is finite. We then have the Arkhangel’skii metrization theorem

Theorem 1. A topological space is metrizable if and only if it is a (T1) space and
has a regular base.

Proof. See [2], 5.4.6., pp. 332.

Recall that a partially ordered set (M,≤) is well-ordered if for each nonempty
set B ⊂M there is some b0 ∈ B such that b0 ≤ b for each b ∈ B.

Definition 3. (Following [1]) An ordinal number is a set α with the properties
that, for each x, y ∈ α such that x 6= y it holds that either x ∈ y or y ∈ x and,
(x ∈ y) ∧ (y ∈ α)⇒ x ∈ α.

Following [1] we say that a bijection f : (M,≤) → (N,¹) between two well-
ordered sets is an isomorphism if it holds that a ≤ b implies f(a) ¹ f(b). For each
a ∈M, the setM(a) = {x ∈M : (x ≤ a)∧(x 6= a)} is the initial interval determined
by a. Also if α is an ordinal number, the initial interval C(α) = α where, C is the
well-ordered class of all ordinal numbers, well-ordered putting α ≤ β if and only if
α ⊂ β. Each well-ordered set is isomorphic to a suitable C(α). (See [1], pp. 36, 42,
43 and Theorem 6.4, the same page). If we say that two sets A,B are equipotent
meaning for there is a bijective map on A onto B, it follows by Zermelo’s theorem
(Theorem 2. 1 (3) in [1], pp. 32) that in the class of all equipotent sets to A, there
exists an ordinal number and, also a smallest such ordinal number, wich is called
the cardinal number of A ([1], pp. 46).

The first ordinal number is the empty set φ. For each ordinal number α, its
sucessor is α ∪ {α} = α + 1. We denote φ = 0, {φ} = 1, {φ} ∪ {{φ}} = 2, ...
These are the finite ordinal numbers, which can be viewed as the natural numbers.
The first infinite ordinal number is ω, which is the cardinal number of the set of
all natural numbers. ω is a limit ordinal number that is, it is not a sucessor of
an ordinal number. We say that ω is an infinite countable ordinal number and we
denote by ω1 the first uncountable ordinal number; it holds that, ω1 ≤ c where, c is
the cardinal number of the set of real numbers when viewed as an ordinal number.
We shall also consider the ordinal number ω2 namely, we denote by ω2 the smallest
cardinal number viewed as an ordinal number, that is greater than ω1.

Remark 2. We say that a set A has cardinality no greater than the continuum
if there exists an injective map on A to a set which has the cardinality of the
continuum c. In the following we consider c viewed as an ordinal number; the
continuum hypothesis, which is the assumption that ω1 = c is not required in what
follows.
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Definition 4. The ordinal space [0, c[ is the set of all ordinal numbers α ≺ c (we
denote by α ≺ β meaning that α ⊂ β, α 6= β, α,β ∈ C as above), equipped with the
topology that is generated by the sets of the form {x : x Â α} and {x : x ≺ β}.

Remark 3. The set of all limit ordinal numbers in [0, c[ has the cardinality of the
continuum, in the sense of the preceding remark. Hence also the set of all limit
ordinal numbers α in [0, c[ such that ω ≺ α has the cardinality of the continuum.

Remark 4. It holds that {α + 1} =]α, (α + 1) + 1[ is an open subset of [0, c[ for
each α ∈ [0, c[.

Remark 5. In the sense of the above remarks, if the set A has cardinality no
greater than the continuum, then there exists an injection from A to [1,ω[ ∪ I, I
a subset of ]ω, c[ constituted by different limit ordinal numbers.

3. The Results

In the following, we consider a Hausdorff first countable, countably compact
topological space (X,TX ).

Lemma 1. Let C = {xn : n = 1, 2, ...} ⊂ (X, TX ) be countably infinite.Then each
point x ∈ C is the limit x = limk xn(k) of a sequence (xn(k)) in C.

Proof. In fact, if x is the limit of a net (xα) in C it follows that, {Vk : k = 1, 2, ...}
being a countable base of neighborhoods of x such that Vk ⊃ Vk+1 for each k, there
exists some α(k) such that, xα ∈ Vk whenever α Â α(k). Clearly the sequence
(xα(k)) converges to x and the lemma follows.

C being as above, if p ∈ C\C then there is an infinite sequence of natural
numbers (n(k)) such that the sequence (xn(k)) in C converges to p. Let S(p) be
the set of all sequences (n(k)) such that limk xn(k) = p. Consider ϕ({S(p) : p ∈
C\C}) where, ϕ is the selector of Zermelo in the axiom of Choice assigning a fixed
[n(k)] = (n(k)) to S(p) and, let S = {[n(k)] : p ∈ C\C}.The cardinality of the
set of all sequences of natural numbers being the cardinality of the continuum, it
follows from Remark 5. that, there exists an injective map f : N∪ S →[1, c[ such
that f([n(k)]) = α[n(k)] is the sucessor of a limit ordinal in [1, c[ ([n(k)] ∈ S) and,
f(n) = n (n = 1, 2, ...).

Consider the set
E = {(n, xn), (α[n(k)], limk xn(k)) : n = 1, 2, ..., [n(k)] ∈ S} equipped with the

induced topology T by the product topology of [1, c[×X, X as above. We have

Theorem 2. The topological space (E, T ) is metrizable.
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Proof. B = {E∩({n}×Vj(xn)), E∩({α[n(k)]}×Vj(p)) : n, j ∈ N, p = limxn(k), [n(k)] ∈
S} where, {Vj(xn) : j = 1, 2, ...} (respectively {Vj(p) : j = 1, 2, ...}) is a countable
base of neighborhoods of xn such that Vj(xn) ⊃ Vj+1(xn) (respectively of p, such
that Vj(p) ⊃ Vj+1(p)) is a base for the topology T . The base B is regular. In fact,
let (n, xn) ∈ E (resp. (α[(n(k))], p) ∈ E). If U is a neighborhood of (n, xn) (resp. of
(α[n(k)], p)), there is a neighborhood V of the point, V = E∩ ({n}×Vj(xn)) (resp.
V = E ∩ ({α[n(k)]}×Vj(p))) such that V ⊂ U ; if then B ∈ B and, both sets B ∩V
and B∩(E\V ) are nonempty, it follows that we must have B = E∩({n}×Vm(xn))
(B = E ∩ ({α[n(k)]} × Vm(p))).
Therefore, also B∩((([1, c[\{n})×Vj(xn))∪({n}×(X\Vj(xn))) 6= φ implies that

Vj(xn) ⊂ Vm(xn) that is, 1 ≤ m © j. Analogously for B intersecting (([1, c[\{n})×
Vj(p))∪ ({α[n(k)]}× (X\Vj(p)), whose nonempty intersections are less than j and,
we conclude that the set of the nonempty intersections is always finite. Clearly
(E, T ) is a (T1) space (it is a Hausdorff space). The theorem follows by Theorem
1. and the proof is complete.

Corollary 1. If (X,TX ) is a Hausdorff first countable, countably compact topo-
logical space then it is ω-bounded.

Proof. In fact, we know by Theorem 2. that E is metrizable for a metric d. It
holds that C = pr2(E) by Lemma 1. and the definition of the set S where, the map
pr2 : E → X, pr2(u, v) = v is a homeomorphism. In fact injectivity holds, due of
we assume that the xn are all different in Lemma 1; also the assignment [n(k)] 7→
p = limk xn(k) is a bijection on the set S of the [n(k)] to the set of limits limk xn(k),
for v = limk xj(k) 6= limk xn(k) = p implies that S(v) ∩ S(p) = φ in the above
notation, hence [j(k)] 6= [n(k)], α[n(k)] 6= α[j(k)]. Hence the induced topology on C
by TX is the topology for the metric d2 defined through d2(v, v0) = d((u, v), (u0, v0))
iff pr2(u, v) = v, pr2(u

0, v0) = v0 (v, v0 ∈ C). The fact that the closure C is
compact follows from being countably compact ([1], Theorem 3.6 (2), pp. 230) and
by Remark 1. and the corollary is proved.

Remark 6. Any space which topology is strictly finer than a Hausdorff first count-
able topology fails to be countably compact.

Proof. Let (X,T ) be first countable Hausdorff and let σ be a topology on X
strictly finer than T . This implies that there is a set A whose σ-closure Aσ is a
proper subset of its T -closure AT . Let p ∈ AT \Aσ. By first countability, there is
a T -sequence in A converging to p. The range of the sequence has p as its only
T -acumulation point. Since p is not in the σ-closure of the range, the range is an
infinite closed discrete subspace of (X,σ) and the remark follows.

Remark 7. The space γN as defined at p. 133 and characterized as in Example
2.2. in [5] is not first countable Hausdorff.

Proof. Just before Example 2.2. the author states that he considers a definition of
N that makes it disjoint from ω1, so that he considers the Franklin-Rojagopalan
space γN in such a way that, he identifies γN\N with ω1. In Example 2.2. the
author states namely ”Let {Aα : α ∈ ω1} be a ⊂∗-ascending sequence of infinite
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subsets ofN. (An easy ”diagonal” argument allows one to construct such a sequence
in ZFC). Set A−1 = φ. On the set N∪ω1 we impose the topology T which has the
sets of the form {n} (n ∈ N) and Un(β,α] (n ∈ N,β ∈ ω1∪{−1},α ∈ ω1) as a base,
where (β,α]means {γ ∈ ω1 : β ≺ γ ≤ α} and Un(β,α] = (β,α]∪(Aα\Aβ)\{1, ..., n}
where {1, ..., n} ⊂ N ... Thus this gives a γN ”. Here, the symbol ⊂∗stands for
B ⊂∗ A meaning that, B\A is finite and A\B is infinite where, A,B are subsets of
N (line 7). Now we have the following: clearly that in the notation as above, the
sets Wn(β,α] = (β,α]\{1, ..., n} together with the sets {n} constitute a base for a
topology σ that is strictly finer than the topology T as defined in Example 2.2. as
above. It holds that, σ is a countably compact topology ([1], Ex. 1, Chap. XI,
Sec. 3, pp. 228/9) hence, by the preceding Remark, T cannot be first countable
Hausdorff and the remark follows.

The author goes on in Example 2.2., showing that each γN space can be obtained
through a ⊂∗-ascending sequence of infinite sets as he starts explaining in Example
2.2. Now at p. 134, Observation 2.3., the author asserts that namely, ”γN is
countably compact if and only if, no infinite subset of N is almost disjoint from all
the Aα. (Two sets are said to be almost disjoint if their intersection is finite). The
existence of a ⊂∗-ascending sequence {Aα : α ≺ ω1} of subsets of N, such that no
infinite subset of N is almost disjoint from all Aα, is equivalent to t = ω1”. The
cardinal number t above is defined at lines 8/9 p. 133 ([5]). Line 21 p. 135 in [5]
asserts that it is not known if a Ostaszewski-van Dowen space exists in ZFC. It
follows from above that it leads to a contradiction the method for the proof of 3.3.
Construction, pp. 135/6 using the extra hypothesis to ZFC.

Concerning p. 652 in [4], we now prove that there is a flaw in the proof. The
author considers spaces Xα = ω ∪ {pβ : β ≺ α} where, α ∈ ω1, Xω1 = ∪{Xα :
α ≺ ω1}. He then defines a topology T on Xω1 such that Xω1 has ω as a dense
subspace and, according to the proof, ω is dense in each space Xα.
At line 21, we can read that the Xα are open in Xω1 ; further, each Xα is

metrizable (line 9) hence it is a Hausdorff space. If β ≺ α then Xβ is a subspace
of Xα (line 7) hence the topology of Xβ is the induced topology on Xβ by Xα.
Xα being locally compact (line 6) we may take the point pα as ∞ concerning the
Alexandroff one point compactification cXα so that cXα = Xα ∪ {pα} = Xα+1 as
sets. Clearly the identity injection Xα+1 → cXα is continuous (since that Xα+1 is
separated Hausdorff). We prove that the point pα+2 is not the limit, in Xω1 , of a
sequence in ω that is, ω is not dense in Xω1 , contradicting the conclusion at lines
20, 21. Let the n(k) be in ω, n(k) → p. We have that n(k) → p in some space
Xγ , α + 2 ≺ γ ≺ ω1. Also, a subsequence n(k(j)) → q in cXα hence q ∈ Xα+1. It
follows n(k(j))→ p in the topology of cXγ and, n(k(j))→ q in the topology of cXα,
hence n(k(j)) → q also in the topology of cXγ ; therefore p = q ∈ Xα+1 which is a
contradiction as we wished to point out. We also obtain the contradiction that, ω
is not dense in Xγ .

We now obtain an example of a (non separated) first countable, countably
compact space that is not ω-bounded.
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Remark 8. if α ∈ [0,ω1[ and, α has an immediate predecessor α− (that is,
α = α−+1, α− an ordinal number), we have that ]α−,α+1[= {α} is open in [0,ω1[.
If α has no immediate predecessor, then the set {]λ,α + 1[: λ ≤ α} is a countable
base of neighborhoods of α. Hence [0,ω1[ is a first countable space.

Remark 9. (Following [1]) The ordinal space [0,ω1[ is countably compact and, it
is not compact.

Proof. See [1], Ex. 1, Chap. XI, Sec. 3, pp. 228/9.

Keeping the notations as in the Preliminairies, we consider the set of ordinal
numbers E = [0,ω2[\{ω1}.

Example 1. (E,T ∗) will stand for the set E equipped with the topology T ∗ for
which a set A ⊂ E is open if and only if both conditions hold: (1) if α ∈ A∩ [0,ω1[
then A ∩ [0,ω1[ contains an open subset of the ordinal space [0,ω1[ containing α;
(2) if γ ∈ A∩]ω1,ω2[ then A ⊃ [0,ω[∪]ω1, γ].

Claim 1. The class T ∗ is a non separated topology on E such that, the induced
topology on [0,ω1[ coincides with the topology of the ordinal space [0,ω1[.

Proof. This follows immediately.

Claim 2. The topological space (E, T ∗) is first countable, countably compact and
it is not ω-bounded.

Proof. If γ ∈]ω1,ω2[ then the class {[0,ω[∪]ω1, γ]} is a base of neighborhoods of
γ; hence the space is (C1) follows from Remark 8. and Claim 1. Using Remark
9. and E (d) in [3] (p. 162) we conclude that (E, T ∗) is countably compact if we
prove that, each sequence (γn) in ]ω1,ω2[ has a convergent subsequence. Since that
each infinite increasing sequence in ]ω1,ω2[ has an upper bound in ]ω1,ω2[, we may
obtain an increasing subsequence (γn(k)) of (γn) (both these facts follow easily from
]ω1,ω2[ is well ordered). Now γ = sup{γn(k) : k = 1, 2, ...} is the limit of (γn(k)) in
(E, T ∗) according to the definition of the topology (an easy cardinality argument
shows that γ ≺ ω2) hence (E,T ∗) is countably compact. It remains to prove that
the space is not ω-bounded. In fact, each point γ ∈]ω1,ω2[ is in the closure of the
countable set [0,ω[; hence [0,ω[ = E. We have that E is not compact (clearly the
net (βα) where, βα = α ∈ [0,ω2[\{ω1} has no convergent subnet) and the claim
follows.
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