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Abstract. It is shown that there exists a geometric quotient of
the subscheme of stable points of Gr(C((z))⊕r) under the action
of Sl(r,C). The consequences in terms of vector bundles on an
algebraic curve are studied.

1. Introduction

In this paper it is shown that there exists a geometric quotient of the
subscheme of stable points of Gr(C((z))⊕r) under the action of Sl(r,C)
following GIT techniques.

It is worth recalling that Sato Grassmannians have shown up as
a fruitful tool for many problems from integrable systems to moduli
spaces (see [SS, SW, M, AMP] and references therein). Because of the
existence of symmetries one is led to wonder about the existence of
quotients. An standard (and powerful) procedure to carry out such a
study is the geometric invariant theory ([MF]).

However, the main obstacle when applying GIT to our situation
comes from the fact that Sato Grassmanianns are not schemes of finite
type. The second section of this paper is devoted to provide a way to
overcome this problem and shows how Sato Grassmannians can be con-
structed from schemes of finite type (Theorem 2.1). Section 3, which
recalls the notion of stability from [CMP], shows a similar result for the
subscheme of the Grassmannian consisting of stable points and finishes
with the existence of the geometric quotient (Theorem 3.4). Here, for
the restrictions on length and the sake of clarity, we have only dealt
with stability but a similar study can be carried out for semistability.
Finally, as an application of our results we use the Krichever map to
study the relation between our results and the well-known results for
the case of vector bundles on algebraic curves.
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Let us finish this introduction by pointing out a future line of re-
search. Once the quotient by Sl(r,C) has been constructed, one should
develop a theory of stability under Sl(r,C[[z]]) and discuss the possible
quotients. As an application, one should study the space of invariants
of H0(Gr(C((z))), Det∗) (Det being the determinant line bundle) since
these spaces are closely related to the spaces of conformal blocks in
Conformal Field Theory.

2. Preliminaries on Infinite Grassmannians

In this section we remind some definitions and results about infinite
Grassmannians. For more details on this subject we address the reader
to [AMP] and [CMP].

Let us begin with the definition of infinite Grassmannians. Let V a
C-vector space and V+ a subspace of V . We say that a subspace A ⊂ V
is commensurable with V+ when dimk(A + V+)/(A ∩ V+) < ∞ and we
denote this by A ∼ V+. The pair (V, V+) is assumed to satisfy

• ⋂
A∼V+

A = (0)

• V = lim←−
A∼V+

V/A

The infinite Grassmannian Gr(V, V+) (briefly Gr(V ) if we fix V+) is
the C-scheme whose rational points are

Gr(V ) =
{

C-subspaces F ⊂ V such that
dimk V/(V+ + F ) < ∞, dimk F ∩ V+ < ∞

}

The index or characteristic of F ∈ Gr(V )

χ(F ) = dimk(F ∩ V+)− dimk

(
V

F + V+

)

is locally constant as function of F . If Grχ(V ) denotes the set where
the index takes the value χ ∈ Z, then

Gr(V ) =
∐

χ∈Z
Grχ(V )

is the decomposition in connected components.
In particular, if V is a finite dimensional vector space, the points of

Grχ(V ) are those subspaces F where dimk F = χ(F ) + dimk(V/V+).
Henceforth, we will work with the case V := C((z))⊕r and V+ :=

C[[z]]⊕r (r ≥ 0) and fix χ ∈ Z. Let us recall how the infinite Grass-
mannian Grχ(V ) can be expressed in terms of finite Grassmannians
Grχ(V[−m,m)) where V[−m,m) := (z−mV+)/(zmV+), m ∈ N. More gen-
eral, we introduce the notation V[−m,i) := (z−mV+)/(ziV+), with m, i ∈
N.
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Let us consider

Ũm,m := Grχ(V[−m,m))

Ũm,m+1 :=

{
Fm+1 ∈ Grχ(V[−(m+1),m+1)) such that

Fm+1 + V[−m,m+1) = V[−(m+1),m+1) and Fm+1 ∩ V[m,m+1) = (0)

}

Ũm,i := Φ−1
i−1(Ũm,i−1), i > m + 1

where Φm is the rational map Grχ(V[−(m+1),m+1)) //___ Grχ(V[−m,m))

defined by

Φm(Fm+1) :=
(Fm+1 ∩ V[−m,m+1)) + V[m,m+1)

V[m,m+1)

whose domain of definition is the open subscheme Ũm,m+1.

The schemes Ũm,i’s fit into the diagram

· · · // Ũ0,3
Φ2 //

Ä _

² ²

Ũ0,2Ä _

²²

Φ1 // Ũ0,1Ä _

²²

Φ0 // Grχ(V[−0,0))

· · · // Ũ1,3Ä _

² ²

Φ2 // Ũ1,2Ä _

²²

Φ1// Grχ(V[−1,1))

· · · // · · · // · · ·

(2.1)

whose squares are cartesian. Furthermore, note that {(Ũm,i, Φi−1)}i≥m

is an inverse system for each m. From Proposition 1.5.1 of [EGA-II]

one obtains that Φi−1 : Ũm,i → Ũm,i−1 is an affine morphism for all i

and, hence, the inverse limit Um := lim←−
i≥m

Ũm,i is an open subscheme of

Grχ(V ). Explicitly, one has the following description

Um = {F ∈ Grχ(V ) s. t. F + z−m = V and F ∩ zmV+ = (0)}

Now, §2 of [CMP] yields the following

Theorem 2.1. For every m > 0, Um is an open subscheme of Um+1.
Moreover, the open sets Um are a covering of Grχ(V )

Grχ(V ) =
⋃

m>0

Um =
⋃

m>0

lim←−
i≥m

Ũm,i (2.2)

In particular, a subspace F ∈ Grχ(V ) corresponds to a family of

finite dimensional subspaces, {F[−i,i)}i≥m0 , where F[−i,i) ∈ Ũm0,i ⊂
Grχ(V[−i,i)). Explicitly, given F a family F[−m,i) is constructed as fol-
lows

F[−m,i) :=
(F ∩ z−mV+) + ziV+

ziV+
, i ≥ m ≥ m0
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Conversely, a family {Fm,i} ∈ Um determines a subspace F by the
expression

F :=
⋃

m≥m0

lim←−
i≥m

(Fm,i ∩ V[−m,i))

In particular, it holds that F ∩ z−mV+ = lim←−
i≥m

(Fm,i ∩ V[−m,i)).

3. Geometric quotient by the action of Sl(r,C)

We will prove that the set of stable points of Grχ(V ) admits a geo-
metric quotient by the action of the group Sl(r,C). Recall [CMP] has
proposed a natural notion of stability for points of the infinite Grass-
mannian Grχ(V ) with respect to the action of the reductive group
Sl(r,C). That proposal was based on the application of GIT to the
finite Grassmannians, Grχ(V[−m,m)). Then, finite and infinite Grass-
mannians were related with the help of diagram (2.1) since Sl(r,C)
acts on each term and all maps are equivariant. The following funda-
mental property was proved.

Proposition 3.1 ([CMP], Proposition 3.6). Let Ũ s
m,i denote the set of

stable points of Ũm,i w.r.t. the action of Sl(r,C).

It holds that Φ−1
i (Ũ s

m,i) ⊆ Ũ s
m,i+1. In particular, if {F[−i,i)}i≥m are

associated to F ∈ Gr(V ) as in equation (2.2) and F[−i0,i0) is stable,
then F[−i,i) is stable for all i ≥ i0 ≥ m.

The definition is the following

Definition 3.2 ([CMP], Definition 3.7). Let F[−i,i) ∈ Um,i ⊂ Gr(V[−i,i))
be those subspaces associated to a point F ∈ Gr(V ) by (2.2).

The point F is (semi)stable for the action of Sl(r,C) if there exist
m ∈ N and i ≥ m such that F[−i,i) is (semi)stable.

We denote the set of the stable and semistable points of Gr(V ) by
Gr(V )s and Gr(V )ss, respectively.

The above proposition also implies the following

Proposition 3.3. Let us denote by Um,m := Ũ s
m,m and Um,i := Φ−1

i−1(Um,i−1) ⊆
Ũ s

m,i for each m ∈ N and i > m.
It holds that {lim←−

i≥m

Um,i | m > 0} is an increasing sequence of open

subsets and that

Grχ(V )s =
⋃

m>0

lim←−
i≥m

Um,i (3.1)
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Proof. To begin with, note the following facts; firstly, {(Um,i, Φi)}i≥m

is an inverse system for each m; secondly, there is a diagram

lim←−
i≥m

Um,i

Ä _

²²

Â Ä // (Um)s
Ä _

²²lim←−
i≥m+1

Um+1,i Â Ä // (Um+1)s

and, finally, that Grχ(V )s =
⋃

m>0(U
m)s (by (2.2)).

Now, let F ∈ Grχ(V ) be a stable point. Let {F[−i,i)} be the subspaces
associated to F . By Proposition 3.1 there exists m0 such that F[−i,i) ∈
Ũ s

m,i for all m and for all i > m0. Then, {F[−i,i)} defines a point of
lim←−
i≥m

Um,i ⊆ (Um)s for all m ≥ m0. And the conclusion follows. ¤

From Theorem 1.10 of [MF] we know that the open set of stable
points of Grχ(V[−m,m)) for the action of Sl(r,C) does admit a geometric
quotient. Furthermore, the open subscheme Um,i, which is acted by
Sl(r,C) and whose points are stable, also admits a geometric quotient
(see “Converse” 1.13 [MF]). We denote by pm,i : Um,i → Ym,i this
quotient. The composition pm,i ◦ Φi factors through pm,i+1, that is

Um,i+1
Φi //

pm,i+1

²²

Um,i

pm,i

²²
Ym,i+1

Θm,i

// Ym,i

(3.2)

We have an inverse system {(Ym,i, Θm,i)}i≥m for each m > 0. Let
Y m := lim←−

i≥m

Ym,i and let pm the morphism induced by {pm,i} between

the inverse limits

pm : lim←−
i≥m

Um,i −→ Y m = lim←−
i≥m

Ym,i

Observe that the family {Um,i} fits into a diagram similar to (2.1).
Then, applying the properties of inverse limits, one gets a commutative
diagram

lim←−
i≥m

Um,i Â Ä //

pm

²²²²

lim←−
i≥m+1

Um+1,i

pm+1

²²²²
Y m Â Ä γm // Y m+1

for each m. Since γm : Y m ↪→ Y m+1 are open immersions, it makes
sense to consider the scheme Y defined by recollement of {Y m, γm}; or,
in other words

Y :=
⋃

m>0

Y m (3.3)
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Finally, note that there is a map induced by the pm’s

p : (Grχ(V ))s =
⋃
m>0

lim←−
i≥m

Um,i −→ Y

Now, it is straightforward to prove the main result of this section.

Theorem 3.4. The scheme Y is the geometric quotient of Grχ(V )s by
the action of Sl(r,C).

Proof. Recall that both Grχ(V )s and Y are expressed by a recolle-
ment of open subschemes (see equations (3.1) and (3.3)). Further, it is
straightforward to check that the claim will follow if we prove that Y m

is the geometric quotient of lim←−
i≥m

Um,i for the action of Sl(r,C) for all m.

In order to this fact we follow the items of Definition 0.6 of [MF].

• The morphism pm is Sl(r,C)-equivariant. It holds because the
morphisms of the diagram (3.2) are Sl(r,C)-equivariant.

• pm is surjective. We consider a sequence {Gi}i≥m ∈ Y m. Since
pm,i is surjective, we may choose Fi ∈ Um,i such that pm,i(Fi) =
Gi. Having in mind that the fiber of Gi is equal to its orbit and
that Φi(Fi+1), Fi ∈ p−1

m,i(Gi), there exists gi+1 ∈ Sl(r,C) such
that Φi(gi+1Fi+1) = Fi, for each i ≥ m.

We now check that the sequence

{F ′
m := Fm, F ′

m+1 := gm+1Fm+1, F
′
m+2 := gm+1gm+2Fm+2, · · · }

is a preimage of {Gi}i≥m by pm.
• For any W ⊆ Y m, W is open if and only if (pm)−1(W ) is open.

Since pm is a continuous map, (pm)−1(W ) is open for all open
subsets W ⊆ Y m. Let us now show the converse. Let W ⊆ Y m

be a subset such that (pm)−1(W ) is open. From Chap. I, §4,
N 4 of [B], we know that any open subset of the inverse limit
lim←−
i≥m

Um,i is of the type
⋃

i≥m

(i)
−1(Xi), where i are the projections

of the limit in each of its factors and Xi are open sets of Um,i.
Note that Xi = p−1

m,i(pm,i(Xi)) and, since pm,i is a geometric
quotient, it follows that pm,i(Xi) ⊆ Ym,i is open. Then, the
surjectivity of pm implies that

W = pm((pm)−1(W )) = pm
( ⋃

i≥m

(i)
−1(Xi)

)
=

=
⋃
i≥m

pm((i)
−1(Xi)) =

⋃
i≥m

(ji)
−1(pm,i(Xi))

and we conclude that W ⊆ Y m is open.
• It holds that

Im Γm = lim←−
i≥m

Um,i ×Y m lim←−
i≥m

Um,i
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where Γm is the morphism

Γm : Sl(r,C)× lim←−
i≥m

Um,i → lim←−
i≥m

Um,i × lim←−
i≥m

Um,i

(g, F ) 7→ (F, gF )

The inclusion ⊆ is straightforward, so let us prove the reverse
one ⊇. Let us take an element

(
F = {Fi}, G = {Gi}

) ∈ lim←−
i≥m

Um,i ×Y m lim←−
i≥m

Um,i

therefore, it is verified that pm,i(Fi) = pm,i(Gi) for every i ≥ m.
By the properties of pm,i, there exist gi ∈ Sl(r,C) for i ≥ m
such that Fi = giGi. If we prove that gi = gj for all i, j ≥ m,
then we obtain F = gG for an element g ∈ Sl(r,C) and, thus,
(F, G) ∈ Im Γm as it was to be shown.

So, let us check that all gi’s are equal. Take i > j ≥ m
arbitrary, and observe that

gi1Gi1 = Fi1 = Φi1 · · ·Φi2−1Fi2 =
= Φi1 · · ·Φi2−1gi2Gi2 = gi2Gi1 . (3.4)

We conclude that g−1
i1

gi2 , g
−1
i2

gi1 ∈ Stab(Gi1) where Stab is the
stabilizer of a point for the action of a group.

Now, as Gi is a stable point for every i ≥ m, we know that
Stab(Gi) is a finite set (Lemma 3.17 of [N]) and we easily have
the inclusions

Stab(Gm) ⊇ Stab(Gm+1) ⊇ · · · .

Therefore there exists i0 ≥ m such that Stab(Gi) = Stab(Gi+1)
for every i ≥ i0. For i < i0 we get g−1

i gi0 ∈ Stab(Gi) by (3.4).
For i ≥ i0, we obtain g−1

i gi0 ∈ Stab(Gi0) = Stab(Gi) by (3.4)
and by the equality of the stabilizers.

So for every i ≥ m, we deduce

Fi = giGi = gi(g−1
i gi0Gi) = gi0Gi.

We conclude that F = gi0G and therefore (F, G) ∈ Im Γm.
• The morphism OY m → (pm)∗O lim←−

i≥m

Um,i
induces an isomorphism

of OY m and the invariants of (pm)∗O lim←−
i≥m

Um,i
under Sl(r,C). This

is true because

OYm = lim−→
i≥m

OYm,i
' lim−→

i≥m

(OSl(r,C)
Um,i

)
=

(
O lim←−

i≥m

Um,i

)Sl(r,C)

¤
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4. Moduli of vector bundles with trivialization

In this section we will study the relation between the moduli spaces
of vector bundles with finite trivialization and those with formal triv-
ialization. Then, that relation will be interpreted in terms of Grass-
mannians. For the construction of the moduli spaces of vector bundles
with finite trivialization in terms of the finite Grassmannian we follow
[S, AM]. A triple (C, p, tp) consisting of a irreducible non-singular pro-
jective curve over C, a smooth point and an isomorphism of C-algebras
Ôp

∼→ C[[z]] will be fixed from now on. Following [M], we know that
there is a C-scheme, M∞(r, d), whose set of rational points is given by

M∞(r, d) :=

{
pairs (F , δ) s.t. F is a rank r degree d vector bundle

on C and δ is an isomorphism F̂p
∼→ Ô⊕r

p

}
/ ∼

where we write (F , δ) ∼ (F ′, δ′) if and only if there exists an isomor-

phism of sheaves, f : F ∼→ F ′ compatible with δ and δ′.
The Krichever map forM∞(r, d) is the scheme homomorphism given

by

K : M∞(r, d) −→ Gr(V, V+)

(F , δ) 7−→ (tp ◦ δ)
(
H0(C \ {p},F)

)

with V := C((z))⊕r and V+ := C[[z]]⊕r. Since this map is a closed
immersion, the scheme M∞(r, d) can be thought as a closed subscheme
of Gr(V ).

In [S] (see also [AM]) trivializations of finite order have been con-
sidered. It has been shown that there exist C-schemes Ms

m,i(r, d), for
each pair (i,m) with i ≥ m > m0 := 2g(r + 1) (where g is the genus of
C), whose set of rational points is given by

Ms
m,i(r, d) :=





(F , δi) s.t. F is a rank r degree d stable v. b.

on C, δi is a surjection F → (OC/OC(−ip))⊕r

and H0(C,F(−mp)) = 0, H1(C,F(mp)) = 0





/ ∼

The equivalence relation is analogous to the previous one.
The Krichever map for Ms

m,i(r, d) is the scheme homomorphism
given by

Km,i : Ms
m,i(r, d) ↪→ Grχ(V[−i,i))

(F , δi) 7→ (tp ◦ δi)
(
H0(C \ {p},F(ip))

) (4.1)

with χ = d + r(1 − g) and V[−i,i) = z−iV+/ziV+ (see [AM], Corollary
2.1).

Let us write down maps relating these spaces. Firstly, note that
Ms

m+1,i(r, d) ⊂Ms
m,i(r, d) is an open subscheme for each i ≥ m + 1.

Let us now define an affine and surjective map

Φi : Ms
m,i+1(r, d) // // Ms

m,i(r, d)
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which maps (F , δi+1) to (F , δi) where δi is given by

F δi+1 // // (OC/OC(−(i + 1)p))⊕r // // (OC/OC(−ip))⊕r

Finally, we introduce the rational map

M∞(r, d) 99K Ms
m,i(r, d)

(F , δ) 7→ (F , δi)
(4.2)

whose domain of definition is the open subscheme consisting of those
pairs (F , δ) such that F is stable and H0(C,F(−m)) = H1(C,F(m)) =

0. Here δi is constructed from δ, since giving an isomorphism δ : F ∼→
Ô⊕r

C,p is equivalent to giving a compatible family of surjections {δi}.
Summing up, we have the diagram

· · · // Ms
m0,m0+3

Φm0+2 //
Ä _

²²

Ms
m0,m0+2Ä _

²²

Φm0+1 // Ms
m0,m0+1Ä _

²²

Φm0 // Ms
m0,m0

· · · // Ms
m0+1,m0+3Ä _

²²

Φm0+2// Ms
m0+1,m0+2Ä _

²²

Φm0+1// Ms
m0+1,m0+1

· · · // · · · // · · ·
From these arguments one deduces the following

Theorem 4.1. There is an identification

{(F , δ) ∈M∞(r, d) s.t. F is stable} =
⋃

m≥m0

lim←−
i≥m

Ms
m,i(r, d)

The following proposition unveils the relation between this result and
Theorem 2.1.

Proposition 4.2. Let m ≥ m0. The diagram

lim←−
i≥m

Ms
m,i(r, d) //

Ä _

²²

Um = lim←−
i≥m

Um,i

Ä _

²²
{(F , δ) ∈M∞(r, d) s.t. F is stable} Â Ä K // Grχ(V )

is cartesian and the four maps are Sl(r,C)-equivariant.

Proof. Given (F , δ) ∈ M∞(r, d) such that F is stable, we know from
Theorem 2.7 of [M] (see also [O]) that that the formal trivialization δ
induces canonical isomorphisms

F ∩ zmV+ ' H0(C,F(−m))
V

F + z−mV+
' H1(C,F(m))

for every integer m. Furthermore, the stability of F implies the stabil-
ity ofK((F , δ)) ∈ Grχ(V ) w.r.t. the action of Sl(r,C) (see [CMP], §3.2).
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Then, the Krichever map (4.1) takes values in Um,i ⊆ Grχ(V[−i,i));
taking inverse limits one gets the arrow on the top row. Now, it is easy
to check that

K(F , δ) ∈ Um ⇐⇒ H0(C,F(−m)) = H1(C,F(m)) = 0

and the conclusion follows. ¤
Remark 4.3. As a consequence of these results and those of §2, it
holds that

K((F , δ)) =
⋃

m≥m0

lim←−
i≥m

(Km,i(F , δi) ∩ V[−m,i))

Remark 4.4. Let us write down the condition that (F , δ), (F ′, δ′) ∈
M∞(r, d) have the same image in the quotient. Since their images
under p are equal, there exists g ∈ Sl(r,C) such that K((F , δ)) and
g
(K((F ′, δ′))

)
coincide or, what is tantamount, there is an isomorphism

ḡ : F ∼→ F ′ making commutative the following diagram

F
ḡ o

²²

// F̂p
δ
∼ // Ô⊕r

p

o g

²²

F ′ // F̂ ′p δ′
∼ // Ô⊕r

p

Theorem 4.5. Let (F , δ) ∈ M∞(r, d). Then, (F , δ) is not stable (as
a point of Gr(V )) if and only if there exists a vector subbundle G ⊂ F
with a formal trivialization, γ : Ĝp

∼→ Ô⊕l
p with l < r, and g ∈ Sl(r,C)

such that the following two conditions hold

• µ(G) ≥ µ(F) where µ is the slope of the bundle; and,
• δ|Ĝp

= g ◦ γ.

Proof. Let F = K((F , δ)). Recall that Theorem 3.11 of [CMP] states
that F ∈ Gr(k[[z]]⊕r) is not stable w.r.t. the action of Sl(r,C) if and
only if there exist l < r and g ∈ Sl(r,C) such that 1

l
χ(F∩gV l) ≥ 1

r
χ(F )

where V l denotes the subspace k((z))⊕l ⊕ 0⊕ · · · ⊕ 0 ⊆ V .
Let (F , δ) be a non stable point and let l and g be as above. Then, by

Proposition 4.2 of [CMP] (see also Proposition 1 of [O]), the subspace
F ∩ gV l lies on Gr(k((z))⊕l) and gives rise a vector bundle on C, G
endowed with a formal trivialization γ satisfying the conditions of the
statement.

The converse can be proved similarly. ¤
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