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Abstract

The Zakharov-Rubenchik system





i∂T B + ω∂XXB − k(u − v
2ρ + q|B|2)B = 0

ǫ∂T ρ + ∂X(u − vρ) = −k∂X |B|2
ǫ∂T u + ∂X(βρ − vu) = k

2v∂X |B|2

appears in the context of Alfvén waves propagating in a magnetized plasma. This
system “contains” the well-known Zakharov Equation and the Benney Equation for
the interaction of high and low frequency waves. We prove the pointwise convergence
of the magnetic field B to a solution of the Nonlinear Schrödinger Equation, in the
adiabatic limit ǫ → 0.
Key Words: Alfvén waves, Schrödinger-like Equations, Hyperbolic Symmetric systems.
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1 Introduction

In the presence of an external magnetic field, transverse oscillations of the magnetic
field lines known as Alfvén waves can be observed in several magnetized plasmas. The
dynamics of Alfvén waves are ruled by the so-called Magneto-Hydro-Dynamics Equa-
tions (MHD). By a multi-scale analysis and considering variations of the fields exclu-
sively in the direction of propagation (0x), Champeaux &al ([1]) derived from the MHD
equations the following system for the evolution of wave trains of Alfvén waves with
wave number k and frequency ω̃, in a frame travelling at the Alfvén-wave group velocity
v = 2ω̃3k−1(k2 + ω̃2)−1:






i∂TB + ω∂XXB − k(u− 1
2
vρ)B = 0

ǫ∂T ρ̃+ ∂X(ũ− vρ̃) = 0

ǫ∂T ũ+ ∂X(βρ̃− vũ+ 1
2
|B|2) = 0.

(1)
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Here, B = By + iBz denotes the transverse component of the magnetic field, ρ̃ the density
of mass, ũ the fluid speed in the direction of propagation, β > 0 the squared ratio of the
sonic to the Alfvén speed and

ω =
ω̃3

2(ω̃2 + k2)

(
1

k2
− 4

k2

(k2 + ω̃2)2

)
.

The “slow” variables (X, T ) are given by the scaling X = ǫ(x− vt) and T = ǫ2t, where ǫ
is a small parameter. Here, the wave number k (assumed positive) and the frequency ω̃
are related by the dispersion relation

ω̃ = k

(
σ1

k

2Ri

+ σ2

√

1 +
k2

4Ri

)
,

where Ri is the non-dimensional ion-cyclotron frequency, σ1 = ±1 (right/left-hand circu-
larly polarization) and σ2 = ±1 (forward/backward propagation).

This system becomes resonant when β = v2. As mentioned in [1], far from this
resonance, by setting

q = k +
v

4

kv − 1

β − v2
, u = ũ− (k +

v

2

kv − 1

β − v2
)|B|2 and ρ = ρ̃− kv − 1

2(β − v2)
|B|2,

system (1) can be transformed into the Zakharov-Rubenchik system





i∂TB + ω∂XXB − k(u− v
2
ρ+ q|B|2)B = 0 (a)

ǫ∂Tρ+ ∂X(u− vρ) = −k∂X |B|2 (b)

ǫ∂Tu+ ∂X(βρ− vu) = k
2
v∂X |B|2. (c)

(2)

This system was introduced in [13] as a model for the interaction of high and low
frequency waves. In [7], we proved that the Cauchy problem associated to (2) is globally
well-posed for initial data (Bo, ρo, uo) in H2(R) × H1(R) × H1(R) and showed that for
ǫ > 0 small enough, (2) possesses solitary wave solutions which are orbitally stable. In
[8], a study of the local well-posedness of a multi-dimensional version of (2) is made.

In the present report we are concerned with the following problem: by making ǫ tend
to 0 (the so-called adiabatic limit), we get formally from (2−b, c) that ρ and u become
slaved to the magnetic field amplitude through

ρ = − kv

2(β − v2)
|B|2 and u = −kβ − v2/2

β − v2
|B|2.
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Replacing in (2−a), we find that the magnetic field B satisfies the cubic Nonlinear
Schrödinger equation (NLS)

i∂TB + ω∂XXB +
kv

4(β − v2)
|B|2B = 0. (3)

Here, we will justify rigourously this approximation: in the case where the conditions

ω̃ < 0, β − v2 > 0 and ω > 0 (4)

hold, we prove the pointwise convergence of the solutions B(ǫ) of (2) to the solution B of
(3).
Before stating more precisely our main theorem, we give a few notations:
For all p ∈ [1; +∞[, we introduce the usual Lp spaces

Lp(R) =

{
f ; ‖f‖Lp = (

∫
|f |p) 1

p < +∞
}
.

We set Λ = (1 − ∂2
x)

1
2 , i.e., for all G(x) = (g1(x), . . . , gn(x)), where gj is a tempered

distribution,

F(ΛG)(ξ) =
(
(1 + ξ2)

1
2F(g1)(ξ), . . . , (1 + ξ2)

1
2F(gn)(ξ)

)
,

F denoting the Fourier transform.

For s ∈ R, we introduce the Sobolev spaces Hs(R) = {f ; ‖f‖2
s = ‖Λsf‖2

L2 < ∞},
and, setting C∞

o (R) the space of smooth functions with compact support, we denote the
local Sobolev spaces by

Hs
loc(R) = {f ; ∀θ ∈ C∞

o (R) , θf ∈ Hs(R)}.

Finally, we denote by [Λs, F ] the commutator given by

[Λs, F ]G = Λs(FG) − FΛs(G),

where G = (g1(x), . . . , gn(x)) and F = (fi,j(x)) is a n-square matrix.

We will prove the following result:

Theorem 1.1 Assume conditions (4) hold. Let s > 7
2
, 0 < ǫ < 1 and

(Bo, ρo, uo) ∈ Hs+1(R) ×Hs(R) ×Hs(R) (5)

satisfying the compatibility conditions

uo − vρo = −k|Bo|2 and βρo − vuo = k
v

2
|Bo|2. (6)
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Then there exists T > 0 independent of ǫ such that the Zakharov-Rubenchik system (2)
with initial data (5) possesses a unique solution

(B(ǫ), ρ(ǫ), u(ǫ)) ∈ Cj([0;T ];Hs+1−2j(R) ×Hs−j(R) ×Hs−j(R)), j = 0, 1.

Moreover, the following pointwise convergence holds:

B(ǫ) → B in C1−j([0;T ];C2j
loc), (7)

where B ∈ Cj([0;T ];Hs+1−2j) is the solution of the NLS equation (3) for initial data
B(0, x) = Bo(x).
Furthermore,

u(ǫ) − vρ(ǫ) + k|B(ǫ)|2 → 0 and βρ(ǫ) − vu(ǫ) − k
v

2
|B(ǫ)|2 → 0 in Cb([0;T ] × R). (8)

We will deal with the system




iBt +Bxx + aφB + efψB + c|B|2B = 0 (a)

ǫ2φtt + dǫφtx − φxx = −a|B|2xx (b)

ǫψt + eψx = f |B|2x, (c)

(9)

where a, c, d, e, f are real constants. Indeed, the Zakharov-Rubenchik system (2) can
be put in this form through linear transformations and space-time rescaling (see the
Appendix), provided that conditions (4) hold. Hence we will prove the counterpart of
Theorem 1.1 for system (9):

Theorem 1.2 Let s > 7
2

and 0 < ǫ < 1.
Let

(Bo, φo, φ̂o, ψo) ∈ Hs+1(R) ×Hs(R) ×Hs−1(R) ×Hs(R), (10)

with φ̂o = θx, θ ∈ Hs(R).
Then there exists T > 0 independent of ǫ such that the I.V.P. (9) with initial data

B(0, x) = Bo(x), φ(0, x) = φo(x), ψ(0, x) = ψo(x) and φt(0, x) = φ̂o(0, x)

possesses a unique solution

(B(ǫ), φ(ǫ), ψ(ǫ)) ∈ Cj([0;T ];Hs+1−2j(R) ×Hs−j(R) ×Hs−j(R)), j = 0, 1.

Furthermore, if φo = a|Bo|2 and ψo =
f

e
|Bo|2,

B(ǫ) → B̂ in C1−j([0;T ];C2j
loc),

where B̂ ∈ Cj([0;T ];Hs+1−2j(R)) is the solution to the NLS equation

iB̂t + B̂xx + (a2 + f 2 + c)|B̂|2B̂ = 0
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for initial data B(0, x) = Bo(x).
Also,

φ(ǫ) − a|Bǫ|2 → 0 and ψ(ǫ) − f

e
|B(ǫ)|2 → 0 in Cb([0;T ] × R).

Note that system (9) contains several well-known models:
On one hand, if a = −1, c = d = e = f = 0 and ψ ≡ 0, one gets the well-known

Zakharov system ([12]): 



iBt +Bxx − φB = 0

ǫ2φtt − (φ+ |B|2)xx = 0.
(11)

A result similar to Theorem 1.1 is obtained in [9] for this special case. In [3], the authors

prove that for small initial data (Bo, φo, φ̂o), the adiabatic limit of (11) is uniform in ǫ.

On the other hand, taking φ ≡ 0 and a = 0, (9) becomes the Benney Equation





iBt +Bxx + efψB + c|B|2B = 0

ǫψt + eψx = f |B|2x,
(12)

which has been extensively studied by many authors: see for instance [6], [10] and [11] for
the well-posedness and [5] for a study of the stability of the solitary wave type solutions in
the case where c = 0. To the best of our knowledge, there is no reference in the literature
to the adiabatic limit of the Benney equation.

The rest of this paper is organized as follows: in Section 2 we show that (9) can be
put in the form of a quasilinear symmetric hyperbolic system. This will allow us to use
the general Friedrich’s theory for symmetric hyperbolic systems and derive in section 3
via a fixed-point technique a life span T independent of ǫ. In section 4, we complete the
proof of Theorem 1.2 and finally, in the Appendix, we explain why Theorem 1.2 implies
Theorem 1.1.

2 Obtaining a perturbed hyperbolic system

We show here that an hyperbolic system can be obtained from (9). The strategy is to
treat the problem of the adiabatic limit of the Zakharov-Rubenchik system in the frame
of the pioneer work of S. Klainerman and A. Majda ([4]) for the limiting behaviour of
quasilinear hyperbolic systems as certain coeficients become infinite. A similar method
was also introduced in [9].

We start from a solution (B, φ, ψ), corresponding to initial data given by (10), and set

F = φ− a|B|2, G = −eψ + f |B|2, (13)
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and
Vx = −ǫφt. (14)

Note that, from (9-b),

∂t(φt) = [− a

ǫ2
|B|2x +

1

ǫ2
φx −

d

ǫ
φt]x,

and φt(0, .) = φ̂o = θx, hence φt is an x-derivative for all times.

From (9):

Vt +
d

ǫ
Vx +

1

ǫ
Fx = 0. (15)

Differentiating (13) with respect to t,

Ft +
1

ǫ
Vx + a|B|2t = 0 (16)

and
Gt +

e

ǫ
Gx − f |B|2t = 0. (17)

From (9-a),
iBt +Bxx + (aF − fG+ (a2 + f 2 + c)|B|2)B = 0. (18)

We now set √
2B = α + iβ and

√
2Bx = γ + iδ.

From (18),

αt + β(aF − fG+
1

2
(a2 + f 2 + c)(α2 + β2)) = −βxx, (19)

βt − α(aF − fG+
1

2
(a2 + f 2 + c)(α2 + β2)) = αxx. (20)

Differentiating (18) with respect to x:

iBxt +Bxxx + (aF − fG+ (a2 + f 2 + c)|B|2)Bx

+ (aFx − fGx + (a2 + f 2 + c)(BBx +BxB))B = 0. (21)

Taking the real and the imaginary part,

γt + (aF − fG+
1

2
(a2 + f 2 + c)(α2 + β2))δ

+ (aFx − fGx + (a2 + f 2 + c)(αγ + βδ))β = −δxx, (22)

δt − (aF − fG+
1

2
(a2 + f 2 + c)(α2 + β2))γ

− (aFx − fGx + (a2 + f 2 + c)(αγ + βδ))α = γxx. (23)
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Multiplying (18) by B and taking the imaginary part yields

|B|2t =
1

i
(BBxx − BxxB) = βγx − αδx. (24)

Replacing in (16) and (17):

Ft +
1

ǫ
Vx + a(βγx − αδx) = 0, (25)

and
Gt +

e

ǫ
Gx − f(βγx − αδx) = 0. (26)

Finally, setting Y = (V, F,G, α, β, γ, δ), from (15),(19),(20),(22),(23),(25) and (26), we
obtain the perturbed quasilinear hyperbolic system

Yt +

(
1

ǫ
M +N(Y )

)
Yx +R(Y ) + AYxx = 0, (27)

where

M =




d 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 e 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, N(Y ) =




0 0 0 0 0 0 0
0 0 0 0 0 aβ −aα
0 0 0 0 0 −fβ fα
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 aβ −fβ 0 0 0 0
0 −aα fα 0 0 0 0




are symmetric matrixes,

A =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0




is antisymmetric, and the nonlinear part R(Y ) reads

R(Y ) =




0
0
0
β(aF − fG+ 1

2
(a2 + f 2 + c)(α2 + β2))

−α(aF − fG+ 1
2
(a2 + f 2 + c)(α2 + β2))

(aF − fG+ 1
2
(a2 + f 2 + c)(α2 + β2))δ + (a2 + f 2 + c)(αγ + βδ)β

−(aF − fG+ 1
2
(a2 + f 2 + c)(α2 + β2))γ − (a2 + f 2 + c)(αγ + βδ)α




.
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3 Uniform estimates

In this section, we prove the following result for the system (27):

Lemma 3.1 Let s > 3
2
, 0 < ǫ < 1 and

Yo = (Vo, Fo, Go, αo, βo, γo, δo) ∈ Hs(R)7. (28)

There exists a life-span T > 0 independent of ǫ such that the I.V.P. (27) with initial data
(28) possesses a unique solution Y (ǫ) ∈ Cj([0;T ];Hs−2j(R)7).

Furthermore, for all t ≤ T , ‖Y (t)‖s ≤ C(T ), where C(T ) is a positive constant
independent of ǫ.

We begin by considering, for a fixed function W , the linear equation

Yt +

(
1

ǫ
M +N(W )

)
Yx + AYxx = 0, (29)

where M , N(W ) and A were computed in Section 2. The solutions to (29) are given by
the following lemma:

Lemma 3.2 Let s > 3
2

and W ∈ C(R, Hs(R)7). There exists an evolution family
{U(t, τ)}t≥τ≥0 acting on Hs(R)7:

U(t, τ) : Hs(R)7 → Hs(R)7

f → U(t, τ)f

which generates the solution Y (x, t) = U(t, τ)f ∈ C(R+, H
s(R)7) ∩ C1(R+, H

s−2(R)7) of
the I.V.P. (29) for initial data Y (x, τ) = f(x).

Moreover, for 0 ≤ τ ≤ t ≤ T and for every f ∈ Hs(R)7,

‖U(t, τ)f‖s ≤ eCT sup0≤t≤T ‖W (t)‖2
s‖f‖s, t ∈ [0;T ], (30)

where C is a positive constant independent of ǫ.

Proof of Lemma 3.2:

We derive here an a priori energy estimate. Applying Λs to (29) and taking the inner
product with ΛsY yields

〈ΛsYt,Λ
sY 〉 +

1

ǫ
〈MΛsYx,Λ

sY 〉 + 〈Λs(N(W (t))Yx),Λ
sY 〉 + 〈AΛsYxx,Λ

sY 〉 = 0. (31)

Since M is a symmetric constant matrix, 〈MΛsYx,Λ
sY 〉 = 1

2
〈MΛsY,ΛsY 〉x.

Moreover,

〈Λs(N(W (t))Yx),Λ
sY 〉 = 〈N(W (t))ΛsYx,Λ

sY 〉 + 〈[Λs, N(W (t))]Yx,Λ
sY 〉.
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Since N(W (t)) is symmetric,

〈N(W (t))ΛsYx,Λ
sY 〉 =

1

2
〈N(W (t))ΛsY,ΛsY 〉x −

1

2
〈N(W (t))xΛ

sY,ΛsY 〉.

Also, integrating (31) over R :

1

2

d

dt
‖ΛsY ‖2

o =
1

2

∫
〈N(W (t))xΛ

sY,ΛsY 〉dx−
∫

〈AΛsYxx,Λ
sY 〉dx

+

∫
〈[Λs, N(W (t))]Yx,Λ

sY 〉dx

≤ ‖N(W (t))x‖∞‖ΛsY ‖2
o −

∫
〈AΛsYx,Λ

sYx〉dx

+ ‖[Λs, N(W (t))]Yx‖L2‖ΛsY ‖L2.

Since A is antisymmetric,

∫
〈AΛsYx,Λ

sYx〉dx = 0.

Furthermore, ‖[Λs, N(W (t))]Yx‖L2 ≤ ‖N(W (t))‖s‖Yx‖s−1, and since s−11
2
, by the Sobolev

injection Hs−1(R) →֒ L∞(R),

‖N(W (t))x‖∞ ≤ C‖N(W (t))x‖s−1 ≤ C‖N(W (t))‖s.

Finally, since s > 3
2
, Hs(R) is an algebra: for f, g ∈ Hs, fg ∈ Hs and ‖fg‖s ≤ C‖f‖s‖g‖s.

Hence, since N is quadratic in W , ‖N(W (t))‖s ≤ C‖W (t)‖2
s, Therefore, we obtain the a

priori estimate

d

dt
‖Y (t)‖2

s ≤ C(t)‖Y (t)‖2
s, where C(t) = C‖W (t)‖2

s (32)

It is well-known from the general theory of semigroups for non-autonomous linear equa-
tions that (32) implies the existence of an evolution family {U(t, τ)}t≥τ≥0 as described in
Lemma 3.2 (see for instance [2]. �

Proof of Lemma 3.1:

For Yo ∈ Hs, s > 3
2

and T > 0 we consider the Banach space X(T ) = C([0;T ];Hs(R7))
endowed with the norm ‖W‖X = sup0≤t≤T ‖W (t)‖s and

E(T ) = {W ∈ X ; ‖W‖X ≤ 2K},

where K is such that ‖Yo‖s ≤ K.
Moreover, we consider the map

Ψ : E(T ) → C([0;T ], Hs(R7))

W → U(t, 0)Yo +

∫ t

0

U(t, τ)R(W (τ))dτ,
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We claim that for T small enough, Ψ is a contraction of the X-ball E(T ).
Indeed, for all t ≤ T ,

‖Ψ(W (t))‖s ≤ ‖U(t, 0)Yo‖s +

∫ t

0

‖U(t, τ)R(W (s))‖sds.

By (30), ‖U(t, 0)Yo‖s ≤ eCT‖W‖2
X‖Yo‖s ≤ Ke4CTK2

.

Also,
∫ t

0

‖U(t, τ)R(W (τ))‖sdτ ≤
∫ T

0

eCT‖W‖2
X‖R(W (τ))‖sdτ

≤ Te4CTK2

sup
0≤τ≤T

‖R(W (τ))‖

≤ CTe4CTK2

(‖W‖2
X + ‖W‖3

X + ‖W‖4
X).

Finally,

‖Ψ(W )‖X ≤ e4CTK2 (
K + TC(K2 +K3 +K4)

)
≤ 2K

for T small enough.

By the exact same computations, one can easily prove that Ψ is a contraction of E(T ).

Hence, there exists a unique fixed point Y ∈ L∞([0, T ];Hs(R)7) of Ψ:

∀t ∈ [0;T ], Y (t) = U(t, 0)Yo +

∫ t

0

t, τ)R(Y (τ))dτ. (33)

Now, observing that the right-hand-side of (33) is in C([0;T ];Hs(R)7)∩C1([0;T ];Hs−2(R)7),
we get the announced regularity

Y ∈ C([0;T ], Hs(R)7) ∩ C1([0;T ], Hs−2(R)7)

and Y solves the I.V.P. (27) for initial data Yo in the time interval [0;T ]. �

By transposing this result for equation (9), we get the first part of Theorem 1.2:

Proposition 3.3 Let s > 3
2

and 0 < ǫ < 1.
Let

(Bo, φo, φ̂o, ψo) ∈ Hs+1(R) ×Hs(R) ×Hs−1(R) ×Hs(R), (34)

with φ̂ = θx, θ ∈ Hs(R).
Then there exists a life-span T > 0 independent of ǫ such that the I.V.P. (9) with initial
data (34) possesses a unique solution

(B(ǫ), φ(ǫ), ψ(ǫ)) ∈ Cj([0;T ];Hs+1−2j(R) ×Hs−j(R) ×Hs−j(R), j ∈ {0; 1}. (35)
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Proof:

For initial data (34) we set

Yo = (Vo, Fo, Go, αo, βo, γo, δo)

:=

(
−ǫθ, φo − |Bo|2,−eψo + f |Bo|2,

1√
2
Re(Bo),

1√
2
Im(Bo),

1√
2
Re(Box),

1√
2
Im(Box)

)
.

Note that Yo depends on ǫ but ‖Yo‖s is estimated independently of ǫ when this parameter
is small: there exists K > 0 depending exclusively on the initial data (34) such that
‖Yo‖s ≤ K.
We consider the solution Y = (V, F,G, α, β, γ, δ) of (27). We set

B :=
1√
2
(α+ iβ).

After differentiating (19) and (20) with respect to x, we obtain from these equation
and from (22), (23) an evolution equation for z(t) = (αx − γ) + i(βx − δ). Multiplying by
z(t) and integrating, we obtain an energy estimate which yields

‖z(t)‖L2 ≤ C(T )‖z(0)‖L2.

Since z(0) = 0, we get Bx = 1√
2
(γ + iδ). Setting φ := F + a|B|2 and ψ := f

e
|B|2 − 1

e
G, it

is straightforward that (B, φ, ψ) satisfies (9) with the adequate initial data. �

4 Proof of the Main Theorem

Let s > 7
2
.

Let (B(ǫ), φ(ǫ), ψ(ǫ)) ∈ C([0;T ];Hs+1(R) × Hs(R) × Hs(R)) the solution of (9) corre-
sponding to initial data (34) such that

φo = a|Bo|2 and ψo =
f

e
|Bo|2. (36)

Let B̂ ∈ C1([0;T ];Hs+1(R) the solution of the Cubic Nonlinear Schrödinger Equation

iB̂t + B̂xx + (a2 + f 2 + c)|B̂|2B̂ = 0 (37)

for initial data B̂(0, x) = Bo(x).

We finish here the proof of Theorem 1.2 by showing that

B(ǫ) → B̂ in C1−j([0;T ], C2j) (38)

and
φ(ǫ) − a|B(ǫ)|2 → 0 and − eψ(ǫ) + f |B(ǫ)|2 → 0 in C([0;T ] × R). (39)

Once again we will use the new variables:
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Proposition 4.1 Let s > 7
2

and

Y (ǫ) = (F (ǫ), V (ǫ), G(ǫ), α(ǫ), β(ǫ), γ(ǫ), δ(ǫ)) ∈ C([0;T ];Hs(R)7)

the solution of (27) given by Lemma 3.1, with Fo ≡ Go ≡ 0.

Then
F (ǫ) → 0 , G(ǫ) → 0 in C([0;T ] × R)

and
(α(ǫ), β(ǫ), γ(ǫ), δ(ǫ)) → (α̂, β̂, γ̂, δ̂) in C1−j([0;T ], C2j

loc), j ∈ {0, 1},
where (α̂, β̂, γ̂, δ̂) satisfies γ̂ = αx, δ̂ = βx and





α̂t + 1
2
β̂(a2 + f 2 + c)(α̂2 + β̂2) = −β̂xx

β̂t − 1
2
α̂(a2 + f 2 + c)(α̂2 + β̂2) = α̂xx

(40)

Proof:

We differentiate (27) with respect to t. Since Y
(ǫ)
t ∈ Hs−2(R) and s − 2 > 3

2
, we obtain

exacly by the energy method used in Section 2 that for all t ≤ T ,

‖Y (ǫ)
t (t, ǫ)‖s−2 ≤ C, C independent of ǫ.

Note that the condition Fo ≡ Go ≡ 0, is used to get, at t = 0, Y
(ǫ)
t (0) = Yt(0)

independent of ǫ.
From (16), we get that for all t ≤ T , ‖1

ǫ
V

(ǫ)
x (t)‖s−2 ≤ C, and yet, by (15),

‖F (ǫ)
x (t)‖s−2 ≤ Cǫ.

By the Gagliardo-Nirenberg inequality,

‖F (ǫ)(t)‖L∞ ≤ C‖DkF (ǫ)(t)‖λ
o‖F (ǫ)(t)‖1−λ

o , (41)

provided that λ = 1
2k

. Taking λ = 1
2(s−1)

,

‖F (ǫ)(t)‖L∞ ≤ C‖Ds−1F (ǫ)(t)‖
1

2(s−1)
o ‖F (ǫ)(t)‖1− 1

2(s−1)
o ≤ Cǫ

1
2(s−1) .

Hence
F (ǫ) → 0 in C([0;T ] × R).

Also, from (17),
1

ǫ
‖G(ǫ)

x (t)‖s−2 ≤ C,

and by the same computations

G(ǫ) → 0 in C([0;T ] × R).
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Since Ωǫ = (α(ǫ), β(ǫ), γ(ǫ), δ(ǫ)) is bounded in C([0;T ];Hs) ∩ C1([0;T ];Hs−2), any subse-
quence of Ωǫ has a subsequence (still denoted Ωǫ) such that

Ωǫ → (α̂, β̂, γ̂, δ̂) weak* in L∞([0;T ];Hs),

∂tΩǫ → ∂t(α̂, β̂, γ̂, δ̂) weak* in L∞([0;T ];Hs−2),

and, by the Lions-Aubin compacity lemma,

Ωǫ → (α̂, β̂, γ̂, δ̂) in C([0;T ], Hs−δ
loc ), δ > 0. (42)

By, (19), (20), (22) and (23), (α
(ǫ)
t , β

(ǫ)
t , γ

(ǫ)
t , δ

(ǫ)
t ) converges to some limit in C([0;T ], Hs−2−δ

loc ),
therefore

(α
(ǫ)
t , β

(ǫ)
t , γ

(ǫ)
t , δ

(ǫ)
t ) → (α̂t, β̂t, γ̂t, δ̂t) in C([0;T ], Hs−2−δ

loc ).

Hence,





α̂t + 1
2
β̂(a2 + f 2 + c)(α̂2 + β̂2) + β̂xx = 0

β̂t − 1
2
α̂(a2 + f 2 + c)(α̂2 + β̂2) − α̂xx = 0

γ̂t + 1
2
(a2 + f 2 + c)(α̂2 + β̂2)δ̂ + (a2 + f 2 + c)(αγ + βδ)β + δ̂xx = 0

δ̂t − 1
2
(a2 + f 2 + c)(α̂2 + β̂2)γ̂ − (a2 + f 2 + c)(α̂γ̂ + β̂δ̂)α̂− γ̂xx = 0.

This system possesses a unique solution in the functional space considered (this can be
obtained by a simple energy estimate), yet the limit (42) takes place without the need of
taking a subsequence. Finally, by the Sobolev imbedding

‖f‖Ck →֒ C‖f‖Hs

provided that s > k + 1
2
, the convergence (α(ǫ), β(ǫ), γ(ǫ), δ(ǫ)) → (α̂, β̂, γ̂, δ̂) takes place in

C1−j([0;T ], C2j).

The end of the proof of Theorem 1.2 is straightforward, one only has to consider
Proposition 4.1 with respect to the variables (B, φ, ψ). �

5 Appendix

We show in this Appendix that for ω̃ < 0, β − v2 > 0 and ω > 0,the Zakharov-
Rubenchik system (2) can be put in the form






iBt +Bxx + aφB + efψB + c|B|2B = 0 (a)

ǫ2φtt + dǫφtx − φxx = −a|B|2xx (b)

ǫψt + eψx = f |B|2x (c),

(43)
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where a, c, d, e, f are real constants.
Note that for ω̃ < 0, the group speed v = 2ω̃3k−1(k2 + ω̃2)−1 is negative: this correponds
to backward propagation.

Differentiating (2−b, c) in respect to T ,

ǫ2ρTT − 2vǫρTX + (v2 − β)ρXX = −kǫ|B|2XT +
1

2
kv|B|2XX (44)

and

ǫ2uTT − 2vǫuTX + (v2 − β)uXX =
1

2
ǫkv|B|2XT + k(β − v2

2
)|B|2XX . (45)

From equation (44) and (45), setting

φ̃ = u+
v

2
ρ,

ǫ2φ̃TT − 2vǫφ̃TX + (v2 − β)φ̃XX = k(β − v2

4
)|B|2XX . (46)

Also, setting ψ̃ =
√
βρ+ u, equations (2-b),(2-c) yields

ǫψ̃T + (
√
β − v)ψ̃X = −k(

√
β − v

2
)|B|2X. (47)

Finally, since u =
1√
β − v

2

(
√
βφ̃− v

2
ψ̃) and ρ =

1√
β − v

2

(−φ̃+ ψ̃),

(note that v = 2ω̃3k−1(k2 + ω̃2)−10 hence
√
β − v

2
6= 0) we get the equivalent system:





iBT + ωBXX − k

β
1
2 − v

2

(
(
√
β +

v

2
)φ̃− vψ̃ + q|B|2

)
B = 0 (a)

ǫ2φ̃TT − 2vǫφ̃TX + (v2 − β)φ̃XX = k(β − v2

4
)|B|2XX (b)

ǫψ̃T + (
√
β − v)ψ̃X = −k(

√
β − v

2
)|B|2X (c).

(48)

Now, rescaling the space and time variables: T =
ωt

β − v2
, X =

x√
β − v2

, (48) yields






i
ω

β − v2
Bt +

ω

β − v2
Bxx −

k√
β − v

2

(
(
√
β +

v

2
)φ̃− vψ̃ + q|B|2

)
B = 0

(
ωǫ

β − v2
)2φ̃tt − 2

v√
β − v2

ωǫ

β − v2
φ̃tx − φ̃xx = k

β − v2

4

β − v2
|B|2xx

ωǫ

β − v2
ψ̃t +

√
β − v√
β − v2

ψ̃x = −k
√
β − v

2√
β − v2

|B|2x.

(49)
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Setting α :=
ω

β − v2
and ǫ′ := αǫ,





iBt +Bxx −
k

α(
√
β − v

2
)

(
(
√
β +

v

2
)φ̃− vψ̃ + q|B|2

)
B = 0

ǫ′
2
φ̃tt − 2

v√
β − v2

ǫ′φ̃tx − φ̃xx = k
β − v2

4

β − v2
|B|2xx

ǫ′ψ̃t +

√
β − v√
β − v2

ψ̃x = −k
√
β − v

2√
β − v2

|B|2x.

(50)

Finally, setting φ :=
1

A1
φ̃ and ψ :=

1

A2
ψ̃,





iBt +Bxx −
k

α(
√
β − v

2
)

(
(
√
β +

v

2
)A1φ− vA2ψ + q|B|2

)
B = 0

ǫ′
2
φtt − 2

v√
β − v2

ǫ′φtx − φxx = k
β − v2

4

A1(β − v2)
|B|2xx

ǫ′ψt +

√
β − v√
β − v2

ψx = −k
√
β − v

2

A2

√
β − v2

|B|2x.

(51)

Choosing A1 =
√
ω

√
β − v

2

β − v2
and A2 =

√
β − v

2

β − v2

√
ω(

√
β − v)

−v ,

we get the announced result, with

a = − k√
ω

(
√
β +

v

2
), c =

−qk
α(

√
β − v

2
)
, d = −2

v√
β − v2

,

e =

√
β − v√
β − v2

and f = −k
√

−v(
√
β + v)

ω
. �

It now becomes clear that Theorem 1.2 implies Theorem 1.1: for a given (Bo, ρo, uo),
the conclusions in Theorem 1.1 are obtained by setting

φo(x) :=
1

A1
(uo(X) +

v

2
ρo(X)) and ψo(x) :=

1

A2
(
√
βρo(X) + uo(X))

in Theorem 1.2.For the third initial data φt(0, x) = φ̂o(x) = φt(0, x), we choose

φ̂o :=
1

ǫ

(
1

A1

([
k

2
v|Bo|2 − (βρo − vuo)] +

v

2
[−k|Bo|2 − (uo − vρo)]

)

X

= 0

(i.e. θ := 0 ) in view of (6).
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