Large deviations for analytical distributions on infinite
dimensional spaces
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Abstract

Let 6 be a Young function and N’ the dual space of a complex nuclear Fréchet
space IN. In this paper we generalize Cramer’s and Schilder’s theorems to white
noise measures in the dual space of the test space of entire functions on N’ of
f-exponential growth.
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1 Introduction

Among the principal results of large deviations, we cite Cramer’s theorem which is proved
in [4] for measures p on R which are not singular to Lebesgue’s measure. We cite also
Schilder’s theorem [16] which is the first example of a large deviations result for measures
on a functions space, see also [5] and references therein. In this paper we study large
deviations properties for white noise distributions. For white noise analysis theory see for
example [8], [9], [11], [12], [13] and references therein.

Let X' = U2, X_, be the dual space of a real nuclear Fréchet space X. Consider p
a probability measure on X’ such that p is supported by some X_,, p € N* and satisfies
the following integrability condition: there exists m > 0 such that

/X exp(8(mly|_))duly) < oo, (1)

-p

where 6 is a Young function (see [10]). First, forn > 1, let X, : Q — X'; i € {1,2,...,n}
be a sequence of random variables on the probability space (£2, B(£2), P). Next, let u, be
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the distribution of S,, = %Z?zl X;, where (X1, Xo, ..., X;,) are n independent identically
distributed (i.i.d) random variables with distribution p. The main result of this paper is
to prove Cramer’s theorem for the measure p, i.e., for all measurable subsets I' in X",

1 1
— ilpf A}, <liminf —log(u, (")) < limsup —log(u, (') < —inf A, (2)
o n F

n—oo 7 n—o0

where A7, is the Legendre transform of the logarithmic moment generating function A,
ie.,

M@ =toe ([ e09dut)) ¥ g€ x, )

and
A (p) = gg{(é, ©) — MO}V p € X, (4)

see Theorem 3.8, Section 3.
In Section 4, we consider the family {u.,e > 0}, where p. is the image measure of p
by the map g:
g: X' — X
§ — VeEd

If the Laplace transform fi of y satisfies the growth condition:
Ip, m > 0; fi(§) ="MW ¢ e X, (5)

where 6* is the Legendre transform of a Young function #, we prove the upper bound
condition for the family of measures {u.,e > 0}, i.e., for all measurable subsets I' in X",

lim iélfslog(us(l“)) < lim supe log(u.(T")) < —inf(A*), (6)
E— T

e—0

where A* is the Legendre transform of A(£) = lim. ¢ log ( /

Xl

£
et E>d:“a (y)) :

In Section 5, we apply the results of Theorems 3.8 and 4.3 to Gaussian and Poisson
measures on particular spaces.

2 Notation and preliminaries

Let N be a complex nuclear Fréchet space, whose topology is defined by a family {|-|,,p €
N} of increasing hilbertian norms. We have the representation

N = m N, = proj lim N,
p—00
p>0

where N, is the completion of N with respect to the norm |- |,. Denote by N_, the
topological dual space of the space N,. Then the dual N’ of N can be written as

N'=|JN_, =ind lim N_,.

— 00
p>0 P



Let now 6 : R, — R, be a Young function, i.e., # is continuous, convex, strictly
increasing and verifies 6(0) = 0 and lim,_ @ = +4o00. Denote by 0* the Legendre
transform of 6 : 0*(x) = sup{tx—0(t);t > 0} for all x > 0, which is also a Young function.
Given a complex Banach space (B, ||.||), let H(B) be the space of entire functions on B,
i.e., the space of continuous functions from B to C, whose restriction to all affine lines of
B are entire on C. Let Exp(B, 6, m) denote the space of all entire functions on B with

exponential growth of order # and of finite type m > 0:
Bap(5,6,m) = {1 € HB); |l = suplf(a)le ") < oc |
z€B

Let also || fllgm,p = sup |f(x)]e”?el) for f € Exp(N,,0, m). The intersection
€N,

Fo(N') = m Exp(N_,,0,m),

p>0,m>0

equipped with the projective limit topology is called the space of entire functions on N’
of #-growth and minimal type. The union

gG(N) = U Exp(Np,Q,m),

p>0,m>0

equipped with the inductive limit topology, is called the space of entire functions on N
of f-growth and (arbitrarily) finite type. Denote by Fy(N’)* the strong dual of the test

functions space Fy(N'). From the condition lim, @ = 400, the exponential function

defined as
e: N — C

zZ 65(2) — e<27§>’
€ € N, belongs to Fy(N'). For every ¢ € Fy(N')* the Laplace transform of ¢ is defined
by
O(&) = L(¢)(€) = d(e°), €€ N.

Theorem 2.1 ( [6/, Theorem 1). The Laplace transform of analytical functionals induces
a topological isomorphism
L: Fy(N')* — Gy« (N). (7)

As a consequence, ¢ € Fo(N')* if and only if the Laplace transform of ¢ satisfies the
growth condition

|6(€)] < Cexp(0"(mle],)), € €N, (8)
for some m > 0 and p € N*.

In the sequel we take N = X 411X, the complexification of a nuclear Fréchet space X. We
denote by Fy(N'); the cone of positive test functions, i.e., f € Fp(N'); if f(y +i0) >0
for all y in the topological dual X’ of X.



Definition 2.2 The space Fo(N') of positive distributions is defined as the space of
¢ € Fo(N')* such that ((¢, f)) > 0; for all f € Fy(N');.

We recall the following results on the representation of positive distributions:

Theorem 2.3 [15] Let ¢ € Fyp(N')*. There exists a unique Radon measure ji, on X'
such that

U, 1)) =o(f) = | fly+i0)dug(y) ; f € Fo(N).

X/
Conversely, let u be a finite, positive Borel measure on X'. Then u represents a
positive distribution in Fo(N') if and only if p is supported by some X_,, p € N* and
there exists m > 0 such that

/X exp(0(mly|_p))dp(y) < oo, (9)

-p

We recall from paper [14] (Theorem 2.1) the following tail estimates. Given £ € X
and x € R, let
Ave={ye X' : (y,&) >z}

denote the half-plane in X’ associated to £ and x, then we obtain the tail estimate:

Theorem 2.4 Let ¢ € Fy(N')% defines a ( positive) Radon measure = pg on X'. For
all £ € X and x > 0, there exists m > 0 and p € N such that

ml¢l,

1(Ae) < [Hllomp cxp (— o >). (10)

3 The large deviations estimates for a sequence of
measures

In the next, we consider ¢ € Fy(N’)% such that ¢ defines a ( positive) Radon measure
p = pg on X' ( see Theorem 2.3). For n > 1, denote by u, the distributions on X’ of
S, = 15" X;, where (X1, Xo, ..., X,,) are n independent identically distributed ( i.i.d)

random variables with distribution p. It is easy to see that, for alln > 1, £ € X

— &N
mo = () (1)
n
Proposition 3.1 Let £ be the collection of all non-empty, convexr open sets A in X'.
Then )
Lu(A) = — lim  log(yu,(4)) € [0, oc] (12)

exists for every A € £.

The proof of Proposition 3.1 follows by combining the two following Lemmas.

4



Lemma 3.2 For each convex subset C' € B(X'), where B(X') denotes the Borel o- filed
of X'; the map n € N — pu,(C) is super-multiplicative. In addition, if A is an open
convex subset of X', then either u,(A) =0, for all n € N or there exists an ng € N such
that p,(A) > 0, for all n > ny.

PROOF:

Let (Xi)ien be a sequence of i.i.d random variables on the probability space (€2, B(€2),P)
with distribution . For n > 1, we denote by p,, the distribution of .S,, = % Yo Xi= %Sn.
For all n > m, let Sm = L %" X; = —2L-9m

n—m i=m+1 “*? n—m N

To prove the first assertion, observe that, by convexity

{w; Snim(w) € O} D {w; Sp(w) € CYN{w; S, (w) € CY
therefore

tntm(C) = pn(C) pm (C).

We next turn to the second assertion. Let A be an open convex subset of X', such that
tm(A) > 0 for some m € N. For each p € N, let A, = AN X_,. So, there exists ¢ € N,
such that p,,(A,) > 0. Since A, is convex open subset of the Hilbert space (X_,, |-|-,), we
choose a convex compact subset K, of A, such that j,,(K,) > 0. Consider p, such that
0<2p, <inf{lz —y|l ; v € K,andy € A7} Take G, = {p € X ;|0 — K¢|-q < pg}
and let M, = sup ek, {l¢|-¢}. Then, for n = sm +r, where 0 <r <m,

4) 2 (s 15 (0) € Gy and 252Gy < )

> (B ({10, < i} )

as long as mM, < np,. Thus, if we choose ny so that mM, < ngp, and

1
min P( {15,y < rany}) 2 5,

1<r<m
we obtain by the convexity of K,

2l

[
1
wn(Ay) > 3 (um(Kq)> >0, for all n > no,

which implies
pn(A) = pin(Upz04p) = plggo fin(Ap).

Therefore
pn(A) >0, for all n > ny.



Lemma 3.3 Let f : N — [0,400] be a sub-additive function and assume that there is
an ng € N such that f(n) < oo for alln > ng. Then

lim J) inf ) € [0, 4-o0].

n—oo M n>ng N
Definition 3.4 For ¢ € X', r > 0, put
I,(p) :=sup{L,(A):p e Ac &} (13)

A function I : X' — [0,00] is said to be a rate function if it is lower semi-continuous,
and we will say that I is a good rate function if the set {q € X' : I(q) < L} is a compact
subset of X' for all L > 0.

Now we can give the following result:

Theorem 3.5 The function I, define in (13) is a convez rate function on X' and {fu,;n >
1} satisfies the weak large deviation principle with rate function I,, i.e.,

1
lim inf — log (1, (G)) > _iIcl;f I,, for all open G in X', (14)
n—oo N
and .
lim sup — log (1, (K)) < —i%f I, for all compact K in X'. (15)
n—oo N
PROOF:

By definition I, is lower semi-continuous so I, is a rate function. Since [, is lower semi-
continuous, to prove the convexity of I, it’s sufficient to prove that for a given ¢, ¢, € X’
and ¢ = %(ql + ¢2) we have

(Lu(q1) + Lu(g2))- (16)

N | —

]#(q) <

Given an A € £ containing ¢, choose A; € &, 1 € {1,2} such that ¢; € A; and %(Al +As) C
A. Then

Lu(A) = —limg e 3= log(ian(4)
< = limpoo 5= log(P({w; Syp(w) € Ay and S5, (w) € As})
< (= limpoo 2 log(pn (A1) — limy oo 2 log(1tn(42)))
< S (Lu(q) + ()
and from this we conclude that 1,(¢) < 2 (L.(q1) + 1.(g2))-

6



The inequality (14) is built into the definition of I,,. Next, suppose that K is a compact
subset of X’ and let 0 = inf I,,. Then, there is a finite cover {4y, As, ..., Ay} C &€ of K
such that L,(A,) > § for each 1 < n < ny. Hence,

1 1
lim sup — log (1, (K)) < limsup —log( max p,(A;)) < —6.
n

n—00 n—oo TN 1<j<no

This proves the inequality (15) and therefore the weak large deviation principle holds.
|

Lemma 3.6 For alln € N, there exists m > 0 and p € N such that

fn(Asg) < CMexp (= nb(——)). (17)

m|€|p

PROOF:
Using Theorem 2.1 and the condition (11), there exists m > 0 and p € N such that for
any n € N

§

()] < C"exp(nf*(m]>],)), €€ X,

For all ¢ > 0 we have

xplte)in(Are) = [ explt)la, dialy) < [ explely. Oy

/

< [ (t8)] < Cmexp(nf*(m|£],)),
hence y
pn(Aze) < C" exp(n@*(m|§|p) —tx), t>0.

Minimizing in ¢ > 0 we get

t ot
pn(Aze) < C"exp(—nsup(—z — 0" (m—[¢],)).
>0 M n

But by definition
x

mlElp

).

t t
ig%;(nx (mn|§|p) (

Since 8** = 6, this implies

lidng) < Cesp ( —ntl ).

ml&l,



Lemma 3.7 For each L > 0, £ € X, we define

m[¢],07(L +log(C)), if log(C) >0,
L1(5> =
ml¢],0~1 (L), if log(C) <0,

where C = ||¢|lgmp. Then K = {y € X'; |(y,€)| < Ly(€), V€ € X} is a compact of X',
and we have

lim  log(n(KS)) < —L (18)

n—oo M,

where K¢ is the complementary of K, in X',

PROOF:
The proof of this Lemma is similar to the proof of the Lemma 3.6. In fact, first we can
prove the inequality

Li(§)
m|€|p))

which implies the inequality (18). ]

pa(KE) < 2C™ exp(—nb(

Theorem 3.8 Let ¢ € Fyp(N')% and let i be the associated measure. Then I, defined by
(18) is a good rate function and the family {p,,n > 1} satisfies the full large deviation
principle with rate function I, i.e.,

R | . 1 NP
— 1121(Jf A7, < liminf —log(u, (') < limsup — log(p,(T)) < — u%f A (19)

n—oo N n—oo N

Moreover the logarithmic moment generating function A, defined by (3) is the Legendre
transform of 1,,, i.e.,

AH(&) = sup{(y,£> - Iﬂ(y>}7 5 € X

yeX’
and
L) = sup{{p, &) — M)}, v € X",
cexX
PROOF:

First note that ]
inf I, > — liminf — log(p,(K¢)) > L;
infl, 2 —liminf = g(un(KL)) 2
and so {q : I,(¢) < L} € Ky44. Since I, is lower semi-continuous, this proves that I, is
a good rate function.
To prove that the family {u,,n > 1} satisfies the full large deviation principle with
rate function [, it is sufficient to prove



1. (UppPER BOUND) for all closed subsets F' of X’

lim sup % log(pn(F)) < — inf 1,,(y) (20)

n—oo yeF

2. (LoweR BounD) for all open sets G of X'

lim inf < log(in(G)) > — inf I, (y) (21)

n—oo N yeG

Let F' be a closed subset of X', let ¢ = infp I, and for L > 0, set F, = F() K|, where
K, is the compact set produced in the Lemma 3.7. Then

fn(F) < pn(F) + :un(Kg)
and so by the inequality (15 ) in Theorem 3.5 and Lemma 3.7, we have

1
lim sup — log(pn (F)) < —min((, L).

n—oo n

After letting L — oo, we obtain the inequality (20). Finally, the inequality (21) follows
from Theorem 3.5. |

4 The large deviations estimates for a family of mea-
sures

Let p be a measure such that there exist p,m > 0 ; fi(¢) = e?"™l), So the logarithmic
moment generating function is given by

Au(§) = log(u(§)) = 0"(m[¢l,), ¥ € € X,
and let A7, be the Legendre transform of A,

N (p) = igg{@,@) — A}V pe X

We denote by p. the distribution of £ — /£ under p. The logarithmic moment generating
function for the measure p. is given by

A (€) = og (&) = 0" (mvEIE],). ¥ € € X.

Put
A©) = limed,. (%), (22)
E— 13
From now we suppose the additional condition:
07 (x)
xEToo 5 <™ (23)

which implies that for all £ € X, A(¢) < 0.
For a given £ € X', let By(¢,r) ={y € X";|{ —y|_4 <71}

9



Lemma 4.1 Let £ € X' and q € N be given. Then for each § > 0 there exists an r > 0
such that
A*(§) =9

pe(By(&,1) < exp(==—2—2)

for all e > 0. In particular, for all compact K C X', we have

lim sup elog(p-(K) < —i%f A (24)

e—0

PROOF:

UE(EQ(&T)) = M(Eq(%7%))

)fm«jﬂ@wm>wwex,

-
(&) =il — c07(M2k) ) ) ¥ p € X,

-
< exp (= H{(60) —7lels — A () )V p € X,

Since A(p ) = lim._geA, (%), so for all 0 > 0, there exists £y such that for all 0 < ¢ < &,
A (8) < 5+ Ap).

We choose ¢ € X, such that ({,¢) — A(p) > A*(§) = and r < then we have

__9°
3(1+¢lq)”?

A(§) =0

3

p=(By(&, 7)) < exp(— )-

To prove the inequality (24) denote by ¢ = infx A*. Since K is a compact of X,
we choose &1,82,....,§, € K, ri,72,...,7, € RY and py,ps,...,p, € N such that K C

UZ:l By, (&, ) and
log(pe(By, (i) < — (€ —0).

Then we have

lim sup £ log (. (K)) < — (€ —6).

e—0

Finally, considering ¢ \, 0, we obtain

limsup € log(u.(K)) < — inf A"

e—0
Lemma 4.2 For each L >0, K, = {y € X";0(mly|_,) < L} is a compact of X' and

lim sup elog(pue(K¢) < —L. (25)

e—0

10



PROOF:

For all e > 0 .
pe(Kg) < ply € X50(mlyl-,) > £}
< exp(—%) [y exp(O(mly|-p))du(y).
By the integrability condition (9) this surely leads to (25). n

Lemmas 4.1 and 4.2 lead to the following results
Theorem 4.3 Let I be a closed subset of X'. Then we have
lim sup € log(u-(F)) < —i%f(A*). (26)

e—0

Moreover for every measurable subsets I' of X'
lim iglfalog(,ue(F)) < limsup € log(u.(I")) < —inf(A").
E— T

e—0

5 Examples

In this Section, we apply the results of Theorems 3.8 and 4.3, respectively, to Gaussian
and Poisson measures.

5.1 Gaussian measures

Let X = S(R) be the Schwartz space of real-valued rapidly decreasing functions on R
and X’ the corresponding dual space, i.e., X' = S’(R) the Schwartz distributions space.
Then we have the Gel’fand triple

S(R) — L*(R,dx) — S'(R).

Using Bochner-Minlos theorem [7], there exists a unique measure v on S’(R) such that
/ w8 dy(y) = e 27l = e29%(E8) ¢ ¢ S(R),
S5'(R)

where (y, &) denote the dual paring between S’(R) and S(R) which coincide with the inner
product (y,€) on L*(R,dz) if y € L*(R,dz). Hence the Gaussian measure v on S’(R)
with variance o2 belongs to Fp(S¢(R))*, where Si.(R) = S'(R) +i5'(R) and 6(t) = 20°t2.
Theorems (3.8) and (4.3) allow us to get the following estimates.

Proposition 5.1 For a given £ € X anda € Ry, let Aye = {y € X';a < (y,&)}. Then
there exists p > 0 such that:

1
lim inf € log (7. (Aq¢)) < li log(7.(Ape)) < ————a?,
iminfelog(vz(Aag)) < limsupelog(r:(Aag)) < 207l
, 1/ (y, ,\))2 ! , 1 1
— inf sup = < liminf —log(v,(As¢)) < limsup —log(v,(Aqe)) < — a“.
yeAa“Eng( D ) S lminf o 8(n(Aag)) < limsup —log(7a(Aa)) 271

11

2



Remark 5.2 1. For the Gaussian measure, if we take ¢ = %, n > 0, we recover the

Schilder’s theorem [16], i.e., for every measurable subset I" of S’(R), we have

—inf(AZ) < lim iglfelog(%(f‘)) < limsup elog(7.(I')) < —inf(AZ). (27)
€— r

ro e—0
The estimate given by (27) is proved in [2], see also [1].

2. In the particular case where 7, is the gaussian measure with mean 0 and variance €
on R, the large deviation principle given in (27) becomes the following equality:

CL2

gggelog(veb4ga))=:-—§gg-

5.2 Poisson measure
5.2.1 Poisson measure on R

The Poisson measure 7, on X = R, with intensity A > 0, defined by

mt) = [ e¥dm\(y) =e %W teR
R

belongs to Fp(R)*, where 6(t) = A(e* — 1). Using Theorems 3.8 and 4.3 we obtain that
for all measurable subsets I' of R:

1 1
—inf A7 <liminf —log(u, (")) < limsup — log(u,(I')) < —inf A7,
Te H n f H

n—oo M n—oo
and
lim iglfelog(ug(F)) < lim supe log(p(I')) < —inf(A¥).
e— T

e—0

In particular, if I' = A, = {y € R;y{ > a}, a > 0 and £ > 0, then

lim 1 log((m\)n) = 6*(9)7

n—oo M, §

where 0*(z) = —z + A + xlog(5).

5.2.2 Poisson measure on D'(R)

Consider the measure space (R, B(R), o) where o is a non-atomic o-finite measure. Bellow
we consider X = D(R) the space of C*°- functions on R with compact support and
X" = D'(R) the corresponding topological dual space. Then we have the Gel’'fand triple

D(R) — L*(R,0) — D'(R).
On D'(R) we fixed the o-algebra C,(D'(R)) generated by the cylinder sets
{we D'(R); ({w,¢1),.... (w,9n) € B}, i € D(R), B € B[R"), neN.

12



By the Bochner-Minlos Theorem, there exists a unique measure 7, on D'(R) such that
the Laplace transform of 7, is given by

/’(R) ol Do () = exp </R(€f(m) - 1>d0(£)>7 f € D(R), (28)

T, is the Poisson measure with intensity measure o on D’(R).

If o is a finite measure on R, the Poisson measure 7, on D’(R) belongs to Fy(D(R))*,
where D(R) = D'(R) +4iD'(R) and 6(t) = A(e' —1) with A = 7,(D(R)). Then Theorems
(3.8) and (4.3) which correspond, repectively, to the Cramer’s and Schilder’s theorems
can be applied to this Poisson measure .

Remark 5.3 The configuration space I' = I'g over R is defined as the set of all locally
subsets of R:

I''={yCR; [yNK| <o for every compact K C R},

here |A| denote the cardinality of the set A.

Denote by M (R) (resp. My(R)) the set of all positive (resp. positive integer-valued)
Radon measures on B(R). For A C R we define ' := {y € Tg ; yNA° = O} where
A€ is the complementary of A in R. Then we can identify any v € I'r with the positive
integer-valued Radon measure by the following map

yeL =) 6, € My(R) C M, (R), (29)

ey

where 0, is the Dirac measure at 2 and by convention ) __. 6, is the zero measure. The
space M, (R) is endowed with the vague topology, i.e., the weakest topology on I'g such
that all maps

rRawHu,w::/Rf(x) =" f(x), 1 € ColR)

Trey

are continuous, where Cy(R) is the set of all real-valued continuous functions on R with
compact support. Then the space I' can be endowed with the enduced vague topology.

Let B(T') denote the corresponding Borel o-algebra. The restriction of the Poisson
measure 7, defined by (28) to the space (I, B(I")) is a probability measure, i. e., 7,(I') = 1.
This implies that the Poisson measure 7, on the configuration space I' satisfies both the
Cramer’s and Schilder’s Theorems.
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