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Abstract
In this paper we will show how a suitably developed decomposition of the charac-teristic function of the logarithm of the likelihood ratio test statistic to test inde-pendence in a set of variates may be used to obtain extremely well-�t near-exactdistributions both for this test statistic as well as for the likelihood ratio test statis-tic for sphericity, based on a decomposition of this latter test in two independenttests. For the independence test statistic, numerical studies and comparisons withasymptotic distributions proposed by other authors show the extremely high close-ness of the near-exact distributions developed to the exact distribution. Concerningthe sphericity test statistic, comparisons with the near-exact distributions developedin [19] show the advantages of these new near-exact distributions.
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1 Introduction
LetX be a p�1 vector with a p-multivariate Normal distribution with expectedvalue � and variance-covariance matrix �, that is, let

X � Np(�;�) : (1)
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Then, the power 2=(n+1) of the likelihood ratio test statistic to test the nullhypothesis
H01 : � = diag(�21; �22; : : : ; �2p) (2)

based on a sample of size n+ 1, is the statistic
�1 = jV jQpj=1 Vj (3)

where the p�p matrix V is either the MLE (Maximum Likelihood Estimator)of �, the sample matrix of sum of squares and products of deviations from thesample mean or the sample variance-covariance matrix of the p variables in Xand Vj is the j-th diagonal element of V . The statistic in (3) is a particularcase of the generalized Wilks � statistic used to test the independence of pgroups of variables, each with one only variable (see [7],[8],Ch. 9 in [3], Ch. 10 in[17], Ch. 11 in [21]). Near-exact distributions for this statistic are thus readilyavailable from the results in [9,10,2,15]. However, given the speci�city of thecase under consideration, some further developments may be sought, namelya simpler way to obtain and a simpler formulation for the shape parametersof the Gamma distributions involved in the part of the distribution of �1 leftuntouched. These details will be addressed in Section 2.
On the other hand, the power 2=(n + 1) of the likelihood ratio test statisticto test the sphericity hypothesis on �, based on a sample of size n + 1, thatis, to test the null hypothesis

H0 : � = �2 Ip (�2 unspeci�ed) (4)
is the statistic (see Ch. 10 in [3], Ch. 10 in [17], Ch. 8 in [21])

� = pp jV j(trV )p ; (5)

where V is the matrix in (3).
Well-�t near-exact distributions have alread been developed for this statisticby Marques and Coelho in [19]. However, and somehow unexpectedly, in thispaper we will show that even better near-exact distributions may be obtainedfor this statistic by taking as a basis the near-exact distributions developedfor the statistic �1 in (3) and the decomposition performed on its character-istic function. These near-exact distributions for � will be obtained from a
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decomposition of the statistic � in (5), which may be written as
� = �1 �2 ; (6)

where �1 is the statistic in (3) and
�2 = pp Qpj=1 Vj(trV )p ; (7)

is the power 2=(n+1) of the likelihood ratio test statistic to test the hypothesis
H02j01 : �21 = �22 = : : : = �2p (given that, or, assuming that thep variables in X are independent) (8)

based on p independent estimates of the variances of the variables in X, onefor each �2j , based on samples of size n + 1. In (7), V and Vj are the sameas in (3). We may note that Vj is either the MLE of �2j (j = 1; : : : ; p), thesample variance of the j-th variable in X in (1), or the sum of squares of thedeviations from the sample mean for the j-th variable in X, according to thechoice of V .
The statistic in (7) may be derived from the likelihood ratio test statisticfor the equality of p variance-covariance matrices (see Ch. 10 in [3], Ch. 10 in[17], Ch. 8 in [21]), taking each matrix to have dimensions 1�1 (there they areagain, the p groups of one variable each).
We may write for H0 in (4), H01 in (2) and H02 in (8),

H0 = H02j01 o H01 ; (9)
to be read as "H02j01 after H01", meaning that we may test H0 in two steps: (i)testing �rst H01, that is, if the p variables in X are independent and (ii) oncethe hypothesis of independence of the p variables is not rejected, testing thenif they all have the same variance. Under H0 in (4) the two test statistics �1and �2 in (6) are independent (see Ch. 10, subsec. 10.7.3 in [3]). This way tolook at this test will enable us to obtain even better near-exact distributionsthan the already much well-�t ones in [19].
As a side note we may stress that the test statistic in (7) may be used, under aslightly di�erent setting, to test the null hypothesis of equality of variances in(8), without any conditioning if the p estimators Vj are based on p independentsamples, in which case those samples may have di�erent sizes.
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Indeed in the test statistic in (7) the requirement is that the p estimators Vjhave to be independent (among other reasons, because one has to be able toeasily derive the distribution of trV , their sum). We may note that this willbe the case even if the p estimators Vj come from a multivariate sample ofsize n + 1 of the p variables in X, once the null hypothesis of independenceof the p variables is not rejected, since then the matrix V will have a Wishartdistribution with n degrees of freedom and parameter matrix the matrix �in (2), so that the diagonal elements of V are independent (through a simpleextension of Theorem 3.2.7 in [21]).

2 Near-exact distributions for the likelihood ratio test statistic ofindependence
In order to obtain the c.f. (characteristic function) of W1 = � log �1 we mayconsider Theorems 9.3.2 and 9.3.3 of [3] which state that, for a sample of sizen+ 1,

�1 � p�1Y
j=1 Yj ; (10)

(where '�' is to be read as 'is distributed as') with
Yj � B �n� p+ j2 ; p� j2

� (j = 1; : : : ; p) (11)
where �1 is the statistic in (3), and where, under H01 in (2), the p�1 randomvariables Yj in (10) and (11) are independent. Then, since we known that

E �Y hj � = � �n2� � �n�p+j2 + h�
� �n2 + h� � �n�p+j2 � ; �h > �n� p+ j2

�

we have, for i = (�1)1=2,
�W1(t) = E �eitW1

� = p�1Y
j=1E

�Y �itj � = p�1Y
j=1

� �n2� � �n�p+j2 � it�
� �n2 � it� � �n�p+j2 � : (12)

Now, in order to be able to obtain a suitable decomposition of the c.f. ofW1 we may either consider the results and developments in section 5 of [10],taking pk = 1 for k = 1; : : : ;m and k� = bp=2c, or we may take a di�erentapproach which will indeed enable us to obtain simpler expressions for the
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shape parameters of the Gamma distributions involved in the part of thedistribution of W1 which will be left unchanged. We will take this secondapproach.
The following Lemma gives the c.f. of W1, for both even and odd p, under aform that is suitable for the development of near-exact distributions for bothW1 and �1.
Lemma 1 Under H0 in (2), taking k� = bp=2c and "a??b", with a; b;2 IN ,
as representing the remainder of the integer ratio of a by b, the c.f. of W1 =� log �1 (where �1 is the statistic in (3), used to test the independence among
the p variables in X), may be written under the form

�W1(t) =
0@�

�n2� � �n2 � 12 � it�
� �n2 � 12� � �n2 � it�

1Ak
�

| {z }��1(t)

� p�2Y
k=1

 n�1�k2
!k��bk+1�(p??2)

2 c  n�1�k2 �it!�k�+bk+1�(p??2)
2 c

| {z }��2(t)
;
(13)

where ��1(t) is the c.f. of the sum of k� independent Logbeta r.v.'s with param-
eters (n � 1)=2 and 1=2 and ��2(t) is the c.f. of a GIG (Generalized Integer
Gamma) distribution [8] of depth p�2 with rate parameters (n�1�k)=2 and

shape parameters k� � jk+1�(p??2)2 k (k = 1; : : : ; p � 2), that is the distribution
of the sum of p� 2 independent Gamma r.v.'s with the given rate and integer
shape parameters.

Proof: We will need to consider separately the two cases of even and odd p.For even p, from (12) we may write
�W1(t) = p�1Y

j=1step 2
� �n2� � �n�p+j2 � it�
� �n2 � it� � �n�p+j2 �

| {z }�1(t)

p�2Y
j=2step 2

� �n2� � �n�p+j2 � it�
� �n2 � it� � �n�p+j2 �

| {z }�2(t)= �1(t) �2(t) ;
5



where, for even j, (p� j)=2 2 IN , so that, using for z 2 /Cnf0;�1;�2; : : :g andn 2 IN ,
�(z + n)�(z) = n�1Y

k=0(z + k) ;
we may write
�2(t) = p�2Y

j=2step 2
p�j
2 �1Y
k=0

�n� p+ j2 + k��n� p+ j2 + k � it��1

= p�2Y
j=2step 2

p�j
2 �1Y
k=0

�n�p+j2 + p�j2 �1�k��n�p+j2 + p�j2 �1�k�it��1

= p�2Y
j=2step 2

p�j
2Y

k=1
�n2�k

��n2�k�it
��1 = p�2

2Y
k=1

�n2�k
�p
2�k �n2�k�it

��( p2�k)

and
�1(t) = p�1Y

j=1step 2
� �n2 � 12� � �n�p+j2 � it�
� �n2 � 12 � it� � �n�p+j2 � � �n2� � �n2 � 12 � it�

� �n2 � 12� � �n2 � it�

=
0@�

�n2���n2� 12�it���n2� 12���n2�it�
1Ap=2 p�1Y

j=1step 2
p�j�1

2 �1Y
k=0

�n�p+j2 +k��n�p+j2 +k�it��1

=
0@�

�n2���n2� 12�it���n2� 12���n2�it�
1Ap=2 p�1Y

j=1step 2
p�j�1

2 �1Y
k=0

�n�p+j2 + p�j�12 �1�k�

�n�p+j2 + p�j�12 �1�k�it��1

=
0@�

�n2���n2� 12�it���n2� 12���n2�it�
1Ap=2 p�2

2Y
k=1

�n�12 �k� p
2�k �n�12 �k�it��( p2�k) ;

(14)

so that we may �nally write, for even p,
�W1(t) =

0@�
�n2���n2� 12�it���n2� 12���n2�it�

1Ap=2 p�2Y
k=1

 n�1�k2
!p2�b k+12 c n�1�k2 �it!� p

2+b k+1
2 c:
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For odd p, we may write

�W1(t) = p�2Y
j=1step 2

� �n2� � �n�p+j2 � it�
� �n2 � it� � �n�p+j2 �

| {z }�1(t)

p�1Y
j=2step 2

� �n2� � �n�p+j2 � it�
� �n2 � it� � �n�p+j2 �

| {z }�2(t)= �1(t) �2(t) ;
where now it is for odd j that (p� j)=2 2 IN , so that following similar stepsto the ones used above to handle �2(t), we may write

�1(t) = p�2Y
j=1step 2

p�j
2 �1Y
k=0

�n� p+ j2 + k��n� p+ j2 + k � it��1

= p�2Y
j=1step 2

p�j
2Y

k=1
�n2 � k��n2 � k � it��1

= p�1
2Y

k=1
�n2 � k�p�1

2 �k �n2 � k � it��( p�12 �k)

and

�2(t) = p�1Y
j=2step 2

� �n2� 12� � �n�p+j2 � it�
� �n2� 12�it� � �n�p+j2 � � �n2� � �n2� 12�it�� �n2� 12� � �n2�it�

=
0@�

�n2� � �n2� 12�it�� �n2� 12� � �n2�it�
1A(p�1)=2

p�1Y
j=2step 2

p�j�1
2 �1Y
k=0

�n�p+j2 +k��n�p+j2 +k�it��1

=
0@�

�n2� � �n2� 12 � it�
� �n2� 12� � �n2�it�

1A(p�1)=2
p�3
2Y

k=1
�n�12 �k� p�1

2 �k �n�12 �k�it��( p�12 �k) ;

(15)
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so that we may �nally write, for odd p,
�W1(t) =

0@�
�n2� � �n2 � 12 � it�

� �n2 � 12� � �n2 � it�
1A(p�1)=2

p�2Y
k=1

 n� 1� k2
! p�1

2 �b k2 c  n� 1� k2 � t!� p�1
2 +b k2 c ;

and so that, taking k� = bp=2c, we may write �W (t) under the form in (13),for any even or odd p. 2

Then, taking into account that since a single Logbeta distribution may berepresented under the form of an in�nite mixture of either Exponential orGIG distributions ([12]), a sum of independent Logbeta r.v.'s with either thesame or di�erent parameters may thus be represented under the form of anin�nite mixture of sums of independent Exponentials or GIG distributions,which are all GIG distributions and that the GIG distribution itself may beseen as a mixture of Gamma distributions ([11]), the replacement of the sumof independent Logbeta r.v.'s by a single Gamma distribution or by a (�nite)mixture of Gamma distributions seems to be most adequate.
Thus, near-exact distributions forW1 may then be obtained under the form ofa (Generalized Near-Integer Gamma) distribution ([10]) or mixtures of GNIGdistributions by replacing ��1(t) by the c.f. of a Gamma distribution or the c.f.of a mixture of Gamma distributions (see Appendix A for details on the GNIGdistribution). These near-exact distributions will match, by construction, the�rst two, four and six exact moments of W1.
Theorem 2 Using for ��1(t) in (13), the approximations:

- �s(�� it)�s with s; � > 0, such that

@h@th �s(�� it)�s�����t=0 =
@h@th ��1(t)

�����t=0 for h = 1; 2 ; (16)

-
2X

k=1 �k �sk(�� it)�sk , where �2 = 1� �1 with �k; sk; � > 0 , such that

@h@th
2X

k=1 �k �sk(�� it)�sk �����t=0 =
@h@th ��1(t)

�����t=0 for h = 1; : : : ; 4 ; (17)
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-
3X

k=1 ��k �s
�
k(� � it)�s�k , where ��3 = 1� ��1 � ��2 with ��k; s�k; � > 0 , such that

@h@th
3X

k=1 ��k �s
�
k(� � it)�s�k �����t=0 =

@h@th ��1(t)
�����t=0 for h = 1; : : : ; 6 ; (18)

we obtain as near-exact distributions for W1, respectively,
i) a GNIG distribution of depth p � 1 with cdf (cumulative distribution func-

tion) (using the notation in (42) in Appendix A)

F (wjr1; : : : ; rp�2; s;�1; : : : ; �p�2; �) ; (19)
where

rj = �p2
��$j+1�(p??2)2

% ; �j = n�1�j2 ; (j = 1; : : : ; p� 2); (20)
and

� = m1m2 �m21 and s = m21m2 �m21 (21)
with

mh = i�h @h@th ��1(t)
�����t=0 ; h = 1; 2 ;

ii) a mixture of two GNIG distributions of depth p � 1, with cdf (using the
notation in (42) in Appendix A)

2X
k=1 �k F (wjr1; : : : ; rp�2; sk;�1; : : : ; �p�2; �) ; (22)

where rj and �j (j = 1; : : : ; p� 2) are given by (20) above and �1, �, r1 andr2 are obtained from the numerical solution of the system of four equations

2X
k=1 �k

�(rk + h)�(rk) ��h = i�h @h@th ��1(t)
�����t=0 (h = 1; : : : ; 4) (23)

for these parameters, with �2 = 1� �1;
iii) or a mixture of three GNIG distributions of depth p� 1, with cdf (using the

notation in (42) in Appendix A)

3X
k=1 ��k F (wjr1; : : : ; rp�2; s�k;�1; : : : ; �p�2; �) ; (24)
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with rj and �j (j = 1; : : : ; p � 2) given by (20) above and ��1, ��2, �, s�1, s�2
and s�3 obtained from the numerical solution of the system of six equations

3X
k=1 ��j

�(r�k + h)�(r�k) ��h = i�h @h@th ��1(t)
�����t=0 (h = 1; : : : ; 6) (25)

for these parameters, with ��3 = 1� ��1 � ��2.
Proof: If in the characteristic function of W1 in (13) we replace ��1(t) by�s(�� it)�s we obtain

�W1(t) � �s(�� it)�s

� p�2Y
k=1

 n�1�k2
!k��bk+1�(p??2)

2 c  n�1�k2 �it!�k�+bk+1�(p??2)
2 c

| {z }��2(t)
;

that is the characteristic function of the sum of p � 1 independent Gammarandom variables, p � 2 of which with integer shape parameters rj and rateparameters �j given by (20), and a further Gamma random variable with rateparameter s > 0 and shape parameter �. This characteristic function is thusthe c.f. of the GNIG distribution of depth p � 1 with distribution functiongiven in (19). The parameters s and � are determined in such a way that(16) holds. This compels s and � to be given by (21) and makes the two �rstmoments of this near-exact distribution for W1 to be the same as the two �rstexact moments of W1.
If in the characteristic function of W1 in (13) we replace ��1(t) by2Pk=1 �k �rk(�� it)�rk we obtain

�W1(t) � 2X
k=1 �k �rk(�� it)�rk

� p�2Y
k=1

 n�1�k2
!k��bk+1�(p??2)

2 c  n�1�k2 �it!�k�+bk+1�(p??2)
2 c

| {z }��2(t)
;

that is the characteristic function of the mixture of two GNIG distributions ofdepth p� 1 with density function given in (22). The parameters �1, �, r1 andr2 are de�ned in such a way that (17) holds, giving rise to the evaluation ofthese parameters as the numerical solution of the system of equations in (23)
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and to a near-exact distribution that matches the �rst four exact moments ofW1.
If in the characteristic function of W1 in (13) we replace ��1(t) by3Pk=1 ��k �r�k(� � it)�r�k we obtain

�W1(t) � 3X
k=1 ��k �r

�
k(� � it)�r�k

� p�2Y
k=1

 n�1�k2
!k��bk+1�(p??2)

2 c  n�1�k2 �it!�k�+bk+1�(p??2)
2 c

| {z }��2(t)
;

that is the characteristic function of the mixture of three GNIG distributionsof depth p � 1 with density function given in (22). The parameters ��1, ��2, �,r�1, r�2 and r�3 are de�ned in such a way that (18) holds, what gives rise tothe evaluation of these parameters as the numerical solution of the system ofequations in 25, giving rise to a near-exact distribution that matches the �rstsix exact moments of W1. 2

Corollary 3 Distributions with cdf 's given by

i) 1� F (� log zjr1; : : : ; rp�2; s;�1; : : : ; �p�2; �) ,
ii) 1� 2X

k=1 �k F (� log zjr1; : : : ; rp�2; sk;�1; : : : ; �p�2; �) , or

iii) 1� 3X
k=1 ��k F (� log zjr1; : : : ; rp�2; s�k;�1; : : : ; �p�2; �) ,

where the parameters are the same as in Theorem 2, and 0 < z < 1 repre-
sents the running value of the statistic �1 = e�W1, may be used as near-exact
distributions for this statistic.

Proof: Since the near-exact distributions developed in Theorem 2 were forthe random variable W1 = � log �1 we only need to mind the relation
F�1(z) = 1� FW1(� log z)

where F�(�) is the cumulative distribution function of �1 and FW1(�) is thecumulative distribution function of W1, in order to obtain the correspondingnear-exact distributions for �1.
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Indeed in order to obtain near-exact �-quantiles for �1 we do not even needthe near-exact distributions for �1, since if we consider the relation
�1(�) = e�W1(1��) ;

where �1(�) is the �-quantile of �1 and W1(1��) is the (1��)-quantile of W1we may easily obtain the near-exact �-quantiles of �1 from the corresponding(1��)-quantiles of W1.
3 Near-exact distributions for the likelihood ratio test statistic ofsphericity
Lemma 4 The c.f. of W = � log �, where � is the test statistic in (5) may
be writen as

�W (t) = pY
j=p�k�+1

� �n2+ j�1p � � �n+12 � it�
� �n+12 � � �n2+ j�1p � it�

p�k�Y
j=1

� �n2+ j�1p � � �n2 � it�
� �n2� � �n2+ j�1p � it�| {z }���1 (t)

�

p�1Y
k=1

 n�k2
!k��bk�(p??2)2 c  n�k2 �it!�k�+bk�(p??2)2 c

| {z }���2 (t)
; (26)

where k� = bp=2c. In (26) above, ���1 (t) is the c.f. of the sum of p independent
Logbeta r.v.'s, k� of which with parameters (n + 1)=2 and (j � 1)=p � 1=2
(j = p � k� + 1; : : : ; p) and the remaining p � k� with parameters n=2 and(j � 1)=p (j = 1; : : : ; p � k�) and ���2 (t) is the c.f. of a GIG distribution of

depth p�1, with rate parameters (n�k)=2 and shape parameters k��jk�(p??2)2 k
(k = 1; : : : ; p� 1).

Proof: From (7) we have
E ��h2� = p ph � �np2 �� �np2 + hp�

pY
j=1

� �n2 + h�
� �n2�

so that taking W2 = � log �2 and using the multiplication formula for theGamma function
�(kz) = (2�)�(k�1)=2 kkz�1=2 kY

i=1�
�z + i� 1k

� ;
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we have
�W2(t) = E �eitW2

� = E �e�it log �2
� = E ���it2 �

= p�itp � �np2 �� �np2 � itp�
pY

j=1
� �n2 � it�
� �n2�

= pY
j=1

� �n2 + j�1p � � �n2 � it�
� �n2� � �n2 + j�1p � it� :

(27)

Thus, given the de�nition of k� in the previous section, which may indeed bewritten as
k� = � p2

� =
8><>:

p2 even pp�12 odd p ;
and given that then for p� k� + 1 � j � p,

j � 1p + 12 � 1
since for p� k� + 1 � j � p we have

j � 1p + 12 � p� k� + 1� 1p + 12 =
8><>:

p�p=2p + 12 = 1 even pp�(p�1)=2p + 12 = 1 + 12p odd p ;
and given that under H0 in (2), �1 and �2 are indepenent, we may write, from(13) and (27), the c.f. of W = � log �, where � is the statistic in (5), as

�W (t) = �W1(t) �W2(t)
= ��2(t)

0@�
�n2� � �n2 � 12 � it�

� �n2 � 12� � �n2 � it�
1Ak
� pY
j=1

� �n2 + j�1p � � �n2 � it�
� �n2� � �n2 + j�1p � it�

= ��2(t) p�k�Y
j=1

� �n2+ j�1p � � �n2�it�� �n2� � �n2+ j�1p � it�
pY

j=p�k�+1
� �n2+ j�1p � � �n�12 �it�
� �n�12 � � �n2+ j�1p �it�

= ��2(t) �
p�k�Y
j=1

� �n2+ j�1p � � �n2�it�� �n2� � �n2+ j�1p �it�
pY

j=p�k�+1
� �n�12 + 12+ j�1p � � �n�12 �it�
� �n�12 � � �n�12 + 12+ j�1p �it�
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= pY
j=p�k�+1

� �n�12 +1� � �n�12 �it�
� �n�12 � � �n�12 +1�it�

� �n�12 + 12+ j�1p � � �n�12 +1�it�
� �n�12 +1� � �n�12 + 12+ j�1p �it� �

p�k�Y
j=1

� �n2 + j�1p � � �n2 � it�
� �n2� � �n2 + j�1p � it� � ��2(t)

=  �n�12
��n�12 �it��1!k� � ��2(t)| {z }���2 (t)

pY
j=p�k�+1

� �n2 + j�1p � � �n+12 � it�
� �n+12 � � �n2 + j�1p � it�

p�k�Y
j=1

� �n2 + j�1p � � �n2 � it�
� �n2� � �n2 + j�1p � it�| {z }���1 (t)

:

Then, by replacing ���1 (t) in (26) by the c.f. of a Gamma distribution or thec.f. of a mixture of Gamma distributions, we will get near-exact distributionsfor W = � log � under the form of a GNIG distribution or mixtures of GNIGdistributions.
Surprisingly enough, as we will see in the next section, these near-exact dis-tributions have an even better performance than the already well-�t ones in[19].
Theorem 5 Using for ���1 (t) in (26), the approximations:

- �s(�� it)�s with s; � > 0, such that

@h@th �s(�� it)�s�����t=0 =
@h@th ���1 (t)

�����t=0 for h = 1; 2 ; (28)
-

2X
k=1 �k �sk(�� it)�sk , where �2 = 1� �1 with �k; sk; � > 0 , such that

@h@th
2X

k=1 �k �sk(�� it)�sk �����t=0 =
@h@th ���1 (t)

�����t=0 for h = 1; : : : ; 4 ; (29)
-

3X
k=1 ��k �s

�
k(� � it)�s�k , where ��3 = 1� ��1 � ��2 with ��k; s�k; � > 0 , such that

@h@th
3X

k=1 ��k �s
�
k(� � it)�s�k �����t=0 =

@h@th ���1 (t)
�����t=0 for h = 1; : : : ; 6 ; (30)

14



we obtain as near-exact distributions for W , respectively,

i) a GNIG distribution of depth p with cdf (using the notation in (42) in Ap-
pendix A)

F (wjr1; : : : ; rp�1; s;�1; : : : ; �p�1; �) ; (31)
where

rj = �p2
��$j�(p??2)2

% ; �j = n�j2 ; (j = 1; : : : ; p� 1); (32)
and

� = m1m2 �m21 and s = m21m2 �m21 (33)
with

mh = i�h @h@th ���1 (t)
�����t=0 ; h = 1; 2 ;

ii) a mixture of two GNIG distributions of depth p, with cdf (using the notation
in (42) in Appendix A)

2X
k=1 �k F (wjr1; : : : ; rp�1; sk;�1; : : : ; �p�1; �) ; (34)

where rj and �j (j = 1; : : : ; p� 1) are given by (32) above and �1, �, r1 andr2 are obtained from the numerical solution of the system of four equations

2X
k=1 �k

�(rk + h)�(rk) ��h = i�h @h@th ���1 (t)
�����t=0 (h = 1; : : : ; 4) (35)

for these parameters, with �2 = 1� �1;
iii) or a mixture of three GNIG distributions of depth p, with cdf (using the

notation in (42) in Appendix A)

3X
k=1 ��k F (wjr1; : : : ; rp�1; s�k;�1; : : : ; �p�1; �) ; (36)

with rj and �j (j = 1; : : : ; p � 1) given by (32) above and ��1, ��2, �, s�1, s�2
and s�3 obtained from the numerical solution of the system of six equations

3X
k=1 ��j

�(r�k + h)�(r�k) ��h = i�h @h@th ���1 (t)
�����t=0 (h = 1; : : : ; 6) (37)

for these parameters, with ��3 = 1� ��1 � ��2.
15



Proof: The proof of this Theorem is in all similar to the proof of Theorem 2,more precisely, if in the characteristic function of W in (26) we replace ���1 (t)by �s(�� it)�s we obtain
�W (t) � �s(�� it)�s p�1Y

k=1
 n�k2

!k��bk�(p??2)2 c  n�k2 �it!�k�+bk�(p??2)2 c
| {z }���2 (t)

;

that is the characteristic function of the sum of p independent Gamma randomvariables, p�1 of which with integer shape parameters rj and rate parameters�j given by (32), and a further Gamma random variable with rate parameters > 0 and shape parameter �. This characteristic function is thus the c.f. ofthe GNIG distribution of depth p with distribution function given in (31).The parameters s and � are determined in such a way that (28) holds. Thiscompels s and � to be given by (33) and makes the two �rst moments of thisnear-exact distribution for W to be the same as the two �rst exact momentsof W .
If in the characteristic function of W in (26) we replace ���1 (t) by2Pk=1 �k �rk(�� it)�rk we obtain
�W (t) � 2X

k=1 �k �rk(�� it)�rk p�1Y
k=1

 n�k2
!k��bk�(p??2)2 c  n�k2 �it!�k�+bk�(p??2)2 c

| {z }���2 (t)
;

that is the characteristic function of the mixture of two GNIG distributionsof depth p with density function given in (34). The parameters �1, �, r1 andr2 are de�ned in such a way that (29) holds, giving rise to the evaluation ofthese parameters as the numerical solution of the system of equations in (35)and to a near-exact distribution that matches the �rst four exact moments ofW .
If in the characteristic function of W in (26) we replace ���1 (t) by3Pk=1 ��k �r�k(� � it)�r�k we obtain

�W (t) � 3X
k=1 ��k �r

�
k(� � it)�r�k �

p�1Y
k=1

 n�k2
!k��bk�(p??2)2 c  n�k2 �it!�k�+bk�(p??2)2 c

| {z }���2 (t)
;

16



that is the characteristic function of the mixture of three GNIG distributionsof depth p � 1 with density function given in (34). The parameters ��1, ��2, �,r�1, r�2 and r�3 are de�ned in such a way that (30) holds, what gives rise tothe evaluation of these parameters as the numerical solution of the system ofequations in (37), giving rise to a near-exact distribution that matches the�rst six exact moments of W .
Corollary 6 Distributions with cdf 's given by

i) 1� F (� log zjr1; : : : ; rp�1; s;�1; : : : ; �p�1; �) ,
ii) 1� 2X

k=1 �k F (� log zjr1; : : : ; rp�1; sk;�1; : : : ; �p�1; �) , or

iii) 1� 3X
k=1 ��k F (� log zjr1; : : : ; rp�1; s�k;�1; : : : ; �p�1; �) ,

where the parameters are the same as in Theorem 5, and 0 < z < 1 repre-
sents the running value of the statistic � = e�W , may be used as near-exact
distributions for this statistic.

The proof of this Corollary is in all similar to the proof of Corollary 3 andalso similar considerations to the ones right after Corollary 3, concerning thecomputation of near-exact quantiles of the statistics W1 and �1, apply hereto the computation of near-exact quantiles of the statistics W and �.

4 Numerical and comparative studies
In order to evaluate the quality of the near-exact approximations developedfor the likelihood ratio test statistics for testing independence in a set ofvariables and for the sphericity test we use, whenever the c.f.'s are available,two measures of proximity,

�1 = 1Z
�1 j�Y (t)� �n(t)j dt and �2 = 12�

1Z
�1

������Y (t)� �n(t)t
����� dt ; (38)

with
maxy2S jfY (y)� fn(y)j � 12��1 and maxy2S jFY (y)� Fn(y)j � �2 ; (39)

where Y represents a continuous random variable de�ned on S with distribu-tion function FY (y), density function fY (y) and characteristic function �Y (t),
17



and �n(t), Fn(y) and fn(y) represent respectively the characteristic, distribu-tion and density function of a random variable Xn.
These two measures may be derived directly from inversion formulas, and �2may be seen as based on the Berry-Esseen upper bound on jFY (y) � Fn(y)j(see [5], [13], [16], Chap.VI, sec. 21 in [18]).
We should note that for continuous random variables,

limn!1�1 = 0 () limn!1�2 = 0 (40)

and either one of the equalities above imply that
Xn d�! Y : (41)

For further details on these measures see [19], where they are used to studythe quality of near-exact distributions for the sphericity test statistic.

4.1 Studies for the independence test statistic

Mudholkar et al. in [20] developed a Normal approximation to the distributionof the likelihood ratio test statistic used for testing H01 in (2). These authorspresented numerical studies comparing their Normal approximation with theapproximations due to Box and Bartlett ([6], [4]).
Since the asymptotic Normal approximation from Mudholkar et al. in [20]yields indeed for log �1 a non-central generalized Gamma distribution, whosec.f. is not manageable, in order to compare the performance of the near-exactdistribution developed with this Normal asymptotic approximation, instead ofusing measures �1 and �2, we decided to use a similar method to the one usedin [20] to assess the performance of their Normal asymptotic approximation.
We used the exact quantiles for �1 computed directly from the numericalinversion of the c.f. of log �1 by using the Gil-Pelaez inversion formulas (see[14]) what gives us a precision at least equal to the one used in [20] in terms ofexact quantiles, which in turn give for the Normal asymptotic approximationof [20] exactly the same results obtained by these authors.
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Table 1 { Values of the tail probability error = (approx: prob� �)� 105 for the near-exactdistributions �p n 0:005 0:01 0:05 0:10 0:20 0:503 6 GNIG 1.29�100 2.72�100 �1:23�100 �7:92�100 �1:65�101 �5:75�100M2GNIG �9:91�10�1 �9:77�10�2 �4:20�10-1 �1:82�10�1 5.42�10�1 �6:78�10�18 GNIG 1.37�100 1.10�100 �5:45�10�1 �5:36�100 �9:40�100 �2:21�100M2GNIG 5:51�10�2 �3:37�10�1 3:26�10�1 �6:20�10�1 4.26�10�2 �3:71�10�113 GNIG 1.26�100 3.47�10�1 �2:61�10�1 �1:76�100 �3:30�100 �5:33�10�1M2GNIG 7:79�10�1 �1:85�10�1 1:75�10�1 4:88�10�2 4.69�10�2 �1:13�10�14 7 GNIG 1.93�100 1.55�100 1:17�100 �1:57�100 �6:80�100 �7:90�100M2GNIG 7:73�10�1 �6:58�10�2 3:44�10�3 1:24�10�2 8.95�10�2 �1:17�10�29 GNIG 8.44�10�1 1.10�100 5:08�10�1 �1:38�100 �4:60�100 �4:48�100M2GNIG 2:58�10�2 1:16�10�2 �5:76�10�3 1:80�10�2 6.38�10�2 �3:87�10�214 GNIG 3.94�10�1 4.63�10�1 1:80�10�1 �7:26�10�1 �1:99�100 �1:67�100M2GNIG 2:48�10�2 �4:79�10�3 6:41�10�2 1:90�10�3 4.56�10�2 �3:17�10�25 8 GNIG 1.08�100 5.16�10�1 6:09�10�1 �8:25�10�2 �1:69�100 �3:05�100M2GNIG 7:16�10�1 �1:33�10�2 3:49�10�3 �6:88�10�3 7.96�10�3 1:40�10�210 GNIG 3.14�10�1 3.81�10�1 3:73�10�1 �1:88�10�1 �1:35�100 �2:01�100M2GNIG 1:92�10�2 �3:04�10�2 �3:85�10�3 1:07�10�3 8.56�10�3 5:78�10�315 GNIG 1.55�10�1 2.54�10�1 1:79�10�1 �1:35�10�1 �6:74�10�1 �8:84�10�1M2GNIG �2:47�10�3 4:37�10�2 3:36�10�2 2:17�10�2 3.85�10�2 4:01�10�46 9 GNIG 2.05�10�1 2.97�10�1 4:25�10�1 9:65�10�2 �7:81�10�1 �1:83�100M2GNIG 1:58�10�3 �8:79�10�3 1:85�10�3 �3:24�10�3 �3:26�10�3 7:92�10�311 GNIG 1.33�10�1 3.20�10�1 3:02�10�1 1:10�10�3 �6:97�10�1 �1:35�100M2GNIG �5:09�10�2 5:59�10�2 �2:03�10�3 �1:02�10�3 6:30�10�3 4:94�10�316 GNIG 1.15�10�1 1.59�10�1 1:43�10�1 4:31�10�2 4:27�10�1 �6:82�10�1M2GNIG 2:80�10�3 4:49�10�3 �1:08�10�3 4:80�10�4 2:21�10�3 1:56�10�37 10 GNIG 9.08�10�2 1.30�10�1 2:02�10�1 8:12�10�2 �2:81�10�1 �8:07�10�1M2GNIG 2:31�10�3 �4:00�10�3 �9:51�10�4 �7:33�10�4 4:77�10�4 2:44�10�312 GNIG 8.85�10�2 1.25�10�1 1:61�10�1 3:58�10�2 �2:81�10�1 �6:47�10�1M2GNIG 2:55�10�3 �1:68�10�4 �1:05�10�3 �1:62�10�3 �1:31�10�3 1:91�10�317 GNIG 7.50�10�2 8.12�10�2 8:80�10�2 �6:53�10�2 �1:93�10�1 �3:65�10�1M2GNIG 1:68�10�2 �1:78�10�4 �4:01�10�4 �6:63�10�2 5:78�10�4 8:09�10�410 13 GNIG 2.12�10�2 3.25�10�2 5:45�10�2 3:26�10�2 �4:52�10�2 �1:87�10�1M2GNIG 7:02�10�6 �2:87�10�7 �7:41�10�5 �9:29�10�5 �5:28�10�6 2:01�10�415 GNIG 2.35�10�2 3.49�10�2 5:19�10�2 2:53�10�2 �5:39�10�2 �1:75�10�1M2GNIG 1:09�10�5 �4:74�10�6 �8:76�10�5 �8:87�10�5 2:41�10�5 2:09�10�420 GNIG 1.97�10�2 2.82�10�2 3:70�10�2 1:32�10�2 �4:80�10�2 �1:25�10�1M2GNIG 1:50�10�5 �2:32�10�5 �5:39�10�5 �6:23�10�5 2:71�10�5 1:48�10�4
However, given that the exact quantiles computed in this way have a precisionthat does not go beyond 12 digits and given that this precision is not enough formaking comparisons with the near-exact distribution M3GNIG, which requiresa higher precision, we have used in Table 1 only the near-exact distributionsGNIG and M2GNIG.
In Table 1 the errors displayed are evaluated using the exact same methodused by Mudholkar et al. in [20], the di�erence between the approximate andthe exact tail probabilities multiplied by 105. The values considered for p andn correspond to the same cases considered by Mudholkar et al. in [20]. Wecan observe that the errors obtained when using the near-exact distributionsare always much smaller than the ones given in Table 1 of Mudholkar et al.in [20] for their Normal approximation, mainly for larger values of p.
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Table 2{ Values of the measures �1 and �2 for the near-exact distributions�1 �2p n GNIG M2GNIG M3GNIG GNIG M2GNIG M3GNIG3 6 5.8�10�2 5.7�10�3 2:4�10�3 5:1�10�4 2:1�10�5 4:6�10�68 4.4�10�2 4.2�10�3 5:3�10�4 2:7�10�4 1:1�10�5 8:9�10�713 2.7�10�2 1.9�10�3 2:7�10�5 9:4�10�5 3:1�10�6 3:3�10�84 7 4.7�10�3 1.8�10�4 1:4�10�5 1:7�10�4 3:7�10�6 2:0�10�79 4.0�10�3 1.4�10�4 5:4�10�6 1:1�10�4 2:3�10�6 6:1�10�814 2.7�10�3 7.8�10�5 3:7�10�7 4:4�10�5 7:4�10�7 3:0�10�95 8 8.1�10�4 1.4�10�5 4:4�10�7 4:7�10�5 5:2�10�7 1:2�10�810 7.5�10�4 1.3�10�5 2:1�10�7 3:2�10�5 3:6�10�7 4:4�10�915 5.8�10�4 8.1�10�6 1:8�10�8 1:5�10�5 1:4�10�7 2:6�10�106 9 3.3�10�4 3.5�10�6 3:6�10�8 2:4�10�5 1:7�10�7 1:3�10�911 3.3�10�4 3.4�10�6 1:9�10�8 1:8�10�5 1:3�10�7 5:5�10�1016 2.8�10�4 2.4�10�6 2:1�10�9 9:5�10�6 5:6�10�8 3:5�10�117 10 1.2�10�4 7.3�10�7 3:7�10�9 9:7�10�6 4:2�10�8 1:7�10�1012 1.2�10�4 7.7�10�7 2:1�10�9 7:9�10�6 3:4�10�8 7:4�10�1117 1.1�10�4 6.1�10�7 4:0�10�10 4:6�10�6 1:8�10�8 8:3�10�1210 13 1.9�10�5 4.2�10�8 6:2�10�12 2:0�10�6 3:2�10�9 3:5�10�1315 2.2�10�5 5.1�10�8 2:2�10�11 1:9�10�6 3:1�10�9 1:1�10�1220 2.4�10�5 5.1�10�8 4:6�10�11 1:4�10�6 2:1�10�9 1:5�10�1220 23 5.2�10�7 1.4�10�10 3:0�10�14 7:8�10�8 1:5�10�11 2:7�10�1550 1.1�10�6 2.8�10�10 7:4�10�14 4:9�10�8 9:7�10�12 2:1�10�15100 7.4�10�7 1.2�10�10 2:5�10�14 1:5�10�8 1:8�10�12 3:2�10�1650 53 5.8�10�9 1.0�10�13 1:5�10�19 1:1�10�9 1:5�10�14 1:9�10�20100 1.1�10�6 2.8�10�10 1:9�10�17 4:9�10�8 9:7�10�12 7:5�10�19150 2.3�10�8 4.6�10�13 4:3�10�19 8:5�10�10 1:3�10�14 1:0�10�20200 2.0�10�8 3.2�10�13 3:3�10�19 5:3�10�10 6:5�10�15 5:7�10�21500 9.8�10�9 7.1�10�14 5:0�10�20 1:0�10�12 5:4�10�16 3:2�10�22

In Table 2 we use measures �1 and �2 to better assess the relative perfor-mance of the three near-exact distributions GNIG, M2GNIG and M3GNIG asapproximating distributions for the independence test statistic.

From Table 2 we may easily see that the near-exact distribution M3GNIG hasalways a better performance than the other two near-exact distributions andwe can also see that the near-exact distribution M2GNIG always outperformsthe GNIG near-exact distribution. The values exhibited for the M3GNIG dis-tribution for both measures, mainly for the measure �2, which represents anupper bound for the absolute value of the di�erence between its c.d.f. and theexact c.d.f., would lead us to recommend its use as a replacement for the exactdistribution, mainly for larger values of p. The three near-exact distributionsdisplay a marked asymptotic behavior both for increasing sample sizes andincreasing number of variables, although for larger values of p we need largeenough sample sizes in order to be able to observe their asymptotic behaviorin terms of increasing values of n.
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4.2 Studies for the sphericity test statistic

The tables in this subsection present the values of the measures �1 and �2given in (38) for the new near-exact distributions developed in this paper forthe likelihood ratio test statistic used for testing sphericity. In this subsec-tion our purpose is to assess the quality of the new near-exact distributionscomparing them with the ones already developed, using a di�erent method,in [19]. In order to achieve our purpose we have considered the exact samevalues for n and p already considered in the numerical studies presented inthat reference. We will denote the new near-exact distributions correspond-ing to the GNIG distribution, the mixture of two GNIG distribution and themixture of three GNIG distributions respectively by GNIGnew, M2GNIGnewand M3GNIGnew (leaving the names GNIG, M2GNIG and M3GNIG, used inTable 7, for the corresponding near-exact distributions developed in [19]).
Table 3 { Values of �1 and �2 for the near-exact distributions for W =� log �,for p = 4, n = 6 and p = 5, n = 7p = 4; n = 6 p = 5; n = 7�1 �2 �1 �2GNIGnew 3:815� 10�5 2:408� 10�6 2:802� 10�5 2:300� 10�6M2GNIGnew 5:617� 10�7 2:198� 10�8 2:580� 10�7 1:378� 10�8M3GNIGnew 3:875� 10�9 1:180� 10�10 4:936� 10�9 1:992� 10�10
Table 4 { Values of �1 and �2 for the near-exact distributions for W =� log �,for p = 7, n = 9 and p = 10, n = 12p = 7; n = 9 p = 10; n = 12�1 �2 �1 �2GNIGnew 3:953� 10�6 4:234� 10�7 3:366� 10�7 4:402� 10�8M2GNIGnew 1:363� 10�8 1:007� 10�9 2:863� 10�10 2:667� 10�11M3GNIGnew 5:617� 10�11 3:241� 10�12 8:847� 10�14 6:518� 10�15

Comparing Tables 3 and 4 with Tables 1 and 2 in [19] we can observe thatthe values for the new approximations are always better with the exception ofM3GNIGnew for p = 5, n = 7 and p = 7, n = 9.
Table 5 { Values of �1 and �2 for the near-exact distributions for W =� log �, for p = 4; 5; 7and n = 50p = 4; n = 50 p = 5; n = 50 p = 7; n = 50�1 �2 �1 �2 �1 �2GNIGnew 9:702�10�6 6:005�10�8 9:490�10�6 8:493�10�8 2:376�10�6 3:323�10�8M2GNIGnew 2:682�10�8 1:105�10�10 2:936�10�8 1:835�10�10 3:574�10�9 3:618�10�11M3GNIGnew 1:233�10�10 3:818�10�13 4:932�10�11 2:389�10�13 2:760�10�12 2:243�10�14
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Table 6 { Values of �1 and �2 for the near-exact distributions for W =� log �, for p = 10; 20; 30and n = 50p = 10; n = 50 p = 20; n = 50 p = 30; n = 50�1 �2 �1 �2 �1 �2GNIGnew 3:831�10�7 8:153�10�9 3:186�10�8 1:513�10�9 5:781�10�9 4:646�10�10M2GNIGnew 1:713�10�10 2:686�10�12 3:622�10�12 1:283�10�13 2:609�10�13 1:567�10�14M3GNIGnew 6:236�10�14 8:006�10�16 3:602�10�16 1:057�10�17 1:121�10�17 5:588�10�19
Comparing Tables 5 and 6 with Tables 3 and 4 in [19] we may verify thatin almost all cases we have for the new near-exact approximations smallervalues for the measures �1 and �2. The only case where this fact does nothappen is when p = 4 and n = 50 for the measures of the M2GNIGnew andM3GNIGnew distributions. These new near-exact approximations also exhibitthe good asymptotic properties revealed by the near-exact approximations in[19].
We may say as a general conclusion that the new near-exact distributionshave a better performance than the ones developed in [19] for large values ofn with p large enough (p � 4). Moreover in the next Table we may see thatfor large values of p and values of n close to p we also have better values ofboth measures for the near-exact distributions developed in this paper.

Table 7 { Values of �1 and �2 for the near-exact distributions for W =� log �, for p = 10; 20; 30and n = 12; 22; 32p = 10; n = 12 p = 20; n = 22 p = 30; n = 32�1 �2 �1 �2 �1 �2GNIGnew 1:058�10�6 1:383�10�7 3:526�10�8 6:034�10�9 5:043�10�9 9:685�10�10GNIG 8:940�10�6 1:171�10�6 3:634�10�7 6:221�10�8 5:178�10�8 9:945�10�9M2GNIGnew 8:994�10�10 8:380�10�11 3:664�10�12 4:587�10�13 1:543�10�13 2:185�10�14M2GNIG 3:394�10�9 3:189�10�10 1:173�10�11 1:470�10�12 4:525�10�13 6:408�10�14M3GNIGnew 2:779�10�13 2:048�10�14 2:956�10�16 3:014�10�17 4:413�10�18 5:122�10�19M3GNIG 3:601�10�12 2:706�10�13 1:104�10�15 1:128�10�16 1:766�10�17 2:051�10�18

5 Conclusions
The process used to factorize the characteristic functions involved allowed usto obtain near-exact distributions almost simultaneously for the independenceand the sphericity test statistics and also to obtain simple expressions forthe shape parameters of ��2(t) in (13) and of ���2 (t) in (26), with the shapeparameters for the near-exact distributions for the sphericity test statistichaving much simpler expressions than the ones for the near-exact distributionsin [19].
The near-exact distributions developed for the independence test statisticshow a much better precision than one that is obtained with the Normal
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approximation of [20] while the new near-exact distributions developed forthe sphericity test statistic are more accurate than the ones developed in [19]for larger values of p (p � 10) or even for smaller values of p as long as thesample size is large enough.
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Appendix A

Cumulative distribution function for the GNIG distribution
The density and distribution functions for the GNIG distribution are given in[10]. Let

Z = Z1 + Z2
where Z2 � �(r; �), with � > 0 and r a positive non-integer and

Z1 = gX
i=1Xi ; with Xi � �(ri; �i) ; independent;

where r1; : : : ; rg are positive integers and �1; : : : ; �g > 0 are all di�erent. Thedistribution of Z1 is a GIG distribution of depth g ([8]), while the distributionof Z, if Z1 and Z2 are assumed independent, is a GNIG distribution of depthg + 1. We will denote this by
Z � GNIG(r1; : : : ; rg; r; �1; : : : ; �g; �) :

The cumulative distribution function of Z is given by
FZ(zjr1; : : : ; rg; r; �1; : : : ; �g; �) = �r zr�(r+1)1F1(r; r+1;��z)

�K�r gX
j=1 e��jz

rjX
k=1 c�j;k

k�1X
i=0

zr+i�ij�(r+1+i)1F1(r; r+1+i;�(�� �j)z)
(z > 0)

(42)

where
K = gY

j=1�rjj and c�j;k = cj;k�kj �(k)
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with cj;k given by (11) through (13) in [8]. In the above expression 1F1(a; b; z)is the Kummer con
uent hypergeometric function (see [1]). This function hasusually very good convergence properties and is nowadays easily handled bya number of software packages.
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