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Abstract

In this paper we will show how a suitably developed decomposition of the charac-
teristic function of the logarithm of the likelihood ratio test statistic to test inde-
pendence in a set of variates may be used to obtain extremely well-fit near-exact
distributions both for this test statistic as well as for the likelihood ratio test statis-
tic for sphericity, based on a decomposition of this latter test in two independent
tests. For the independence test statistic, numerical studies and comparisons with
asymptotic distributions proposed by other authors show the extremely high close-
ness of the near-exact distributions developed to the exact distribution. Concerning
the sphericity test statistic, comparisons with the near-exact distributions developed
in [19] show the advantages of these new near-exact distributions.

Key words: Wilks Lambda statistic, independence test, sphericity test,
Generalized Near-Integer Gamma distribution, mixtures.

1 Introduction

Let X be a px1 vector with a p-multivariate Normal distribution with expected
value p and variance-covariance matrix X, that is, let

X ~ Ny, %) - (1)
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Then, the power 2/(n + 1) of the likelihood ratio test statistic to test the null
hypothesis

Ho, : S = diag(0,03,...,0) (2)

based on a sample of size n + 1, is the statistic

V]

i=1

Alz

where the pxp matrix V is either the MLE (Maximum Likelihood Estimator)
of 32, the sample matrix of sum of squares and products of deviations from the
sample mean or the sample variance-covariance matrix of the p variables in X
and Vj; is the j-th diagonal element of V. The statistic in (3) is a particular
case of the generalized Wilks A statistic used to test the independence of p
groups of variables, each with one only variable (see [7],[8],Ch. 9 in [3], Ch. 10 in
[17], Ch. 11 in [21]). Near-exact distributions for this statistic are thus readily
available from the results in [9,10,2,15]. However, given the specificity of the
case under consideration, some further developments may be sought, namely
a simpler way to obtain and a simpler formulation for the shape parameters
of the Gamma distributions involved in the part of the distribution of A; left
untouched. These details will be addressed in Section 2.

On the other hand, the power 2/(n + 1) of the likelihood ratio test statistic
to test the sphericity hypothesis on X, based on a sample of size n + 1, that
is, to test the null hypothesis

Hy:¥ =0%1, (0% unspecified) (4)

is the statistic (see Ch. 10 in [3], Ch.10 in [17], Ch.8 in [21])

Vi

=V (trv)p”’

where V' is the matrix in (3).

Well-fit near-exact distributions have alread been developed for this statistic
by Marques and Coelho in [19]. However, and somehow unexpectedly, in this
paper we will show that even better near-exact distributions may be obtained
for this statistic by taking as a basis the near-exact distributions developed
for the statistic A; in (3) and the decomposition performed on its character-
istic function. These near-exact distributions for A will be obtained from a



decomposition of the statistic A in (5), which may be written as

A=A Ay, (6)

where A, is the statistic in (3) and

P .
=1V

N= ")

is the power 2/(n+1) of the likelihood ratio test statistic to test the hypothesis

Hoypjo1 : 05 =03 =... =0, (given that, or, assuming that the  (8)
p variables in X are independent)

based on p independent estimates of the variances of the variables in X, one
for each O'j2-, based on samples of size n + 1. In (7), V and V; are the same
as in (3). We may note that Vj is either the MLE of 0% (j = 1,...,p), the
sample variance of the j-th variable in X in (1), or the sum of squares of the

deviations from the sample mean for the j-th variable in X, according to the
choice of V.

The statistic in (7) may be derived from the likelihood ratio test statistic
for the equality of p variance-covariance matrices (see Ch.10 in [3], Ch. 10 in
[17], Ch.8 in [21]), taking each matrix to have dimensions 1x1 (there they are
again, the p groups of one variable each).

We may write for Hy in (4), Hyy in (2) and Hy, in (8),

Hy = Hoyjo1 0 Hot, (9)

to be read as " Hyy|o1 after Hy;”, meaning that we may test Hj in two steps: (1)
testing first Hy, that is, if the p variables in X are independent and (iz) once
the hypothesis of independence of the p variables is not rejected, testing then
if they all have the same variance. Under Hy in (4) the two test statistics A;
and A in (6) are independent (see Ch. 10, subsec. 10.7.3 in [3]). This way to
look at this test will enable us to obtain even better near-exact distributions
than the already much well-fit ones in [19].

As a side note we may stress that the test statistic in (7) may be used, under a
slightly different setting, to test the null hypothesis of equality of variances in
(8), without any conditioning if the p estimators V; are based on p independent
samples, in which case those samples may have different sizes.



Indeed in the test statistic in (7) the requirement is that the p estimators V;
have to be independent (among other reasons, because one has to be able to
easily derive the distribution of ¢rV, their sum). We may note that this will
be the case even if the p estimators V; come from a multivariate sample of
size n 4+ 1 of the p variables in X, once the null hypothesis of independence
of the p variables is not rejected, since then the matrix V' will have a Wishart
distribution with n degrees of freedom and parameter matrix the matrix >
in (2), so that the diagonal elements of V" are independent (through a simple
extension of Theorem 3.2.7 in [21]).

2 Near-exact distributions for the likelihood ratio test statistic of
independence

In order to obtain the c.f. (characteristic function) of W, = —log A; we may
consider Theorems 9.3.2 and 9.3.3 of [3] which state that, for a sample of size
n+1,

p—1

A~ 1Y (10)

J=1

(where '~ is to be read as ’'is distributed as’) with

Y, ~ B(ﬂ—pﬂ p—])

5 g G=1,...,p) (11)

where A; is the statistic in (3), and where, under Hy, in (2), the p—1 random
variables Y; in (10) and (11) are independent. Then, since we known that

P(3) r (= +h) (1> -"=2+9)
D(5+n)0(52) ’

B () =

we have, for i = (—1)'/2,

. p—1 A PAT(5) T %ﬂ "
Dy (1) = B (W) = ]HlE<YJt) _ jlrgg) Zt() F(Wg (12)

Now, in order to be able to obtain a suitable decomposition of the c.f. of
W, we may either consider the results and developments in section 5 of [10],
taking pp = 1 for k = 1,...,m and k* = |p/2], or we may take a different
approach which will indeed enable us to obtain simpler expressions for the



shape parameters of the Gamma distributions involved in the part of the
distribution of W; which will be left unchanged. We will take this second
approach.

The following Lemma gives the c.f. of Wy, for both even and odd p, under a
form that is suitable for the development of near-exact distributions for both
Wi and Ay.

Lemma 1 Under Hy in (2), taking k* = |p/2] and 7alb”, with a,b,€ IN,
as representing the remainder of the integer ratio of a by b, the c.f. of Wy =
—log Ay (where Ay is the statistic in (3), used to test the independence among
the p variables in X ), may be written under the form

(13)

T A e B ) s S
N 5 ! ,

3 (1)

where O3 (t) is the c.f. of the sum of k* independent Logbeta r.v.’s with param-
eters (n — 1)/2 and 1/2 and ®i(t) is the c.f. of a GIG (Generalized Integer
Gamma) distribution [8] of depth p— 2 with rate parameters (n—1—k)/2 and

shape parameters k* — [H%MJ (k=1,...,p—2), that is the distribution

of the sum of p — 2 independent Gamma r.v.’s with the given rate and integer
shape parameters.

Proof: We will need to consider separately the two cases of even and odd p.
For even p, from (12) we may write

() D5 0)
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where, for even j, (p—j)/2 € IN, so that, using for z € €\{0, -1, -2, ...} and

n € IN,

I'(z+n)
= (z+ k)
o -~ 4
we may write
p=2 -1 1
i T (45 00) (5 ek
j=2 k=0
step 2
p2 HL-1 . _ . -1
- (” ar J—l—k) (” P¥) P k:—zt)
j=2 k=0 2 2 2 2
step 2
p—2 5t -1 IFTZ Lk —(L—k
G G - ) (™
j=2 kel V2 2 o1 V2 2
step 2
and
cr(3-8) () P (g) (3 -3- )
RS Ly o ) ey (=251 iy o ey ey
J=L 2T 2 2 72 2
(2T (n—1 i\ \7/? o1 Bt —1
=( (2)rls ?)) I (2 ) (2 )
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For odd p, we may write

RN k) B O R G sl
(1) = jHl P (3 —it) T(%2H) o T (5 —it) T (=5H)

2
step 2 step 2

D (t) D (t)
= &y (t) a(1),

where now it is for odd j that (p — j)/2 € IN, so that following similar steps
to the ones used above to handle ®4(t), we may write

p—2 g1 : —1
n—p+ n—p+ .
®(t) = 1T ( 729 ]+k>< 729 ]+/€—zt>
j=1 k=0
step 2
p—2 557 —1
3§ (G
=1 k=1 2 2
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so that we may finally write, for odd p,

and so that, taking k* = |p/2], we may write @, (¢) under the form in (13),
for any even or odd p. O

Then, taking into account that since a single Logbeta distribution may be
represented under the form of an infinite mixture of either Exponential or
GIG distributions ([12]), a sum of independent Logbeta r.v.’s with either the
same or different parameters may thus be represented under the form of an
infinite mixture of sums of independent Exponentials or GIG distributions,
which are all GIG distributions and that the GIG distribution itself may be
seen as a mixture of Gamma distributions ([11]), the replacement of the sum
of independent Logbeta r.v.’s by a single Gamma distribution or by a (finite)
mixture of Gamma distributions seems to be most adequate.

Thus, near-exact distributions for W; may then be obtained under the form of
a (Generalized Near-Integer Gamma) distribution ([10]) or mixtures of GNIG
distributions by replacing ®3(¢) by the c.f. of a Gamma distribution or the c.f.
of a mixture of Gamma distributions (see Appendix A for details on the GNIG
distribution). These near-exact distributions will match, by construction, the
first two, four and six exact moments of Wj.

Theorem 2 Using for ®i(t) in (13), the approzimations:
- XA —it)"* with s, A > 0, such that

ah

= 5%
o Ot

h
T =ity

o @;(1)

for h=12; (16)

t=0

2
- Z O p°* (1o — it) %%, where Oy = 1 — 01 with O, sx, > 0, such that
k=1

o
= ﬁ@(t)

t=0

o &
@ZGkusk(u—it)_sk for h=1,....4; (17)
k=1

t=0



3
Z FUt (v —it) %%, where 05 = 1 — 07 — 05 with 05, st, v > 0, such that

ah

8th ZH* k(v —it)” 8thq>() for h=1,...,6; (18)

=0 t=0

we obtain as near-exact distributions for W1, respectively,

i) a GNIG distribution of depth p — 1 with cdf (cumulative distribution func-
tion) (using the notation in (42) in Appendiz A)

F(w|ry,...,rp_9,8 A1, ..o, Apa, A) (19)
where
P J+1—(pl2) n—1—j .
r; = M—{2 Coan= =1 -2), (20)
and
my m%
A= 5 and §=——— (21)
m2 - m1 m2 m1
with
ah
—h
my, = — o(t)| h=1,2;
oth o

ii) a mizture of two GNIG distributions of depth p — 1, with cdf (using the
notation in (42) in Appendiz A)

ng w|T17"'7Tp—278k;/\17"'7)\p—27,u)a (22)

where rj and \; (j =1,...,p—2) are given by (20) above and 0y, ji, r1 and
r9 are obtained from the numerical solution of the system of four equations

Z O L +)h) pt =i aath i (t) (h=1,...,4) (23)

t=0

for these parameters, with 0y =1 — 6y;
iii) or a mizture of three GNIG distributions of depth p — 1, with cdf (using the
notation in (42) in Appendiz A)

Z@k (W1, oo Tp2, SE AL, -y Ape2, V) (24)



with r; and A\j (7 =1,...,p —2) given by (20) above and 65, 03, v, s, s}
and s§ obtained from the numerical solution of the system of siz equations

3 Tri+h) , O
P Ly = P =1,... 2
/;::10] F(T;’;) v 1 ath 1(t) (h ’ 76) ( 5)

t=0

for these parameters, with 05 =1 — 07 — 05.
Proof: If in the characteristic function of Wi in (13) we replace ®(¢) by
A*(A —it)~* we obtain

By () ~ N (A —it)
k*itk+l—‘£pL2)J

x| k+1-(pl2)
N e e RS

k=1

that is the characteristic function of the sum of p — 1 independent Gamma
random variables, p — 2 of which with integer shape parameters r; and rate
parameters A; given by (20), and a further Gamma random variable with rate
parameter s > 0 and shape parameter A. This characteristic function is thus
the c.f. of the GNIG distribution of depth p — 1 with distribution function
given in (19). The parameters s and A are determined in such a way that
(16) holds. This compels s and A to be given by (21) and makes the two first
moments of this near-exact distribution for W to be the same as the two first
exact moments of Wj.

If in the characteristic function of W; in (13) we replace ®j(t) by
2

> Ok " ( — it) "™ we obtain

k=1

2
Dy (1) = Y O p"™ (e —it) ™™
k=1
k*_Lk+l—§pL2)J k+1—§pJL2)J

AT

k=1

23(1)
that is the characteristic function of the mixture of two GNIG distributions of
depth p — 1 with density function given in (22). The parameters 6y, p, 1 and

ry are defined in such a way that (17) holds, giving rise to the evaluation of
these parameters as the numerical solution of the system of equations in (23)

10



and to a near-exact distribution that matches the first four exact moments of
Wwi.

If in the characteristic function of W in (13) we replace ®j(t) by

3 * . * .
> 0; v k(v — it) "k we obtain
k=1

*7|_k+17‘(pJL2) k+172(pJL2)J

'

@3 (1)

that is the characteristic function of the mixture of three GNIG distributions
of depth p — 1 with density function given in (22). The parameters 67, 65, v,
ry, rs and 75 are defined in such a way that (18) holds, what gives rise to
the evaluation of these parameters as the numerical solution of the system of
equations in 25, giving rise to a near-exact distribution that matches the first
six exact moments of W;. O

Corollary 3 Distributions with cdf’s given by
i) 1= F(=logz|ry,...,mp—2,8; A1, ..., Ap_2, A),

2

i) 1= 0, F(=logz|ri, ..., Ty, Sk Ay .o, Apa, i), O
k:gl

i) 1= 0y F(=logz|ri,...,rp 2, Sk A1, .oy Ap_a, V),
k=1

where the parameters are the same as in Theorem 2, and 0 < z < 1 repre-
sents the running value of the statistic Ay = e="*, may be used as near-exact
distributions for this statistic.

Proof: Since the near-exact distributions developed in Theorem 2 were for
the random variable W; = —log A; we only need to mind the relation

Fy (2) =1 — Fy,(—log 2)

where Fi(:) is the cumulative distribution function of A; and Fyy,(-) is the
cumulative distribution function of Wy, in order to obtain the corresponding
near-exact distributions for A;. O

11



Indeed in order to obtain near-exact a-quantiles for A; we do not even need
the near-exact distributions for A;, since if we consider the relation

Aifa) = e M0,

where A(a) is the a-quantile of Ay and W;(1—a) is the (1—a)-quantile of W,
we may easily obtain the near-exact a-quantiles of A; from the corresponding
(1—a)-quantiles of W;.

3 Near-exact distributions for the likelihood ratio test statistic of
sphericity

Lemma 4 The c.f. of W = —log A, where A is the test statistic in (5) may
be writen as

() () T (345 P ()
By (1) = . Yo
wit) z_pg*ﬂr(;) r(2+20—it) JHl (3) T (3+5" —it) X

where k* = |p/2]. In (26) above, ®T*(t) is the c.f. of the sum of p independent
Logbeta r.v.’s, k* of which with parameters (n + 1)/2 and (j — 1)/p — 1/2
(j =p—k*+1,...,p) and the remaining p — k* with parameters n/2 and
G=1U/p (G=1,....,p—k*) and ®5*(t) is the c.f. of a GIG distribution of
depth p—1, with rate parameters (n—k)/2 and shape parameters k* —{%J
(k=1,....,p—1).

Proof: From (7) we have

r(y) ()
C(F o) B )

so that taking Wy = —log Ay and using the multiplication formula for the
Gamma function

E (Ag) = pPh

F(kz) — (27T)—(k—1)/2 kkz—l/Q H T (Z I ) - ) |
=1

12



Thus, given the definition of k* in the previous section, which may indeed be

written as
e { p J _ L even p
2 =l odd p,

2
and given that then forp — k" +1 <7 < p,
-1 1
It
14 2
since for p — k* +1 < 7 < p we have
j1+1>pk*—|-11+1{p5/2+51 even p
2~ 2 | e=te=n/2 1 1
p p E e +§—1+% Oddp7

and given that under Hy in (2), A; and A, are indepenent, we may write, from
(13) and (27), the c.f. of W = —log A, where A is the statistic in (5), as

Dr(z-t )T (244
pokt (24 20) D (2t po D (2450 T (%52 —it
= %) = F((T;) FZ)(’;)+J']D(12@t)) jpll*ﬂ nggl)pr)(gfﬂzlztg
= B3(t)
L R A Cintl) I S G R G )
LB ) R Cre=m) JRL S )y C e e =y

13



- ﬁ U(25t+1) 0 (25t —it) D (22 +24 50 T (25 +1-it)
e (%5 D (524 1—it) T (52 41) T (524t mit)
ok [ (24 L) Ft(g — it) . 5300
ST T+ 5 )
n

T oy
gif’*’“*ﬂr( TG+ 5 ) ST riE+5 ”L)l

Then, by replacing ®;*(¢) in (26) by the c.f. of a Gamma distribution or the
c.f. of a mixture of Gamma distributions, we will get near-exact distributions
for W = —log A under the form of a GNIG distribution or mixtures of GNIG

distributions.

Surprisingly enough, as we will see in the next section, these near-exact dis-
tributions have an even better performance than the already well-fit ones in
[19].

Theorem 5 Using for ®1*(t) in (26), the approzimations:
- AN —1it)* with s,\ > 0, such that

ah

g Oth

h
9 =ity

. o (1)

for h=1,2; (28)

t=0

2
- Z O p°* (1o — it) %%, where Oy = 1 — 0y with O, sx, > 0, such that
k—1

ah?

ah
S G — i) v
oth —

= ﬁqﬁ (t)

t=0

for h=1,...,4;(29)

=0
3
- > 0; vk (v — it) %, where 05 = 1 — 07 — 05 with 0}, s;, v > 0, such that
k=1

ah %ok
= @@1 (t)
t=0

h 3
ihzg;,,sz(y_it)—s; for h=1,...,6; (30)
ath &

t=0

14



we obtain as near-exact distributions for W, respectively,

i) a GNIG distribution of depth p with cdf (using the notation in (42) in Ap-
pendiz A)

F(wlry, ... mp=1, S M, o A1, A) (31)
where
p| |i—(pl2) n—j :
and
my m%
A= 5 and s = (33)
My — My mgy — My
with
ah
—h *x
my, = — 07" ()| h=1,2;
oth —0

ii) a mizture of two GNIG distributions of depth p, with cdf (using the notation
in (42) in Appendiz A)

2
ZHkF(w’Tb-~->Tp7178k;/\17-~~7)‘p717:u)7 (34)
k=1

where r; and \; (j =1,...,p—1) are given by (32) above and 0y, ji, 11 and
r9 are obtained from the numerical solution of the system of four equations

ng Tk; +h) M_h _ ._h (9h

Fo = i () (h=1,...,4) (35)

t=0

for these parameters, with 0y =1 — 0y,
iii) or a mizture of three GNIG distributions of depth p, with cdf (using the
notation in (42) in Appendiz A)

Z@k (W1, oo Ty, SE AL, -y Ape1, V) (36)

with r; and A\j (7 =1,...,p—1) given by (32) above and 65, 05, v, s3, s;
and s§ obtained from the numerical solution of the system of siz equations

Ze* T’“;]:)h) —h h;w*m (h=1,...,6) (37)

t=0

for these parameters, with 05 =1 — 07 — 05.

15



Proof: The proof of this Theorem is in all similar to the proof of Theorem 2,
more precisely, if in the characteristic function of W in (26) we replace ®1*(¢)
by A*(A —it)~* we obtain

k—(pl2)

b ~ x0T <H>M2J (”;’“_QLJ |

-

@37 (1)

that is the characteristic function of the sum of p independent Gamma random
variables, p—1 of which with integer shape parameters r; and rate parameters
A; given by (32), and a further Gamma random variable with rate parameter
s > 0 and shape parameter A. This characteristic function is thus the c.f. of
the GNIG distribution of depth p with distribution function given in (31).
The parameters s and A are determined in such a way that (28) holds. This
compels s and A to be given by (33) and makes the two first moments of this

near-exact distribution for W to be the same as the two first exact moments
of W.

If in the characteristic function of W in (26) we replace ®3*(¢) by
2

> Oy (e — it) "™ we obtain

k=1

2 p—1 B k:*f\;f . 7k*+tf
b= Y tur— i T (1) ("5 ) ,
k=1

that is the characteristic function of the mixture of two GNIG distributions
of depth p with density function given in (34). The parameters 6;, p, r; and
ry are defined in such a way that (29) holds, giving rise to the evaluation of
these parameters as the numerical solution of the system of equations in (35)

and to a near-exact distribution that matches the first four exact moments of
Ww.

If in the characteristic function of W in (26) we replace ®i*(¢) by

3 * . * .
> 0 v (v —it) "k we obtain
k=1

3
S (t) = Y Op v (v —it) Tk x
k=1

k—(pl2)

k=1

J

~~

@57(1)
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that is the characteristic function of the mixture of three GNIG distributions
of depth p — 1 with density function given in (34). The parameters 07, 05, v,
ri, 5 and 73 are defined in such a way that (30) holds, what gives rise to
the evaluation of these parameters as the numerical solution of the system of
equations in (37), giving rise to a near-exact distribution that matches the
first six exact moments of W. O

Corollary 6 Distributions with cdf’s given by
i) 1= F(=logz|ri,...,Tp—1, 8 A1, Ape1, A)

2

i) 1= 0, F(=logz|ri,...,7p 1,8k M, .-, \p1, 1), OF
k=
=1

i) 1= O F(=logz|r, ..., rp 1, S5 My e vy Apo1, 1),
k=1

where the parameters are the same as in Theorem 5, and 0 < z < 1 repre-
sents the running value of the statistic A = eV, may be used as near-ezact
distributions for this statistic.

The proof of this Corollary is in all similar to the proof of Corollary 3 and
also similar considerations to the ones right after Corollary 3, concerning the
computation of near-exact quantiles of the statistics W7 and Ay, apply here
to the computation of near-exact quantiles of the statistics W and A.

4 Numerical and comparative studies

In order to evaluate the quality of the near-exact approximations developed
for the likelihood ratio test statistics for testing independence in a set of
variables and for the sphericity test we use, whenever the c.f.’s are available,
two measures of proximity,

A1:7O’¢Y(t)—¢n(t)’dt and A2:;7‘w‘dta (38)

with

1
r;lgglfy(y) — faly)| < %Al and rgggle(y) — F.(y)] < Aq, (39)

where Y represents a continuous random variable defined on S with distribu-
tion function Fy (y), density function fy(y) and characteristic function ¢y (¢),
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and ¢,(t), F,,(y) and f,(y) represent respectively the characteristic, distribu-
tion and density function of a random variable X,,.

These two measures may be derived directly from inversion formulas, and A,
may be seen as based on the Berry-Esseen upper bound on |Fy(y) — F,(y)|
(see [5], [13], [16], Chap. VI, sec. 21 in [18]).

We should note that for continuous random variables,

n—co n=oo

and either one of the equalities above imply that

X, -4 v, (41)

For further details on these measures see [19], where they are used to study
the quality of near-exact distributions for the sphericity test statistic.

4.1  Studies for the independence test statistic

Mudholkar et al. in [20] developed a Normal approximation to the distribution
of the likelihood ratio test statistic used for testing Hy; in (2). These authors
presented numerical studies comparing their Normal approximation with the
approximations due to Box and Bartlett ([6], [4]).

Since the asymptotic Normal approximation from Mudholkar et al. in [20]
yields indeed for log A; a non-central generalized Gamma distribution, whose
c.f. is not manageable, in order to compare the performance of the near-exact
distribution developed with this Normal asymptotic approximation, instead of
using measures A; and As, we decided to use a similar method to the one used
in [20] to assess the performance of their Normal asymptotic approximation.

We used the exact quantiles for A; computed directly from the numerical
inversion of the c.f. of log A; by using the Gil-Pelaez inversion formulas (see
[14]) what gives us a precision at least equal to the one used in [20] in terms of
exact quantiles, which in turn give for the Normal asymptotic approximation
of [20] exactly the same results obtained by these authors.
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Table 1 — Values of the tail probability error = (approz. prob — a) x 10® for the near-exact

distributions
(87

p n 0.005 0.01 0.05 0.10 0.20 0.50
3 6 GNIG 1.29x 100 2.72x100 —1.23x109 —7.92x100 —1.65x101  —5.75x10°
M2GNIG —9.91x10~1 —9.77x1072 —4.20x101 —1.82x10~! 542x10~1 —6.78x10"1!

8 GNIG 1.37x100 1.10x109 —5.45x10~1 —5.36x100 —9.40x109 —2.21x100
M2GNIG  5.51x1072 —3.37x10~!  3.26x10~! —6.20x10"!  4.26x10~2 —3.71x10~1!
13 GNIG 1.26x109 3.47x10~1 —2.61x10~1 —1.76x109 —3.30x109 —5.33x101
M2GNIG  7.79x10~1 —1.85x10~!  1.75x10~!  4.88x1072  4.69x10~2 —1.13x10~1!

4 7 GNIG 1.93x100 1.55x 109 1.17x109  —1.57x109 —6.80x10° —7.90x10°
M2GNIG  7.73x10~' —6.58x10~2  3.44x10~3  1.24x10~2  8.95x10~2 —1.17x10~2

9 GNIG 8.44x10~1  1.10x10° 5.08x10~1 —1.38x100 —4.60x10° —4.48x100
M2GNIG  2.58x1072  1.16x10~2 —5.76x10"3  1.80x1072  6.38x1072 —3.87x10~2

14 GNIG 3.94x10~1  4.63x10~1  1.80x10~! —7.26x10"! —1.99x10° —1.67x10°
M2GNIG  2.48x1072 —4.79x1073  6.41x10™2  1.90x1073  4.56x10~2 —3.17x10~2

5 8 GNIG 1.08x 109 5.16x10~1  6.09x10~1 —8.25x1072 —1.69x10° —3.05x10°
M2GNIG  7.16x10~1 —1.33x1072  3.49x10~3 —6.88x1073  7.96x10~3  1.40x10~2

10 GNIG 3.14x10~1  3.81x10~!  3.73x10~! —1.88x10~! —1.35x10° —2.01x10°
M2GNIG  1.92x1072 —3.04x10~2 —3.85x103 1.07x10~3  8.56x10~3  5.78x10~3
15 GNIG 1.55x10~1  2.54x10~!  1.79x10"! —1.35x10~! —6.74x10~! —8.84x10"!
M2GNIG —2.47x1073  4.37x1072  3.36x1072  2.17x10~2  3.85x10~2  4.01x10~%

6 9 GNIG 2.05x10~1  2.97x107!  4.25x10"!  9.65x1072 —7.81x10~' —1.83x10°
M2GNIG  1.58x1073 —8.79x1073  1.85x1073 —3.24x1073 —3.26x10~3  7.92x10~3

11 GNIG 1.33x10~1  3.20x10~1  3.02x10"!  1.10x1073 —6.97x10~! —1.35x10°
M2GNIG —5.09x1072  559x10~2 —2.03x103 —1.02x1073  6.30x10~3  4.94x10~3
16 GNIG 1.15x1071  1.59x10~1  1.43x10~1 4.31x1072 4.27x10~! —6.82x10"!
M2GNIG  2.80x1073  4.49x10~3 —1.08x10~3  4.80x10~% 2.21x10~3  1.56x10~3
7 10 GNIG 9.08x10~2  1.30x10~1 2.02x10~! 8.12x1072 —2.81x10~1 —8.07x10"!
M2GNIG  2.31x1073 —4.00x1073 —9.51x10~% —7.33x10~% 4.77x10~% 2.44x10~3
12 GNIG 8.85x1072  1.25x10~1  1.61x10~!  3.58x1072 —2.81x10~1 —6.47x10"1!
M2GNIG  2.55x1073 —1.68x10~% —1.05x103 —1.62x1073 —1.31x10~3 1.91x10~3
17 GNIG 7.50x1072  8.12x1072  8.80x1072 —6.53x10~2 —1.93x10~1 —3.65x10"1!
M2GNIG  1.68x1072 —1.78x10"% —4.01x10"* —6.63x10"2 5.78x10~%  8.09x10~*
10 13 GNIG 2.12x1072  3.25x10™2  5.45x1072  3.26x1072 —4.52x1072 —1.87x10~!
M2GNIG  7.02x107% —2.87x10~7 —7.41x107% —9.29x10~% —5.28x10~% 2.01x10~*
15 GNIG 2.35x1072  3.49x10~2  5.19x1072  2.53x1072 —5.39x1072 —1.75x10~1!
M2GNIG  1.09x107% —4.74x10"6 —8.76x107% —8.87x107% 241x10~5 2.09x10~%
20 GNIG 1.97x1072  2.82x10~2  3.70x10~2  1.32x1072 —4.80x10~2 —1.25x10"!
M2GNIG  1.50x107% —2.32x1075 —5.39x107% —6.23x10~% 2.71x10~5  1.48x10~%

However, given that the exact quantiles computed in this way have a precision
that does not go beyond 12 digits and given that this precision is not enough for
making comparisons with the near-exact distribution M3GNIG, which requires

a higher precision, we have used in Table 1 only the near-exact distributions
GNIG and M2GNIG.

In Table 1 the errors displayed are evaluated using the exact same method
used by Mudholkar et al. in [20], the difference between the approximate and
the exact tail probabilities multiplied by 10°. The values considered for p and
n correspond to the same cases considered by Mudholkar et al. in [20]. We
can observe that the errors obtained when using the near-exact distributions
are always much smaller than the ones given in Table 1 of Mudholkar et al.
in [20] for their Normal approximation, mainly for larger values of p.
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Table 2— Values of the measures Ay and Ay for the near-exact distributions

A1 A2
p n GNIG M2GNIG M3GNIG GNIG M2GNIG M3GNIG

6 5.8x1072 5.7x1073  24x1073  5.1x10™% 2.1x1075  4.6x107°
8 4.4x10=2 4.2x1073 5.3x1074 2.7x107%  1.1x1073 8.9x10~7
13 2.7x1072 1.9x10~3 2.7x1075 9.4x1075 3.1x10°6 3.3x10°8

4 7 47x1073 1.8x1074 1.4x10~5 1.7x10~%  3.7x10-6 2.0x10~7
9 4.0x1073 1.4x10~% 5.4x106 1.1x10~% 2.3x10~6 6.1x108
14 2.7x1073 7.8x107%  3.7x10~7  4.4x107% 7.4x10~7  3.0x107°

5 8 81x10~% 1.4x10~5 4.4x10~7 4.7x1075  5.2x10°7 1.2x10~8
10 7.5x10~% 1.3x10~° 2.1x10~7 3.2x107%  3.6x10~7  4.4x107°
15 5.8x10~% 8.1x10~6 1.8x10~8 1.5x107% 1.4x10~7 2.6x1010

6 9 3.3x10~% 3.5x10°° 3.6x10~8 2.4x107%  1.7x10~7 1.3x10~9
11 3.3x107% 3.4x10~6 1.9x10~8 1.8x107%  1.3x10°7 5.5x10~10
16 2.8x107% 2.4x107%  2.1x1072  9.5x107% 5.6x10~%  3.5x10~'!

7 10 1.2x10~% 7.3x1077  3.7x107° 9.7x1076  4.2x10~8 1.7x10—10
12 1.2x10~% 7.7x1077  2.1x107°? 7.9%x1076  3.4x10~8 7.4x10~11
17 1.1x107% 6.1x10~7  4.0x10710 4.6x10=% 1.8x10~8 8.3x10~12

10 13 1.9x10~% 4.2x10-8 6.2x10712  2.0x1076 3.2x10~° 3.5x10~13
15 2.2x1075 5.1x10~8 2.2x10~11  1.9x10-% 3.1x10~° 1.1x10—12
20 2.4x1075 5.1x108 4.6x10~11  1.4%x1076 2.1x107° 1.5x10~12

20 23 5.2x1077 1.4x10710  3.0x10714 7.8x107% 1.5x10~1L 2.7x10°15
50 1.1x107% 2.8x10710 7.4x107'% 4.9x107% 9.7x107'2 2.1x10"1!®
100 7.4x10~7 1.2x10710 25x1071% 1.5x1078 1.8x10!2 3.2x10-16

50 53 5.8x1072 1.0x10~'  1.5x107'® 1.1x1079 1.5x10~' 1.9x10~20
100 1.1x107% 2.8x10710 1.9x10717 4.9x1078 9.7x10712 7.5x10~1°
150 2.3x107% 4.6x10713  4.3x10719 8.5x10710 1.3x10714 1.0x10-20
200 2.0x1078 3.2x1071'3  3.3x10719 5.3x10710 6.5x1071% 5.7x1072!
500 9.8x1079 7.1x1071% 5.0x10720 1.0x10712 54x10716 3.2x10722

In Table 2 we use measures A; and A, to better assess the relative perfor-
mance of the three near-exact distributions GNIG, M2GNIG and M3GNIG as
approximating distributions for the independence test statistic.

From Table 2 we may easily see that the near-exact distribution M3GNIG has
always a better performance than the other two near-exact distributions and
we can also see that the near-exact distribution M2GNIG always outperforms
the GNIG near-exact distribution. The values exhibited for the M3GNIG dis-
tribution for both measures, mainly for the measure A,, which represents an
upper bound for the absolute value of the difference between its c.d.f. and the
exact c.d.f., would lead us to recommend its use as a replacement for the exact
distribution, mainly for larger values of p. The three near-exact distributions
display a marked asymptotic behavior both for increasing sample sizes and
increasing number of variables, although for larger values of p we need large
enough sample sizes in order to be able to observe their asymptotic behavior
in terms of increasing values of n.
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4.2 Studies for the sphericity test statistic

The tables in this subsection present the values of the measures A; and A,
given in (38) for the new near-exact distributions developed in this paper for
the likelihood ratio test statistic used for testing sphericity. In this subsec-
tion our purpose is to assess the quality of the new near-exact distributions
comparing them with the ones already developed, using a different method,
in [19]. In order to achieve our purpose we have considered the exact same
values for n and p already considered in the numerical studies presented in
that reference. We will denote the new near-exact distributions correspond-
ing to the GNIG distribution, the mixture of two GNIG distribution and the
mixture of three GNIG distributions respectively by GNIGnew, M2GNIGnew
and M3GNIGnew (leaving the names GNIG, M2GNIG and M3GNIG, used in
Table 7, for the corresponding near-exact distributions developed in [19]).

Table 3 — Values of A; and Ay for the near-exact distributions for W= —log A,
forp=4,n=6andp=5,n=7

p=4n==6 p=5n=7
Aq Ay Aq Ao
GNIGnew 3.815x 1075 2,408 x 10~6 2.802 x 105  2.300 x 106
M2GNIGnew | 5.617 x 10=7 2,198 x 108 2.580 x 107  1.378 x 10~8
M3GNIGnew | 3.875 x 1072  1.180 x 10~'0 | 4.936 x 10~°  1.992 x 10~ 10

Table 4 — Values of A; and Ay for the near-exact distributions for W= —log A,
forp=7,n=9and p =10, n = 12

p=7n=9 p=10,n =12
Ay Ao Ay Ao
GNIGnew 3.953 x 1076 4234 x 107 | 3.366 x 10~7  4.402 x 108
M2GNIGnew | 1.363 x 10~8 1.007 x 109 2.863 x 10710 2,667 x 10~11
M3GNIGnew | 5.617 x 10711 3241 x 10~12 | 8.847 x 10~1*% 6.518 x 10~1>

Comparing Tables 3 and 4 with Tables 1 and 2 in [19] we can observe that
the values for the new approximations are always better with the exception of

M3GNIGnew for p=5,n=T7Tand p=7,n=09.

Table 5 — Values of A; and A» for the near-exact distributions for W =—log A, for p = 4,5,7

and n = 50
p=4,n=>50 p=>5,n=50 p=T7,n=50
Al Az Al AQ Al AQ
GNIGnew 9.702x107%  6.005x10~8 | 9.490x10~% 8.493x10~8 | 2.376x10~6 3.323x10~8
M2GNIGnew | 2.682x10~8 1.105x10710| 2.936x10—8 1.835x1010| 3.574x10~° 3.618x10 11
M3GNIGnew | 1.233x10710 3.818x10713| 4.932x10~ 11 2.389x10~13| 2.760x10~12 2.243x10~14
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Table 6 — Values of A; and Ay for the near-exact distributions for W =—log A, for p = 10,20, 30

and n = 50
p=10,n = 50 p=20,n =50 p=30,n =50
Ay Ag Ay Ag Ay Ag

GNIGnew 3.831x10~7 8.153x1079 | 3.186x10~8 1.513x10™9 | 5.781x10~9 4.646x10~10
M2GNIGnew | 1.713x10710 2.686x10712| 3.622x10712 1.283x10~13| 2.609x10~13 1.567x10~14
M3GNIGnew | 6.236x10714 8.006x1016| 3.602x10716 1.057x1017| 1.121x10~17 5.588x10~19

Comparing Tables 5 and 6 with Tables 3 and 4 in [19] we may verify that
in almost all cases we have for the new near-exact approximations smaller
values for the measures A; and A,. The only case where this fact does not
happen is when p = 4 and n = 50 for the measures of the M2GNIGnew and
M3GNIGnew distributions. These new near-exact approximations also exhibit
the good asymptotic properties revealed by the near-exact approximations in
[19].

We may say as a general conclusion that the new near-exact distributions
have a better performance than the ones developed in [19] for large values of
n with p large enough (p > 4). Moreover in the next Table we may see that
for large values of p and values of n close to p we also have better values of
both measures for the near-exact distributions developed in this paper.

Table 7 — Values of A1 and A for the near-exact distributions for W =—log A, for p = 10, 20, 30
and n = 12,22, 32

p=10,n =12 p=20,n=22 p=30,n =32

Al AQ Al AQ Al AQ
GNIGnew 1.058x10~6  1.383x10~7 | 3.526x10~% 6.034x10~9 | 5.043x10~2 9.685x10—10
GNIG 8.940x1076 1.171x1076 | 3.634x10~7 6.221x107% | 5.178x10~8 9.945x10~9
M2GNIGnew | 8.994x1010 8.380x10~11| 3.664x10712 4.587x10~13| 1.543x10~13 2.185x10~ 14
M2GNIG 3.394x1079 3.189x107 10| 1.173x10~11 1.470x10712| 4.525x10~13 6.408x10~14
M3GNIGnew | 2.779x10~ 13 2.048x10~14| 2.956x10716 3.014x10~17| 4.413x10~18 5.122x10~19
M3GNIG 3.601x10712 2.706x10~ 13| 1.104x10~1% 1.128x10~16| 1.766x10~17 2.051x10~18

5 Conclusions

The process used to factorize the characteristic functions involved allowed us
to obtain near-exact distributions almost simultaneously for the independence
and the sphericity test statistics and also to obtain simple expressions for
the shape parameters of ®3(¢) in (13) and of ®*(¢) in (26), with the shape
parameters for the near-exact distributions for the sphericity test statistic
having much simpler expressions than the ones for the near-exact distributions
in [19].

The near-exact distributions developed for the independence test statistic
show a much better precision than one that is obtained with the Normal
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approximation of [20] while the new near-exact distributions developed for
the sphericity test statistic are more accurate than the ones developed in [19]
for larger values of p (p > 10) or even for smaller values of p as long as the
sample size is large enough.
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Appendix A
Cumulative distribution function for the GNIG distribution

The density and distribution functions for the GNIG distribution are given in
[10]. Let

Z — Zl —|— ZQ
where Zy ~ T'(r, A), with A > 0 and r a positive non-integer and
g
Zv=>Y_ X;, with  X; ~ T'(r;, \;), independent,

where 71,..., 71, are positive integers and A, ..., A; > 0 are all different. The
distribution of Z; is a GIG distribution of depth ¢ ([8]), while the distribution
of 7, if Z; and Z5 are assumed independent, is a GNIG distribution of depth
g + 1. We will denote this by

Z ~ GNIG(11,...,7g,75 A,y ooy Mgy A)

The cumulative distribution function of 7 is given by

r

Va
FZ(z]rl,. csTgy T /\1, .. .,)\g,/\) = /\Twlﬂ(r,r+1,—/\z)
k-1 r+z)\z 49
_K/\TZe’AZchkZz: it )1F1(r r+1+1, ()\—/\j)z)( )

(z>0)

where

g .
K=1[" and ¢, =ZET(k)
i—1
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with ¢; given by (11) through (13) in [8]. In the above expression | F}(a, b; z)
is the Kummer confluent hypergeometric function (see [1]). This function has
usually very good convergence properties and is nowadays easily handled by
a number of software packages.
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