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Abstract
The aim of this paper is to show how the decomposition of elaborate hypotheseson the structure of covariance matrices into conditionally independent simpler hy-potheses, by inducing the factorization of the overall test statistic into a productof several independent simpler test statistics, may be used to obtain near-exactdistributions for the overall test statistics, even in situations where asymptotic dis-tributions are not available in the literature and adequately �t ones are not easy toobtain.
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1 Introduction

The concept of near-exact distribution has already been introduced in a num-ber of papers [5,6,9,1,10,11,8,13]. In a nutshell, near-exact distributions arenew asymptotic distributions that lay closer to the exact distribution than
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the usual asymptotic distributions. They correspond to what we call near-exact c.f.'s (characteristic functions) which are c.f.'s obtained from the exactc.f. by leaving the most of it unchanged and replacing the remaining smallerpart by an asymptotic result (which is intended to be asymptotic both interms of sample size and overall number of variables, in a manner that will bemore precisely stated ahead in this section). This replacement is done in sucha way that the resulting c.f. corresponds to a distribution with a manageablec.d.f. (cumulative distribution function) so that the computation of near-exactquantiles is rendered feasible, easy and precise.
There are mainly two ways in which near-exact distributions, or rather, near-exact c.f.'s may be obtained. One of them is when the exact distribution is anin�nite mixture, in which case we may cut short the series that correspondsto the exact c.f. at a given number of terms and replace the remainder by justone or a mixture of two or three distributions of the same kind of the ones inthe in�nite mixture, with parameters computed in such a way that the �rstfew derivatives (say, usually, the �rst two, four or six of them) at zero of thereplacing part and of the part being replaced, they match. More precisely, ifthe exact c.f. of the statistic W may be written as

�W (t) = 1X
i=0 pi�i(t)

where pi > 0 (i = 0; 1; : : :) and P1i=0 pi = 1, and where �i(t) are c.f.'s, thenwe will use instead of �W (t),
��W (t) = n�X

i=0 pi�i(t) + ��2(t) ;

where � = 1�Pn�i=0 pi and �2(t) is usually either a c.f. of the type of �i(t) orthe c.f. of the mixture of two or three such c.f.'s, de�ned in such a way that
d
dth ��2(t)

�����t=0 = d
dth

1X
i=n�+1 pi�i(t)

������t=0 ;

for h 2 H (where usually we will have H = f1; 2g, H = f1; : : : ; 4g or H =
f1; : : : ; 6g).
The other way to obtain a near-exact c.f. is through the factorization of theexact c.f., that is, if we may write

�W (t) = �1(t) �2(t)
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where we recognize �1(t) as corresponding to a known and manageable dis-tribution and �2(t) as corresponding to a non-manageable distribution. Thenwe will use as near-exact c.f. for W the c.f.
��W (t) = �1(t) ��2(t) (1)

where, for h 2 H (usually withH = f1; 2g,H = f1; : : : ; 4g orH = f1; : : : ; 6g),
d
dth ��2(t)

�����t=0 = d
dth �2(t)

�����t=0 (2)

in such a way that, if we write ��2(t) as a function of the sample size (sayn) and the overall number of variables involved (say p), that is, if we write��2(t) � ��2(t;n; p), we want
limn!1

1Z
�1

������2(t)���2(t;n; p)t
����� dt = 0 and limp!1

1Z
�1

������2(t)���2(t;n; p)t
����� dt = 0

with
1Z

�1
������2(t)� ��2(t;n; p)t

����� dt �
1Z

�1 j�1(t)j
������2(t)� ��2(t;n; p)t

����� dt
� maxw jFW (w)� F �W (w;n; p)j ;

where FW (�) is the exact c.d.f. of W and F �W (� ;n; p) is the near-exact c.d.f. ofW , corresponding to the c.f. ��W (t) in (1).
When dealing with l.r.t. (likelihood ratio test) statistics, mainly those morecommonly used in Multivariate Statistics, �1(t) is the c.f. of a sum of inde-pendent Logbeta r.v.'s (random variables), that are r.v.'s whose exponentialhas a Beta distribution, which may be alternatively written as the c.f. of aGIG (Generalized Integer Gamma) distribution, that is, the distribution ofthe sum of a given number of independent Gamma distributions, all with dif-ferent rate parameters and integer shape parameters (see [4]), while �2(t) isthe c.f. of a sum of other independent Logbeta r.v.'s, which is not possibleto be written under the form of the c.f. of a GIG distribution and which willbe asymptotically replaced by the c.f. of a single Gamma distribution or thec.f. of a mixture of two or three Gamma distributions with the same rate pa-rameters. This replacement is indeed well justi�ed, since as shown in [7], andalready stated and used in [13], a single Logbeta distribution may be repre-sented under the form of an in�nite mixture of Exponential distributions, a
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sum of independent Logbeta random variables may thus be represented underthe form of an in�nite mixture of sums of Exponential distributions, whichare themselves mixtures of Exponential or Gamma distributions.
The near-exact distributions we are interested in this paper are exactly theones of this second kind.

2 How may the decomposition of a complex hypothesis into moreelementary hypotheses help in building near-exact distributionsfor the test statistic

Let us suppose we have �, the l.r.t (likelihood ratio test) statistic to test agiven null hypothesis H0, and that we want to write, for W = � log �,
�W (t) = �1(t) �2(t)

(the reason why we usually want to handle the c.f. of W = � log � instead ofthe c.f. of � is that while the moments of � may be relatively easy to obtainand they commonly exist for any positive integer order, and even for any ordernot necessarily integer just above a given negative value, the expression forthe c.f. of � may be too hard to obtain and too hard to handle; while on theother hand once obtained a near-exact distribution for W it will then be easyto obtain the corresponding near-exact distribution for � = e�W ).
It may happen that this factorization may be too hard to obtain from scratch,given the complexity of � itself.
But, let us suppose we may write

� = mY
j=1�j (3)

where �j is the l.r.t. statistic to test H0jj1;:::;j�1, the j-th nested conditionallyindependent null hypothesis we may split H0 into. That is, we are assumingwe may write
H0 � H0mj1;:::;m�1 o : : : oH03j1;2 oH02j1 oH01

(read 'to test H0 is equivalent to test H0m, assuming H0;m�1 through H01true, after ..., after testing H03, assuming H02 and H01 true, after testing H02,assuming H01 true, after testing H01) where the H0jj1;:::;j�1 are all independentin the sense that under the null hypothesis H0 it is possible to prove that the
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�j are independent (this is commonly the case with many l.r.t.'s, see the nextsection), and that further, for
Wj = � log �j (j = 1; : : : ;m)

we have available the factorizations
�Wj(t) = �j1(t) �j2(t) : (4)

Then, under H0, given the independence of the �j and thus also of the Wj,we may easily write
�W (t) = mY

j=1�Wj(t)

=
8<
:

mY
j=1�j1(t)

9=
;| {z }

�1(t)

8<
:

mY
j=1�j2(t)

9=
;| {z }

�2(t)
= �1(t) �2(t) ;

where for the most common l.r.t. statistics used in Multivariate (and thus alsoin Univariate) Statistics the c.f.'s �j1(t) may be obtained under the form ofc.f.'s of GIG distributions ([5,6,13,8]) and all the �j2(t) are c.f.'s of the sum ofindependent Logbeta r.v.'s. Then, �1(t) itself will be the c.f. of a GIG distribu-tion, and �2(t) will be itself the c.f. of the sum of independent Logbeta r.v.'s,being thus adequately asymptotically replaced by the c.f. of a single Gammadistribution or the c.f. of the mixture of two or three Gamma distributions,verifying (2) (see [13]) and yielding this way either a GNIG (Generalized Near-Integer Gamma) distribution or a mixture of two or three GNIG distributions(the GNIG distribution is the distribution of the sum of a r.v. with a GIGdistribution with an independent r.v. with a Gamma distribution with a non-integer shape parameter { for details on this distribution see [6]).

3 Examples of application

Since decompositions of the c.f.'s of the type in (4) are already available forthe Wilks � statistic, or the l.r.t. statistic to test the independence of severalsets of variables (see [5,6]), and also for the l.r.t. statistic to test sphericity(see [13]) and for the l.r.t. statistic to test the equality of several variance-
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covariance matrices (see [8]), we may think of l.r.t.'s whose statistic may befactorized as in (3) and where the �j are the above mentioned statistics.
This was indeed what was somehow done when obtaining either the exactdistribution for the generalized Wilks � statistic, under the form of a GIGdistribution, when at most one of the sets of variables has an odd number ofvariables (see [4]) or when obtaining a near-exact distribution for the samestatistic, under the form of a GNIG distribution, for the general case whentwo or more sets have an odd number of variables (see [5,6]).
In the subsections ahead we will use the following notation:

� �1(q; p;Nj), with �1(q; p;Nj) =
qQ

j=1
jAj jNj=2

jAjN=2
NNp=2

qQ
j=1

NNjp=2
j

, to denote the l.r.t.
statistic used to test H01 : �1 = : : : = �q, based on samples of size Nj(j = 1; : : : ; q) from Np(�j;�j), with Aj = �̂j, A = A1 + : : : + aq andN = N1 + : : :+Nq;

� �2(N ; p1; : : : ; pk), with �2(N ; p1; : : : ; pk) =
0
BB@ jAj

kQ
i=1

jAiij
1
CCA
N=2

, to denote the l.r.t.
statistic used to test H02 : � = diag(�11; : : : ;�ii; : : : ;�kk), based on asample of size N from Np(�;�), with A = �̂, Aii = �̂ii and

� = h�1; : : : ; �i; : : : ; �h
i0 ; � =

2
6666666666664

�11 : : : �1i : : : �1k... . . . ... ...
�i1 : : : �ii : : : �ik... ... . . . ...
�k1 : : : �ki : : : �kk

3
7777777777775
;

� �3(p;N), with �3(p;N) = � jAj(tr 1
p A)p

�N=2, to denote the l.r.t. statistic used
to test H03 : � = �2Ip, based on a sample of size N from Np(�;�), withA = �̂.

3.1 The test of equality of several multivariate Normal distributions

It may the best well known example of the situation we are trying to illustrate,since we may write in this case ([2,12,14])
H0 : �1 = : : : = �q ; �1 = : : : = �q (5)
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with
H0 � H02j1 oH01

where
H01 : �1 = : : : = �q

and
H02j1 : �1 = : : : = �qgiven that �1 = : : : = �q ;

so that, using the notation de�ned at the beginning of this section, we maywrite the l.r.t. statistic to test H0 in (5) as
� = �2(N ; p; q) �1(q; p;Nj) (with N = N1 + : : :+Nq) ;

where under H0 in (5), �2(N ; p; q) and �1(q; p;Nj) are independent.
Since factorizations of the type in (4) for the c.f. of � log �2(N ; p; q) and
� log �1(q; p;Nj) are available ([5,6,8]), the process of obtaining near-exactdistributions for the l.r.t. statistic for this test may be quite easily implementedby using the approach proposed in this paper.
3.2 The sphericity test

The sphericity test itself, whose null hypothesis may be written as
H0 : � = �2Ip (6)

may be seen as another example of a l.r.t. whose null hypothesis may bewritten as the composition of two conditionally independent null hypotheses(see Ch. 10, subsec. 10.7.3 in [2]), since we may indeed write H0 in (6) onceagain as
H0 � H02j1 oH01

where
H01 : � = diag(�21; : : : ; �2p)
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and
H02j1 : �21 = : : : = �2pgiven that � = diag(�21; : : : ; �2p) ;

so that, using the notation de�ned at the beginning of this section, we maywrite the l.r.t. statistic to test H0 in (6) as
� = �2(N ; 1; : : : ; 1| {z }p ) �1(p; 1;N) ;

where, under H0 in (6), �2(N ; 1; : : : ; 1) and �1(p; 1;N) are independent.
Although we may question the usefulness of this approach, moreover giventhat very accurate near-exact distributions have already been obtained for thesphericity l.r.t. statistic by [13], interestingly enough, these same authors are inthe process of obtaining other near-exact distributions for this statistic exactlythrough the use of this approach, which besides having a simpler formulationmay even be more accurate than the previously developed ones namely forlarger sample sizes and larger number of variables.
3.3 Generalized sphericity tests

Other tests onto which the authors intend to apply the approach proposed inthis paper are extended versions of the sphericity test, which we may call the'multi-sample scalar-block sphericity test' and the 'multi-sample matrix-blocksphericity test'.
For the multi-sample scalar-block sphericity test we have

H0 : �1 = : : : = �q =
2
666664
�21Ip1 0. . .
0 �2kIpk

3
777775 (7)

with
H0 � H03j1;2 oH02j1 oH01

where
H01 : �1 = : : : = �q ;
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H02j1 : � = diag(�11; : : : ;�kk)
given that �1 = : : : = �q = � ;

where � is of dimensions p�p, while �ii (i = 1; : : : ; k) of dimensions pi�pi isthe i-th diagonal block of �, with p = Pki=1 pi, and
H03j1;2 : �ii = �2i Ipi ; for i = 1; : : : ; k

given that � = diag(�11; : : : ;�kk) and
given that �1 = : : : = �q = � ;

so that we may write the l.r.t. statistic to test H0 in (7), for N = N1+ : : :+Nqas
� = �1(q; p;Nj) �2(N ; p1; : : : ; pk) kY

i=1�3(pi;N) : (8)

Since, under H0 in (7), it is possible to prove the independence of all thestatistics in (8) and since factorizations of the type in (4) are available for thec.f.'s of the logarithms of all the statistics in (8) ([5,6,8,13]), the process ofobtaining near-exact distributions for the l.r.t. statistic for this test may beimplemented by using the approach proposed in this paper.
Concerning the multi-sample matrix-block sphericity test, its null hypothesismay be written as

H0 : �1 = : : : = �q = �
 Ik
0
BBBBB@=

2
666664
� 0. . .
0 �

3
777775

1
CCCCCA (9)

with
H0 � H03j1;2 oH02j1 oH01 ;

where
H01 : �1 = : : : = �q (= �) ;
H02j1 : � = diag(�11; : : : ;�kk)

given that �1 = : : : = �q (= �) ;
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where � is of dimensions p�p, while �ii (i = 1; : : : ; k) of dimensions p��p� isthe i-th diagonal block of �, with p = kp�, and
H03j1;2 : �11 = : : : = �kk(= �)

given that � = diag(�11; : : : ;�kk) and
given that �1 = : : : = �q = � ;

so that we may write the l.r.t. statistic to test H0 in (9), for N = N1+ : : :+Nqas
� = �1(q; p;Nj) �2(N ; p�; : : : ; p�| {z }k

) �1(k; p�;N) : (10)

Since, under H0 in (9), it is possible to prove the independence of all thestatistics in (10) and since factorizations of the type in (4) are available forthe c.f.'s of the logarithms of all the statistics in (10) ([5,6,13]), the process ofobtaining near-exact distributions for the l.r.t. statistic for this test may onceagain be implemented by using the approach proposed in this paper.

4 Final remark

We may even plan to go beyond the tests presented in the previous section,namely those in subsection 3, with virtually no limit, by adequately nestingthe three elementary multivariate likelihood ratio tests (referred at the be-ginning of the previous section). In every case we will still be able to obtainnear-exact distributions for the overall test statistics, in situations where theconstruction of well-�t asymptotic distributions, using the usual techniques,is too complicated or even virtually impossible.
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