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Abstract

The aim of this paper is to show how the decomposition of elaborate hypotheses
on the structure of covariance matrices into conditionally independent simpler hy-
potheses, by inducing the factorization of the overall test statistic into a product
of several independent simpler test statistics, may be used to obtain near-exact
distributions for the overall test statistics, even in situations where asymptotic dis-
tributions are not available in the literature and adequately fit ones are not easy to
obtain.
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1 Introduction

The concept of near-exact distribution has already been introduced in a num-
ber of papers [5,6,9,1,10,11,8,13]. In a nutshell, near-exact distributions are
new asymptotic distributions that lay closer to the exact distribution than
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the usual asymptotic distributions. They correspond to what we call near-
exact c.f.’s (characteristic functions) which are c.f.’s obtained from the exact
c.f. by leaving the most of it unchanged and replacing the remaining smaller
part by an asymptotic result (which is intended to be asymptotic both in
terms of sample size and overall number of variables, in a manner that will be
more precisely stated ahead in this section). This replacement is done in such
a way that the resulting c.f. corresponds to a distribution with a manageable
c.d.f. (cumulative distribution function) so that the computation of near-exact
quantiles is rendered feasible, easy and precise.

There are mainly two ways in which near-exact distributions, or rather, near-
exact c.f.’s may be obtained. One of them is when the exact distribution is an
infinite mixture, in which case we may cut short the series that corresponds
to the exact c.f. at a given number of terms and replace the remainder by just
one or a mixture of two or three distributions of the same kind of the ones in
the infinite mixture, with parameters computed in such a way that the first
few derivatives (say, usually, the first two, four or six of them) at zero of the
replacing part and of the part being replaced, they match. More precisely, if
the exact c.f. of the statistic W may be written as

where p; > 0 (i = 0,1,...) and > p; = 1, and where ®;(¢) are c.f.’s, then
we will use instead of @y (),
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where § = 1 — Y7, p; and ®,(¢) is usually either a c.f. of the type of ®;(¢) or
the c.f. of the mixture of two or three such c.f.’s, defined in such a way that
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for h € H (where usually we will have H = {1,2}, H = {1,...,4} or H =
{1,...,6}).

The other way to obtain a near-exact c.f. is through the factorization of the
exact c.f., that is, if we may write



where we recognize ®,(t) as corresponding to a known and manageable dis-
tribution and ®4(¢) as corresponding to a non-manageable distribution. Then
we will use as near-exact c.f. for W the c.f.

Dy () = D (t) D5(t) (1)

where, for h € H (usually with H = {1,2}, H ={1,...,4} or H = {1,...,6}),
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in such a way that, if we write ®3(¢) as a function of the sample size (say
n) and the overall number of variables involved (say p), that is, if we write
O3 (t) = ®5(t;n, p), we want
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with
Dy (t) — D3(¢; Dy (t) — D5(¢;
/ ‘ 2(1) t2(7n’p)‘dt> / |q>1(t)\‘ 2(f) tQ(’n’p)‘dt

> max |\Fw (w) — Fyy, (w;n, p)]|

where Fyy(+) is the exact c.d.f. of W and Fjj,(-;n,p) is the near-exact c.d.f. of
W, corresponding to the c.f. ®3,(¢) in (1).

When dealing with Lr.t. (likelihood ratio test) statistics, mainly those more
commonly used in Multivariate Statistics, ®(¢) is the c.f. of a sum of inde-
pendent Logbeta r.v.’s (random variables), that are r.v.’s whose exponential
has a Beta distribution, which may be alternatively written as the c.f. of a
GIG (Generalized Integer Gamma) distribution, that is, the distribution of
the sum of a given number of independent Gamma distributions, all with dif-
ferent rate parameters and integer shape parameters (see [4]), while ®o(¢) is
the c.f. of a sum of other independent Logbeta r.v.’s, which is not possible
to be written under the form of the c.f. of a GIG distribution and which will
be asymptotically replaced by the c.f. of a single Gamma distribution or the
c.f. of a mixture of two or three Gamma distributions with the same rate pa-
rameters. This replacement is indeed well justified, since as shown in [7], and
already stated and used in [13], a single Logbeta distribution may be repre-
sented under the form of an infinite mixture of Exponential distributions, a



sum of independent Logbeta random variables may thus be represented under
the form of an infinite mixture of sums of Exponential distributions, which
are themselves mixtures of Exponential or Gamma distributions.

The near-exact distributions we are interested in this paper are exactly the
ones of this second kind.

2 How may the decomposition of a complex hypothesis into more
elementary hypotheses help in building near-exact distributions
for the test statistic

Let us suppose we have A, the Lr.t (likelihood ratio test) statistic to test a
given null hypothesis Hy, and that we want to write, for W = —log A,

(the reason why we usually want to handle the c.f. of W = —log A instead of
the c.f. of A is that while the moments of A may be relatively easy to obtain
and they commonly exist for any positive integer order, and even for any order
not necessarily integer just above a given negative value, the expression for
the c.f. of A may be too hard to obtain and too hard to handle; while on the
other hand once obtained a near-exact distribution for W it will then be easy
to obtain the corresponding near-exact distribution for A = e~ ").

[t may happen that this factorization may be too hard to obtain from scratch,
given the complexity of A itself.

But, let us suppose we may write
A=TI4 (3)

J=1

where A; is the Lr.t. statistic to test Hoj1,. j—1, the j-th nested conditionally
independent null hypothesis we may split Hy into. That is, we are assuming
we may write

Ho = Homp1,..m—1° « -+ ° Hogji2° Hozji © Hot

(read ’to test Hy is equivalent to test Hy,,, assuming Hy,, 1 through Hpy
true, after ..., after testing Hys, assuming Hyy and Hy, true, after testing Hos,
assuming Hy; true, after testing Hy;) where the Hyjp,...j—1 are all independent
in the sense that under the null hypothesis Hy it is possible to prove that the



A, are independent (this is commonly the case with many l.r.t.’s, see the next
section), and that further, for

W; = —log A; (j=1,...,m)

we have available the factorizations

Dy, (1) = P (t) Pja(t) - (4)

Then, under Hy, given the independence of the A; and thus also of the W7,
we may easily write

Dy (t) = ﬂ@wj (1)
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where for the most common Lr.t. statistics used in Multivariate (and thus also
in Univariate) Statistics the c.f.’s ®;;(¢) may be obtained under the form of
c.f.’s of GIG distributions ([5,6,13,8]) and all the ®;5(¢) are c.f.’s of the sum of
independent Logbeta r.v.’s. Then, ®,(¢) itself will be the c.f. of a GIG distribu-
tion, and ®4(t) will be itself the c.f. of the sum of independent Logbeta r.v.’s,
being thus adequately asymptotically replaced by the c.f. of a single Gamma
distribution or the c.f. of the mixture of two or three Gamma distributions,
verifying (2) (see [13]) and yielding this way either a GNIG (Generalized Near-
Integer Gamma) distribution or a mixture of two or three GNIG distributions
(the GNIG distribution is the distribution of the sum of a r.v. with a GIG
distribution with an independent r.v. with a Gamma distribution with a non-
integer shape parameter — for details on this distribution see [6]).

3 Examples of application

Since decompositions of the c.f.’s of the type in (4) are already available for
the Wilks A statistic, or the Lr.t. statistic to test the independence of several
sets of variables (see [5,6]), and also for the Lr.t. statistic to test sphericity
(see [13]) and for the lLr.t. statistic to test the equality of several variance-



covariance matrices (see [8]), we may think of L.r.t.’s whose statistic may be
factorized as in (3) and where the A; are the above mentioned statistics.

This was indeed what was somehow done when obtaining either the exact
distribution for the generalized Wilks A statistic, under the form of a GIG
distribution, when at most one of the sets of variables has an odd number of
variables (see [4]) or when obtaining a near-exact distribution for the same
statistic, under the form of a GNIG distribution, for the general case when
two or more sets have an odd number of variables (see [5,6]).

In the subsections ahead we will use the following notation:

ﬁ |43 ‘
e A(q,p; N;), with Ay(g,p; N;) = j=1|A|N/2 qNN]pV/“ -, to denote the Lr.t.
H N ip/2
J
j=1
statistic used to test Hy : ¥y = ... = Y, based on samples of size N;

(j = 1,...,q) from Np(ﬁj,Ej), with A4; = f]j, A=A +...+a, and
N:N1+...+Nq;

N/2

o Ao(Nip1,...,pk), with Ao(Nspy, ..., pr) = k‘A| , to denote the Lr.t.
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e As(p; N), with As(p; N) = <(trlAA)p> , to denote the l.r.t. statistic used
to test Hoz : ¥ = 02, based on a sample of size N from N,(y, X), with

A=3,
3.1  The test of equality of several multivariate Normal distributions

It may the best well known example of the situation we are trying to illustrate,
since we may write in this case ([2,12,14])

Ho:py=...o=p,, Si=...=5% (5)



with

Hy = Hypp © Hoy

where
H()lZEl:...:Eq
and
HOQ\l:le"':Mq

given that ¥, = ... =3,
so that, using the notation defined at the beginning of this section, we may
write the Lr.t. statistic to test Hy in (5) as

A=A (N;p,q) Mg, p; N;) (with N=N; +...+N,),

where under Hy in (5), Ao(N;p, q) and A(g, p; N;) are independent.

Since factorizations of the type in (4) for the c.f. of —log Ay(V;p,q) and
—log Ai(q,p; N;) are available ([5,6,8]), the process of obtaining near-exact
distributions for the l.r.t. statistic for this test may be quite easily implemented
by using the approach proposed in this paper.

3.2 The sphericity test

The sphericity test itself, whose null hypothesis may be written as

Hy: ¥ =0l (6)

may be seen as another example of a Lr.t. whose null hypothesis may be
written as the composition of two conditionally independent null hypotheses
(see Ch. 10, subsec.10.7.3 in [2]), since we may indeed write Hy in (6) once
again as

Hy = H02\1 °Hy

where

Hy, : ¥ = diag(c?, . .. ,05)



and

HOQH . O'%:...:O'g
given that ¥ = diag(o?,...,07),

so that, using the notation defined at the beginning of this section, we may
write the Lr.t. statistic to test Hy in (6) as

A:AQ(N71771)A1(p717N)7
———

b

where, under Hy in (6), Ao(N;1,...,1) and Ay(p, 1; N) are independent.

Although we may question the usefulness of this approach, moreover given
that very accurate near-exact distributions have already been obtained for the
sphericity l.r.t. statistic by [13], interestingly enough, these same authors are in
the process of obtaining other near-exact distributions for this statistic exactly
through the use of this approach, which besides having a simpler formulation
may even be more accurate than the previously developed ones namely for
larger sample sizes and larger number of variables.

3.3 Generalized sphericity tests

Other tests onto which the authors intend to apply the approach proposed in
this paper are extended versions of the sphericity test, which we may call the
‘multi-sample scalar-block sphericity test” and the 'multi-sample matrix-block
sphericity test’.

For the multi-sample scalar-block sphericity test we have

O'%[pl 0

0 a,%fpk



HOQH . E = dz’ag(En, ceey Ek:k:)
given that ¥ = ... =Y, =%,

where ¥ is of dimensions pxp, while ¥;; (i = 1,...,k) of dimensions p;xp; is
the i-th diagonal block of X, with p = 3% p;, and

H()gu’g : Eu :0-1'2]101'7 for i = 1,...,k‘
given that ¥ = diag(31, ..., Xk) and
given that ¥, = ... =3, =%,

so that we may write the Lr.t. statistic to test Hy in (7), for N = Ny +...+ N,
as

k
A =Ai(q.p; Nj) Ao(N;pr,..oope) T As(ps; N) (8)

=1

Since, under Hy in (7), it is possible to prove the independence of all the
statistics in (8) and since factorizations of the type in (4) are available for the
c.f.’s of the logarithms of all the statistics in (8) ([5,6,8,13]), the process of
obtaining near-exact distributions for the l.r.t. statistic for this test may be
implemented by using the approach proposed in this paper.

Concerning the multi-sample matrix-block sphericity test, its null hypothesis
may be written as

A 0
Hy:¥1=...=8=AQI; | = 9)
0 A
with
Hy = Hozpp° Hogp ° Hon
where
H(nl 21222(](:2),
Hyy : ¥ = diag(X11, ..., Xgr)
given that ¥; = ... =%, (= %),



where X is of dimensions pxp, while ¥;; (i = 1,...,k) of dimensions p*xp* is
the i-th diagonal block of ¥, with p = kp*, and

Hogno: X1 =... = Yu(=A)
given that 3 = diag(31, ..., Xgk) and
given that ¥y = ... =3, =X,

so that we may write the Lr.t. statistic to test Hy in (9), for N = Ny +...+ N,
as

A =A(g,p;N;) Ao(N;p%, ..., p") Mk, p*; N). (10)
h/_/

Since, under Hy in (9), it is possible to prove the independence of all the
statistics in (10) and since factorizations of the type in (4) are available for
the c.f.’s of the logarithms of all the statistics in (10) ([5,6,13]), the process of
obtaining near-exact distributions for the L.r.t. statistic for this test may once
again be implemented by using the approach proposed in this paper.

4 Final remark

We may even plan to go beyond the tests presented in the previous section,
namely those in subsection 3, with virtually no limit, by adequately nesting
the three elementary multivariate likelihood ratio tests (referred at the be-
ginning of the previous section). In every case we will still be able to obtain
near-exact distributions for the overall test statistics, in situations where the
construction of well-fit asymptotic distributions, using the usual techniques,
is too complicated or even virtually impossible.
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