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Abstract. The action of Sl(r, k[[z]]) on the Sato Grassmannian
is studied. Following ideas similar to those of GIT and to those
used in the study of vector bundles, the (semi)stable points are in-
troduced. It is shown that any point admits a Harder-Narasimhan
filtration and that, if it is semistable, it has a Jordan-Hölder fil-
tration. Finally, theses results are compared with the well-known
theory of vector bundles on an algebraic curve.

1. Introduction

The aim of this paper is to establish relationships between two well-
known constructions of moduli spaces of vector bundles on an algebraic
curve; namely, the one that uses GIT (e.g. [Se1]) and the one that con-
siders pairs of bundles with a trivialization and uses Grassmannians
(e.g. [Mu, AM]). Very naively, the former should be the quotient
of the latter by a certain group action. Under this perspective, one
is naturally led to the study of the action of Sl(r, k[[z]]) on the Sato
Grassmannian. Our paper is a first step in this direction. The dif-
ficulties of this approach come into two flavors: the group is neither
algebraic nor reductive; the Sato Grassmannian is not of finite type.

We begin with the study of Sl(r, k) acting on Gr(k((z))⊕r). Then, in
subsection 3.1 GIT is applied to the action induced on certain natural
finite type subschemes of the Gr(k((z))⊕r) and it yields a numerical
criterion for stability (Theorem 3.5) as well as the behavior of stability
under the natural morphisms (Proposition 3.6).

Subsection 3.2 begins with the definition of (semi)stable points of
Gr(k((z))⊕r) with respect to the action of Sl(r, k) which is motivated
by Proposition 3.6. Then, some computations are needed to establish a
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numerical criterion of (semi)stability, see Theorem 3.12. These results
allow us to offer a natural definition of (semi)stability with respect to
the action of Sl(r, k[[z]]) (Definition 3.13) as well as the corresponding
numerical criterion in terms of the slope, which reminds us the criterion
for the case of vector bundles.

It should be observed that since the points of Gr(k((z))⊕r) are k-
subspaces of k((z))⊕r and having a notion of (semi)stability, it makes
sense to study filtrations of these subspaces. In particular, we prove in
subsection 3.3 that any point of Gr(k((z))⊕r) admits a unique Harder-
Narasimhan filtration (Theorem 3.29). Similarly, subsection 3.4 deals
with Jordan-Hölder filtrations of semistable objects (see Theorem 3.41).

As an application of our results we focus on the case of vector bundles
on a punctured algebraic curve. It is well known that the Krichever map
allows one to embed the moduli space of pairs of vector bundles with
a formal trivialization {(E, δ)} into a Sato Grassmannian. Thus, sec-
tion 4 shows explicitly how the Krichever map transforms (semi)stable
objects, Harder-Narasimhan filtrations and Jordan-Hölder filtrations.

Upon finishing this introduction, some comments are in order. Os-
ipov ([O]) has already studied how the (semi)stability of a vector bun-
dle is stated in terms of Sato Grassmannians and has given a definition
similar to ours. However, justification of such a definition was still
pending. Our aim was to provide this justification and relate it to GIT
as well as possible.

The study of equations defining the set of (semi)stable points as
well as the construction of quotients are two important problems that
deserve further efforts. For the latter, a better and more explicit under-
standing of quotients under unipotent groups will be required. More-
over, it should be recalled that Sato Grassmannians have been exten-
sively used in a variety of problems (e.g. string theory, multicomponent
KP hierarchy, vertex algebras,. . . ). We believe that the interpretation
of (semi)stability in the framework of those theories would be of great
interest.

2. Infinite Grassmannian Gr(k((z))⊕r)

2.1. General Theory. In this subsection we summarize some known
results about the infinite Grassmannian. For more details on this sub-
ject readers are referred to [AMP], [P].

We begin with the definition of Gr(V, V+) for an arbitrary pair (V, V+),
where V is a linear k-vector space and V+ is a fixed k-subspace of
V . We say that a subspace A ⊂ V is commensurable with V+ when
dimk(A + V+)/(A∩ V+) < ∞ and we denote this by A ∼ V+. The pair
(V, V+) is assumed to satisfy

• ⋂
A∼V+

A = (0)
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• V = lim←−
A∼V+

V/A

The infinite Grassmannian Gr(V, V+) (in short Gr(V ) if we fix V+)
is the k-scheme whose rational points are

Gr(V ) =
{

k-subspaces W ⊂ V such that
dimk V/(V+ + W ) < ∞, dimk W ∩ V+ < ∞

}
(2.1)

The index or characteristic of L ∈ Gr(V )

χ(L) = dimk(L ∩ V+)− dimk

(
V

L + V+

)

is locally constant as function of L. If Grχ(V ) denotes the set where
the index takes the value χ ∈ Z, then

Gr(V ) =
∐

χ∈Z
Grχ(V )

is the decomposition in connected components.
In particular, if V is a finite dimensional vector space, the points of

Grχ(V ) are those subspaces L where dimk L = χ + dimk(V/V+).
We define the open k-subschemes of Gr(V ) for each A ∼ V+

FA := {L ∈ Gr(V )|L⊕ A = V } ,

which define an open covering of Gr(V ).
Let us now consider the case V := k((z))⊕r, V+ := k[[z]]⊕r, and the

linear topology in V given by {zmV+|m ∈ Z} as a basis of neighbour-
hoods of (0). We define

ei :=





(zi/r, 0, 0, · · · , 0) , i ≡ 0 mod r
(0, z(i−1)/r, 0, · · · , 0), i ≡ 1 mod r
... ,

...
(0, 0, · · · , z(i−r+1)/r), i ≡ (r − 1) mod r.

so that V+ is the completion of the space 〈{ei}i≥0〉.
We define Sχ (χ ∈ Z) as the set consisting of the strictly increasing

sequences S = {s0, s1, · · · } ⊂ Z such we have an integer i À 0, for
which sn+1 = sn + 1, ∀n ≥ i, and the index

i(S) := #({s0, s1, · · · } \ Z≥0)−#(Z≥0 \ {s0, s1, · · · })
is equal to χ.

For each S ∈ Sχ, we define the subspace AS as the closure (w.r.t. the
topology of V ) of 〈{esi

, si ∈ S}〉. Given S ∈ Sχ, observe that L ∈ FAS if
and only if L⊕AS = V and dim(AS/AS∩V +)−dim(V +/AS∩V +) = χ.
It follows that Grχ(V ) =

⋃
S∈Sχ

FAS and that

χ(L) = χ = i(S)
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The Grassmannian Gr(V ) carries a canonical line bundle on it; namely,
the determinant bundle, DetV , which is the determinant of the com-
plex L → V/V+, where L is the universal submodule. Furthermore, the
determinant of the morphism of that complex gives rise to a canoni-
cal global section, Ω+, of Det∗V on the connected component Gr0(V ).
Analogously, we can define other global sections of Det∗V on Grχ(V )
for each AS by replacing V+ by AS in the previous construction. The
resulting global section is denoted by ΩS.

Thus, the Plücker morphism

PV : Grχ(V ) −→ PΩ∗

W 7−→ {ΩS(W )}S∈Sχ

(Ω being the k-subspace of H0(Grχ(V ), Det∗V ) generated by {ΩS}S∈Sχ)
is a closed immersion.

2.2. Description in terms of finite Grassmannians. The infinite
Grassmannian is shown to be covered by an ascending chain of open
subschemes Um. Each of these open schemes is an inverse limit of open
sets of finite Grassmannians.

Given m ∈ N, let us consider the finite-dimensional spaces

Em :=
z−mV+

zmV+

' 〈{ei}i=−rm,··· ,rm−1〉.

and let us denote by Gr(Em) the finite Grassmannian associated with

the pair (Em, V+

zmV+
) and by Grχ(Em) the connected component of index

χ, whose rational points are the subspaces with dimension χ + rm.

Proposition 2.1. Fix integers m,χ. The map

Fm+1 7−→ Φm(Fm+1) :=
(Fm+1 ∩ z−mV+

zm+1V+
) + zmV+

zm+1V+

zmV+

zm+1V+

⊂
z−mV+

zm+1V+

zmV+

zm+1V+

' Em

defines a surjective rational morphism Grχ(Em+1) //___ Grχ(Em) whose

domain is the open subscheme

Xχ
m+1 :=

{
Fm+1 s.t. Fm+1 +

z−mV+

zm+1V+
= Em+1 and Fm+1∩ zmV+

zm+1V+
= (0)

}

Proof. The set Xχ
m+1 consists of those Fm+1 such that

• Fm+1 ⊕ z−mV+

zm+1V+
→ Em+1 is surjective

• Fm+1 ⊕ zmV+

zm+1V+
→ Em+1 is injective

and both conditions are open and non-empty.
Secondly, let us compute the index of Φm(Fm+1)

χ
(
Φm(Fm+1)

)
= dim(Fm+1 ∩ z−mV+

zm+1V+

)− rm =
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since Fm+1 ∩ zmV+

zm+1V+
= (0) and, thus

= dim Fm+1 + dim
z−mV+

zm+1V+

− dim(Fm+1 +
z−mV+

zm+1V+

)− rm =

= dim Fm+1 − r(m + 1) = χ(Fm+1)

because Fm+1 + z−mV+

zm+1V+
= Em+1.

Finally, in order to see that the morphism is surjective it suffices to
notice that

Fm = Φm(Fm ⊕ 〈e−rm−r, · · · , e−rm+1〉)
and that Fm⊕〈e−rm−r, · · · , e−rm+1〉 is in Xχ

m+1 for every Fm ∈ Grχ(Em).
¤

Remark 2.2. The choice of {ei}i∈Z yields a basis on Em for all m.
The Plücker coordinates of a point Fm ∈ Grχ(Em) can be computed
as follows (recall that l := dimk(Fm) = χ + rm). Fixing a basis in
Fm, for a sequence of indices −rm ≤ i1 < · · · < il ≤ rm − 1 and
the complementary sequence −rm ≤ j1 < · · · < j2rm−l ≤ rm − 1, the
Plücker coordinate pi1,··· ,il(Fm) is equal to the determinant of the matrix
of the natural map

Fm −→ Em

〈ej1 , · · · , ej2rm−l
〉

with respect to the basis chosen in Fm and the basis {ei} in Em. This
is usually understood as a minor of the matrix consisting of the coor-
dinates w.r.t. {ei} of a basis of Fm. A straightforward computation
shows that the Plücker coordinates of Fm+1 and Φm(Fm+1) are related
by

pi1,··· ,il(Φm(Fm+1)) = p−rm−r,··· ,−rm−1,i1,··· ,il(Fm+1).

Remark 2.3. Note that the definition of the morphism Φm only de-
pends on the filtration {zmV+}m∈Z and not on the basis {ei}i∈Z of V .

Definition 2.4 (property (m)). A point F ∈ Grχ(V ) is said to satisfy
the property (m) if F ∩ zmV+ = (0) and F + z−mV+ = V . Observe that
if F satisfiesproperty (m0) then it satisfies the property (m) for every
m ≥ m0.

Lemma 2.5. It holds that{
F ∈ Grχ(V ) such that
F satisfies property (m)

}
=

⋃
S∈Sm

χ

FAS (2.2)

where Sm
χ consists of those sequences S = {s0 < s1 < . . .} ∈ Sχ such

that {rm, rm + 1, · · · } ⊂ S ⊂ {−rm,−rm + 1,−rm + 2, · · · }.
Proof. Note that the subspace F satisfies the property (m) if and only
if F+ < {ei}i≥−rm >= V and F∩ < {ei}i≥rm >= (0). These two
conditions are satisfied if and only if there exists S ∈ S such that



6 A. C. CASIMIRO, J. M. MUÑOZ AND F. J. PLAZA

F ⊕ AS = V and < {ei}i≥rm >⊂ AS ⊂< {ei}i≥−rm >. Recalling that
the open subschemes FA cover Grξ(V ), the claim follows. ¤

We have the following diagram

· · · // Xχ
3 ∩ Φ−1

2 (Xχ
2 ∩ Φ−1

1 (Xχ
1 ))

Φ2 //
Ä _

²²

Xχ
2 ∩ Φ−1

1 (Xχ
1 )

Ä _

²²

Φ1 // Xχ
1Ä _

²²

Φ0 // Grχ(E0)

· · · // Xχ
3 ∩ Φ−1

2 (Xχ
2 )

Ä _

²²

Φ2 // Xχ
2Ä _

²²

Φ1 // Grχ(E1)

· · · // Xχ
3Ä _

²²

Φ2 // Grχ(E2)

· · · // Grχ(E3)
(2.3)

where each row is considered as an inverse system. We index the rows
by 0, . . . , m, m+1, . . . and the columns by 0, 1, . . . , i, i+1, . . . from right
to left. Each square of the diagram is cartesian, so if Um,i denotes the
term of the diagram lying in the m-th row and i-th column; it holds
that

Um,i =

{
Grχ(Em) for i = m

Φ−1
i−1(Um,i−1) ∩Xχ

i = Um,i−1 ×Grχ(Ei) Xχ
i for i > m

Theorem 2.6. Let Um be the inverse limit lim←−
i≥m

Um,i for the maps Φm.

There is a canonical bijection

Um ' {F ∈ Grχ(V )|F satisfies the property (m)}
and, in particular, the open sets Um define a covering of the infinite

Grassmannian

Grχ(V ) =
⋃

m>0

Um =
⋃

m>0

lim←−
i≥m

Um,i.

Proof. Let us give a map from the open set of Grχ(V ) of the points
with the property (m0) to Um0 . Let F ∈ Grχ(V ) be such a point. We
define

Fm,m :=
(F ∩ z−mV+) + zmV+

zmV+
⊂ Em m ≥ m0

Then, for every m ≥ m0, the following statements are satisfied

• Fm,m ∈ Grχ(Em)
• Fm+1,m+1 ∈ Xχ

m+1

• Φm(Fm+1,m+1) = Fm,m

We define Fm,i := Fi,i, for i ≥ m, understood as an element of Xχ
i .

The last property implies that Φi(Fm,i+1) = Fm,i for every m ≥ m0

and i ≥ m. Therefore, {Fm,i}i≥m ∈ Um for every m ≥ m0.
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We now construct the inverse map. Let {Fm0,i}i≥m0 ∈ lim←−
i≥m0

Um0,i.

For m ≥ m0, we consider

Fm := lim←−
i≥m

(Fm,i ∩ z−mV+

ziV+

) ⊂ z−mV+

where the morphisms of this inverse system are induced by the inclusion

Fm0,i+1∩ z−m0V+

zi+1V+
↪→ Fm0,i and by the projection z−m0V+

zi+1V+
³ z−m0V+

ziV+
. This

procedure gives us a family of subspaces Fm ⊆ z−mV+ ,where m ≥ m0.
Moreover, since Fm ⊆ Fm+1, it makes sense to consider the subspace
F :=

⋃
m≥m0

Fm of V . It is straightforward to check that F ∈ Grξ(V )

and that it satisfies the property (m0).
By the very constructions, the two maps given above are the inverse

of each other.
Finally, from the identity (2.1) one has that given F ∈ Grξ(V ) there

exist m1,m2 ∈ N (depending on F ) such that F ∩ zm1V+ = 0 and
F + z−m2V+ = V . Taking m0 = max{m1,m2}, one concludes that F
fulfills the property (m0). Therefore, the open sets Um cover all of the
Grχ(V ) ¤

3. Stability for the action of Sl(r, k[[z]])

3.1. Stability on Gr(Em) for the action of Sl(r, k). Mumford’s cri-
terion [MF] is applied to the finite Grassmannians Gr(Em) (Em =
z−mV+/zmV+) and a numerical criterion of stability is obtained (Theo-
rem 3.5). In Chapter 4.4 of [MF] or in [N] one finds a detailed study of
the stability notion on finite Grassmannians for the action of the group
of automorphisms of the vector space. We adapt those computations
to our case.

Since the group Sl(r, k) is a subgroup of Sl(r, k((z))), it acts naturally
on k((z))⊕r. The subspaces z−mV+, zmV+ are invariant by this action,
so Sl(r, k) acts naturally on the spaces Em and on its Grassmannians
Gr(Em). Moreover, this action lifts to an action on the determinant
bundle, eventually giving rise to a natural linearization. Using the
above mentioned basis of Em, the group Sl(r, k) can be seen as a sub-
group of Sl(2mr, k) ⊂ Gl(Em) by the following immersion

Sl(r, k) ↪→ Sl(2rm, k)

A →




A 0
0 A

. . .
0 A




Let Fm ∈ Grχ(Em) be a point of the finite Grassmannian, with
characteristic χ and dimension q := rm + χ. Let (xj

−rm, . . . , xj
rm−1) be

the coordinates of a basis of Fm w.r.t. the basis {ei} of Em. We denote
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by pi1...iq(Fm) the minor of order q × q of the (2rm × q)-matrix (xj
i ),

formed by the columns of index −rm ≤ i1 < . . . iq ≤ rm − 1. These
minors define the Plücker coordinates of Fm.

Let λ(t) be a 1-parameter subgroup of Sl(r, k).

Definition 3.1 ([N], page 104). We shall denote by µ(Fm, λ) the unique
integer µ such that the limit lim

t→0
tµλ(t)Fm exists and is different from

zero.

Theorem 3.2 (Theorem 4.9 and Proposition 4.11 of [N]). Fm is (semi)stable
for the action of Sl(r, k) if and only if

µ(gFm, λ∗) (≥) > 0, ∀g ∈ Sl(r, k) (3.1)

and for every 1-parameter group, λ∗, of the form

λ∗(t) :=




tn1 0
0 tn2

. . .
0 tnr


 (3.2)

where ni ∈ Z satisfy n1 + n2 + · · · + nr = 0, n1 ≥ n2 ≥ · · · ≥ nr, and
some ni is different from zero. We say n = (n1, . . . , nr) is admissible
if the ni’s satisfy these relations.

Let σ := (i1 < i2 < · · · < iq) be the multiindex with −rm ≤
i1, i2, · · · , iq ≤ rm − 1. And, for each j ∈ {1, · · · , r}, let σj be the
number of indices il (1 ≤ l ≤ q) with il = (j − 1) (mod r), i.e., the
number of indices il that correspond to some (0, · · · , zs, 0, · · · , 0) where
zs is in the j-th entry.

Lemma 3.3. Let g ∈ Sl(r, k) be arbitrary, then

µ(gFm, λ∗) = max
{−

r∑
i=1

niσi : pσ(gFm) 6= 0
}

(3.3)

where pσ(gFm) is the Plücker coordinate associated with the columns
with indices σ := (i1 < i2 < · · · < iq).

Proof. This results from the action by the 1-parameter groups λ∗, (3.2),
and from the definition given before of µ(gFm, λ∗). ¤

Let us compute the maximum of the previous Lemma. For every
1 ≤ l ≤ r, we consider

V l := k((z))⊕ l· · · ⊕ k((z))⊕ (0)⊕ r−l· · · ⊕ (0) ⊂ k((z))⊕r

V l
+ := k[[z]]⊕ l· · · ⊕ k[[z]]⊕ (0)⊕ r−l· · · ⊕ (0) ⊂ k[[z]]⊕r

and we define the spaces Ei
m, with 1 ≤ i ≤ r, as

Ei
m := < e−rm, · · · , er(m−1), e−rm+1, · · · , er(m−1)+1, · · · ,

e−rm+(i−1), · · · , er(m−1)+(i−1) >' z−mV i
+

zmV i
+

⊂ Em
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A basis of these spaces is given by the equivalence classes of the vectors
erk+i, with −m ≤ k ≤ m− 1 and i = 0, 1, . . . , l − 1.

Lemma 3.4. For every g ∈ Sl(r, k) and every 1-parameter group λ∗ of
the form (3.2), it holds that

µ(gFm, λ∗) = −qnr +
r−1∑
i=1

dimk(gFm ∩ Ei
m)(ni+1 − ni)

Proof. For convenience we shall write the matrices with respect to
{e−rm, · · · , erm−1} with its rows and columns reordered as if we had
chosen

e−rm, er(−m+1), · · · , er(m−1),

e−rm+1, er(−m+1)+1, · · · , er(m−1)+1, · · · ,

e−rm+(r−1), er(−m+1)+(r−1), · · · , er(m−1)+(r−1)

as a basis. With this convention, λ∗ ∈ Sl(2rm, k) is expressed by the
diagonal matrix 



tn1 0 . . . 0
. . .

0 tn1

. . .
tnr

. . .
0 tnr




Let si := dimk(gFm ∩ Ei
m) for each i = {1, . . . , r}. Take a basis

(x1, . . . xq) of gFm whose first si vectors lie in gFm∩Ei
m and consider the

coordinates (xj
i ) of these vectors with respect to the basis of Em ordered

as above. The q×q-minors of this matrix define the Plücker coordinates
of gFm. Due to the choice of the basis, there exists a multi-index
σ = (i1 < . . . < iq) with pσ(gFm) 6= 0 and with s1 indices in the family
{−rk}k=−m,...,m−1, s2 indices in the family {−rk,−rk + 1}k=−m,...,m−1,
etc. Hence, for this multi-index the values σi satisfy: σ1 + . . . + σj =
sj (1 ≤ j ≤ r). Moreover, for any other multi-index σ̄ such that

σ̄1 + . . . + σ̄j < sj for some 1 ≤ j ≤ r, the (q × q)-minor of (xj
i )

associated with this multi-index would be a determinant of the form:

pσ̄(gFm) = det

(∗ 0sj×(q−∑j
i=1 σ̄i)

∗ ∗
)

with a (sj× (q−∑j
i=1 σ̄i)) block of 0’s, where there are linearly depen-

dent rows when
∑j

i=1 σ̄i < sj. Thus pσ̄(gFm) = 0 for such a multi-index
σ̄.

Let us now consider σ̄ any multiindex with pσ̄(gFm) 6= 0. It holds
that σ̄1 + . . . + σ̄j ≥ sj for every j ∈ {1, . . . , r} (and the equality holds
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for the previously mentioned multi-index σ), and hence

−
r∑

j=1

njσ̄j = − nr(σ̄1 + · · ·+ σ̄r) + (nr − nr−1)(σ̄1 + · · ·+ σ̄r−1) +

+ (nr−1 − nr−2)(σ̄1 + · · ·+ σ̄r−2) + · · ·+ (n2 − n1)σ̄1 ≤
≤ − qnr + (nr − nr−1)sr−1 + (nr−2 − nr−1)sr−2 + · · ·

+ · · ·+ (n2 − n1)s1 = −
r∑

j=1

njσj

We conclude from (3.3) that

µ(gFm, λ∗) = −
r∑

i=1

[dimk(gFm ∩ Ei
m)− dimk(gFm ∩ E(i−1)

m )]ni

= −qnr +
r−1∑
i=1

dimk(gFm ∩ Ei
m)(ni+1 − ni) (3.4)

¤
Let us study the situation when µ(gFm, λ∗) is positive (resp. non-

negative). The right hand side of equality (3.4) is a linear function
of n := (n1, · · · , nr). For admissible n we have n1 > 0 and nr < 0.
Let xi := ni+1−ni

nr
≥ 0 for 1 ≤ i ≤ r − 1. To give an admissible n is

equivalent to giving nr < 0 and x1, · · · , xr−1 ∈ 1
nr
Z, with

x1 ≥ 0, · · · , xr−1 ≥ 0, x1 + 2x2 + · · ·+ (r − 1)xr−1 = r (3.5)

With these new data,

µ(gFm, λ∗) = −nr

[
q −

r−1∑
i=1

dimk(gFm ∩ Ei
m)xi

]

The right hand side is positive (resp. non-negative) if and only if

q −
r−1∑
i=1

dimk(gFm ∩ Ei
m)xi (≥) > 0.

for any x1, · · · , xr−1 ∈ Q satisfying (3.5), i.e, we have a problem of
linear programming. This expression is positive (resp. non-negative) if
and only if it is so in the vertices of the set bounded by the inequalities
(3.5). These points, for each i = 1, . . . , r − 1, have coordinates xi = r

i
and xj = 0, ∀j 6= i. Therefore we obtain:

µ(gFm, λ∗) (≥) > 0 ⇔ dimk(gFm ∩ Ei
m) (≤) <

qi

r
⇔

⇔ dimk(Fm ∩ g−1Ei
m) (≤) <

qi

r

for every 1 ≤ i ≤ r − 1. Thus, we have proved the following
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Theorem 3.5. Let Fm ∈ Grχ(Em). Then, the following conditions are
equivalent

(1) Fm is a (semi)stable point of Grχ(Em).
(2) 1

i
dimk(Fm∩gEi

m) (≤) < 1
r
dimk(Fm), for every g ∈ Sl(r, k) and

for every 1 ≤ i ≤ r − 1.
(3) 1

i
χ(Fm ∩ gEi

m) (≤) < 1
r
χ(Fm), for every g ∈ Sl(r, k) and every

1 ≤ i ≤ r − 1.

Proof. For the equivalence of 1. and 2., we use the previously proven
relation in the case of the element g−1. To see the relation with the
characteristics, we simply recall the relation between the characteristic
and the dimension in the case of Grassmannians of finite dimensional
vector spaces. ¤

The behavior of the stability under the rational map Φm follows from
Proposition 2.1 and Theorem 3.5 and is given by

Proposition 3.6. If Fm ∈ Grχ(Em) is a (semi)stable point for the
action of Sl(r, k), then any Fm+1 ∈ Φ−1

m (Fm) is (semi)stable for the
same action.

3.2. Stability on Gr(k((z))⊕r). We introduce a notion of (semi)stability
of points of Gr(V ) and give a numerical criterion (Theorem 3.12) based
on the case of finite Grassmannians (Theorem 3.5 and Theorem 2.6).
This subsection ends with an intrinsic definition of (semi)stability for
the action of Sl(r, k[[z]]) (Definition 3.13) compatible with GIT that is
analogous to the one given in [O] and equivariant by certain automor-
phisms of Gr(V ).

Motivated by Theorem 2.6 and Proposition 3.6 it is natural to define

Definition 3.7. A point F ∈ Gr(V ) is (semi)stable for the action of
Sl(r, k) if there exists m ∈ N and i ≥ m such that Fm,i ∈ Um,i ⊂ Gr(Ei)
is (semi)stable. Here {Fm,i} and F are related as described in the proof
of Theorem 2.6.

We denote the set of the stable and semistable points of Gr(V ) by
(Gr(V ))s and (Gr(V ))ss, respectively.

Definition 3.8. Let H l be a l-dimensional k((z))-subspace of V . For
a k-subspace F ⊆ H l such that dimk(F ∩ (H l ∩ V+)) < ∞ we define
χ(F ) as

χ(F,H l) :=

{
dimk(F ∩ V+ ∩H l)− dimk( Hl

F+(V+∩Hl)
), if dimk( Hl

F+(V+∩Hl)
) < ∞

−∞ , otherwise

Whenever H l is clear from the context, it will be omitted and we shall
simply write χ(F ).

Note that if a k-subspace F ⊂ V satisfies the condition that χ(F,H l)
is finite, then F ∈ Gr(H l, V+ ∩ H l) and χ(F, H l) coincides with the
characteristic of F as a point of this Grassmannian.
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Lemma 3.9. Let F ∈ Grχ(V ) be a point satisfying the property (m0)
and let Fm and {Fm,i} be the subspaces corresponding to F as in the
proof of Theorem 2.6.

For every i ≥ m ≥ m0,

(1) χ(F ) = χ(Fm) = χ(Fm,i).

(2) χ(Fm,i) = χ(Fm,i ∩ z−mV+

ziV+
).

Proof.

(1) From the very definition of the subspaces {Fm,i} (see the proof
of Theorem 2.6) and from Proposition 2.1, it follows that χ(Fm,i)
does not depend either on m or on i.

Recalling that Fm,m := (F∩z−mV+)+zmV+

zmV+
and that F satisfies

property (m) for m ≥ m0, one can prove Fm,m∩ V+

zmV+
' F ∩V+

and that Em

Fm,m+
V+

zmV+

' V
F+V+

and, therefore, χ(F ) = χ(Fm,m).

The remaining equality, χ(F ) = χ(Fm), is deduced from the
exact sequence

0 → Fm → Fn → z−nV+

z−mV+

→ 0 m ≤ n

and from the fact that F =
⋃

n≥m

Fn.

(2) Using the definitions

χ(Fm,i) = dim(Fm,i ∩ V+

ziV+

)− dim
Ei

Fm,i + V+

ziV+

χ(Fm,i ∩ z−mV+

ziV+

) = dim(Fm,i ∩ V+

ziV+

)− dim

z−mV+

ziV+

Fm,i ∩ z−mV+

ziV+
+ V+

ziV+

.

we compute the difference

χ(Fm,i)− χ(Fm,i ∩ z−mV+

ziV+

) = −2ri + dim(Fm,i +
z−mV+

ziV+

)

The equality F + z−mV+ = V implies that Fm,i + z−mV+

ziV+
= Ei,

and thus the previous expression vanishes.

¤

Lemma 3.10. Let F , Fm and {Fm,i} be as in Lemma 3.9. Then, it
holds that

χ(Fm ∩ gz−mV l
+) = χ(Fm,i ∩ z−mV+

ziV+

∩ gEl
i)

for every g ∈ Sl(r, k), m ≥ m0, i ≥ m and 1 ≤ l ≤ r − 1.
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Proof. Bearing in mind that Fm = F ∩ z−mV+ ' Fm,i ∩ z−mV+

ziV+
, one has

that

Fm,i ∩
gV l

+

ziV+

' Fm ∩ gV l
+ (3.6)

Furthermore, note that the kernel of the composite map

z−mgV l
+ −→

gz−mV l
+

gziV l
+

−→
g

z−mV l
+

ziV l
+

(Fm,i ∩ g
z−mV l

+

ziV l
+

) + g
V l
+

ziV l
+

is exactly Fm ∩ z−mgV l
+ + gV l

+, thus, one obtains an isomorphism

z−mgV l
+

Fm ∩ z−mgV l
+ + gV l

+

'
g

z−mV l
+

ziV l
+

(Fm,i ∩ g
z−mV l

+

ziV l
+

) + g
V l
+

ziV l
+

(3.7)

The result now follows from equations (3.6) and (3.7) since the ex-
plicit expressions of the characteristics are

χ(Fm ∩ gz−mV l
+) = dim

(
Fm ∩ gV l

+

)
− dim

(
z−mgV l

+

Fm ∩ z−mgV l
+ + gV l

+

)

χ(Fm,i ∩ z−mV+

ziV+
∩ g

z−iV l
+

ziV l
+

) = χ(Fm,i ∩ g
z−mV l

+

ziV l
+

) =

= dim

(
Fm,i ∩

gV l
+

ziV+

)
− dim




g
z−mV l

+

ziV l
+

(Fm,i ∩ g
z−mV l

+

ziV l
+

) + g
V l
+

ziV l
+




¤
Lemma 3.11. Let F be as in Lemma 3.9. For every g ∈ Sl(r, k),
m ≥ m0, it holds that

(1) 0 ≤ χ(Fm ∩ gz−mV l
+)− χ(Fm+1 ∩ gz−m−1V l

+) ≤ l.
(2) χ(F ∩ gV l) ≤ χ(Fm ∩ gz−mV l

+).
(3) χ(F ∩ gV l) = lim

m→∞
χ(Fm ∩ gz−mV l

+).

Proof.

(1) Since gV+ = V+ and g ∈ Sl(r, k), then gz−mV l
+ = z−mV+. Thus,

Fm ∩ gz−mV l
+ = (F ∩ z−mV+) ∩ gz−mV l

+ = F ∩ gz−mV l
+

for every m ≥ m0. The Snake Lemma applied to the commu-
tative diagram

0 // (F ∩ gz−mV l
+)⊕ gV l

+

²²

// (F ∩ gz−m−1V l
+)⊕ gV l

+

²²

// (F∩gz−m−1V l
+)

(F∩gz−mV l
+)

Ä _

²²

// 0

0 // gz−mV l
+

// gz−m−1V l
+

// gz−m−1V l
+

gz−mV l
+

// 0
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yields the following long exact sequence

0 → F ∩ gV l
+ → F ∩ gV l

+ → 0 → gz−mV l
+

F ∩ gz−mV l
+ + gV l

+

→

→ gz−m−1V l
+

F ∩ gz−m−1V l
+ + gV l

+

→
gz−m−1V l

+

gz−mV l
+

(F∩gz−m−1V l
+)

(F∩gz−mV l
+)

→ 0.

Computing dimensions we obtain

0 ≤ χ(Fm ∩ gz−mV l
+)− χ(Fm+1 ∩ gz−m−1V l

+) = dimk

gz−m−1V l
+

gz−mV l
+

(F∩gz−m−1V l
+)

(F∩gz−mV l
+)

≤ l.

(2) The Snake Lemma applied to the following diagram

0 // (F ∩ gz−mV l
+)⊕ gV l

+

²²

// (F ∩ gV l)⊕ gV l
+

²²

// (F∩gV l)

(F∩gz−mV l
+)

Ä _

²²

// 0

0 // gz−mV l
+

// gV l // gV l

gz−mV l
+

// 0

gives rise to the following exact sequence

0 → F ∩ gV l
+ → F ∩ gV l

+ → 0 → gz−mV l
+

F ∩ gz−mV l
+ + gV l

+

→

→ gV l

F ∩ gV l + gV l
+

→
gV l

gz−mV l
+

(F∩gV l)

(F∩gz−mV l
+)

→ 0,

and we conclude by dimension counting.
(3) The two preceding items imply that χ(F ∩ gV l) ≤ lim

m→∞
χ(Fm∩

gz−mV l
+). If lim

m→∞
χ(Fm∩gz−mV l

+) = −∞, the statement holds.

If the limit is finite, then we have m′ such that

χ(Fm ∩ gz−mV l
+) = χ(Fm+1 ∩ gz−m−1V l

+) ∀m ≥ m′

By the proof of the previous claim, this is equivalent to saying
that

gV l

gz−mV l
+

(F∩gV l)

(F∩gz−mV l
+)

=
gV l

F ∩ gV l + gz−mV l
+

is finite dimensional and does not depend on m. However, this
can happen if and only if it is equal to zero and, by the se-
quence (3.8), one concludes.

¤
Let us now give the numerical criterion for an arbitrary point of

Gr(V ) with V = k((z))⊕r.
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Theorem 3.12. A point F ∈ Grχ(V ) is (semi)stable for the action of
Sl(r, k) if and only if for every g ∈ Sl(r, k) and for every 1 ≤ l ≤ r− 1,

1

l
χ(F ∩ gV l) (≤) <

1

r
χ(F ).

Proof. Definition 3.7 and Lemma 3.10 imply that a point F ∈ Grχ(k((z))⊕r)
is (semi)stable if and only if there are m ∈ N and i ≥ m such that

Fm,i ∩ z−mV+

ziV+
∈ Gr(Ei) is (semi)stable. Applying Theorem 3.5 and

Lemma 3.10, one has that it is equivalent to the inequality

1

l
χ(Fi ∩ g(z−iV l

+)) (≤) <
1

r
χ(F ), ∀g ∈ Sl(r, k)

for all 1 ≤ l ≤ r − 1 and for all i ≥ m. The claim now follows from
Lemma 3.11 part 2. ¤

Note that Sl(r, k[[z]]) acts on V , leaving the subspace V+ invariant.
Actually, from [P] we know that this group acts on Gr(V ) and that this
action lifts to an action on Det∗V . This fact was proved in [O] (Lema 3)
in terms of the analytic space structure of the infinite Grassmannian
([SW, PS]). This group is indeed a subgroup of the restricted linear
group of [SW, PS] or of the bicontinuous linear group of [P].

Finally, we are ready to introduce the notion of (semi)stability for
the group Sl(r, k[[z]])

Definition 3.13. A point F ∈ Grχ(V ) is called (semi)stable for the
action of Sl(r, k[[z]]) if T (F ) is (semistable) for the action of Sl(r, k)
for all T in the subgroup {T ∈ Sl(r, k[[z]]) s.t. T |z=0 = Id}.

Let us make a remark on the motivation underlying this definition.
The group Sl(r, k[[z]]) is a group that acts on k((z))⊕r, preserving the
filtration {zm · k[[z]]⊕r}m∈Z. Hence, it induces actions on each finite
Grassmannian Gr(Em) that are compatible with the morphisms consid-
ered in subsection 2.2 and such that the pullbacks of the determinant
bundles are again the determinant bundles. Since we are concerned
with actions and (in the future) with quotients, it is natural to impose
that (semi)stability should be a notion on the orbit.

Definition 3.14. The rank of E ∈ Grχ(V ), denoted by r(E), is the

dimension of V over k((z)) and the slope of E, µ(E), is µ(E) := χ(E)
r(E)

.

Bearing in mind that Sl(r, k[[z]]) is generated by the subgroups Sl(r, k)
and {T ∈ Sl(r, k[[z]]) s.t. T |z=0 = Id} and that it acts transitively on
the set of k((z))-subspaces of V , the numerical criterion of stability
(Theorem 3.12) is generalized in the following form

Theorem 3.15. Let F ∈ Grχ(V ). Then F is (semi)stable for the ac-
tion of Sl(r, k[[z]]) if every non-trivial k((z))-subspace H l ⊂ V r fulfills
µ(F ∩H l) (≤) < µ(F ).
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Remark 3.16. An alternative approach would consist of the study of
the action of the subgroup {T ∈ Sl(r, k[[z]]) s.t. T |z=0 = Id} instead
of ours which is based on the automorphisms. However, that would
require an explicit geometric invariant theory of unipotent groups since
that subgroup behaves as an inverse limit of unipotent groups.

3.3. Harder-Narasimhan filtration. We prove the existence of a
unique Harder-Narasimhan filtration for each point of the infinite Grass-
mannian (Theorem 3.29). Our view is motivated by the works [Se1]
and [B, Os], which were carried out for the case of vector bundles on
algebraic curves. Our reference for basic facts on Category theory is
[M].

Definition 3.17. We define G to be the category whose objects are
pairs (E, E+

0 ), where E+
0 is a free k[[z]]-module of finite rank and

E ∈ Gr(E+
0 ⊗k[[z]] k((z)), E+

0 )

The set of homomorphisms between two objects, HomG((E, E+
0 ), (F, F+

0 )),
is the set formed by the k[[z]]-linear morphisms, T : E+

0 → F+
0 with

T (E) ⊂ F .

For an object (E,E+
0 ), we define E0 := E+

0 ⊗k[[z]] k((z)). For the
sake of simplicity, we shall refer to this object as E ∈ Gr(E0) and
the set of homomorphisms HomG((E, E+

0 ), (F, F+
0 )) will be written as

HomG(E, F ). Similarly, the morphism T ⊗ 1: E0 → F0 induced by
a morphism T ∈ HomG(E, F ) will be also denoted by T and will be
called the underlying linear map. This abbreviated notation has been
already used in the definition.

Since an object of G is a point of an infinite Grassmannian, we may
consider its rank and slope as those given in Definition 3.14.

Similarly, we point out that Definition 3.13 yields a notion of (semi)stability
for objects of G. Indeed, let E+

0 be as above. Let us fix a k[[z]]-linear iso-

morphism T : E+
0

∼→ k[[z]]⊕r. Then, there is an action of Sl(r, k[[z]]) on
Gr(E0, E

+
0 ) (by conjugation by T ). Then, the notion of (semi)stability

may be transported from Gr(k((z))⊕r, k[[z]]⊕r) to Gr(E0, E
+
0 ) via the

isomorphism of schemes

Gr(E0, E
+
0 ) ' Gr(k((z))⊕r, k[[z]]⊕r)

induced by T . This notion of (semi)stability does not depend on T
because of Definition 3.13.

Lemma 3.18. Let E, F be objects of G and let T ∈ HomG(E, F ).
Then

(1) Ker T ∩ E ∈ Gr(Ker T, Ker T ∩ E+
0 ) together with the natural

morphism i : Ker T ↪→ E0 is the kernel of T .
(2) F/(Im T ∩ F ) ∈ Gr(F0/ Im T, F+

0 /(Im T ∩ F+
0 )) together with

the natural morphism p : F0 → F0/ Im T is the cokernel of T .
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Proof. Let us prove the first statement. First, let us observe that
Ker(T |E+

0
) = Ker T ∩E+

0 is a free k[[z]]-module of finite rank and that

Ker T = Ker(T |E+
0
)⊗k[[z]]k((z)). Thus, we have to check that Ker T ∩E

belongs to Gr(Ker T, Ker T ∩ E+
0 ) using (2.1). Since E ∈ Gr(E0, E

+
0 ),

one has that E ∩ E+
0 is finite dimensional, and thus, Ker T ∩ E ∩ E+

0

is finite dimensional too. It remains to prove that Ker T
Ker T∩E+Ker T∩E+

0

is

finite dimensional. Consider the commutative diagram

0 // (KerT ∩ E)⊕ (KerT ∩ E+
0 ) //

²²

E ⊕ E+
0

//

²²

E
Ker T∩E ⊕ E+

0

Ker T∩E+
0

//

²²

0

0 // KerT // E0
// E0/ KerT // 0

and consider the following piece of the associated long exact sequence

E

KerT ∩ E
∩ E+

0

KerT ∩ E+
0

→ KerT

KerT ∩ E + KerT ∩ E+
0

→ E0

E + E+
0

The first term is isomorphic to T (E) ∩ T (E+
0 ) and it is finite dimen-

sional because it is contained in F ∩ F+
0 and F ∈ Gr(F0, F

+
0 ). The

third term is finite dimensional since E ∈ Gr(E0, E
+
0 ). Therefore, the

middle term is finite dimensional, as we wanted.
The inclusion i : Ker T ∩ E → E is a morphism in our category

whose underlying linear map is i : Ker T ↪→ E0. Let us prove that it
is the kernel of T ; namely, for any object H of G and any morphism
S ∈ HomG(H, E) such that T ◦ S = 0, there exists a morphism Q :
H → Ker T ∩ E with S = i ◦Q.

Since Ker T is the kernel of T in the category of k((z))-vector spaces,
there exists a k((z))-linear map Q : H0 → Ker T such that S = i ◦ Q
with i : Ker T ↪→ E0. It suffices to check that Q defines a morphism
of G; i.e., Q(H) ⊂ Ker T ∩ E and Q(H+

0 ) ⊂ Ker T ∩ E+
0 and this is an

easy computation.
For the second claim, note that Im T ∩F+

0 is a free k[[z]]-module such
that Im T = (Im T ∩F+

0 )⊗k[[z]] k((z)) and that, therefore, F+
0 /(Im T ∩

F+
0 ) is a free k[[z]]-module such that F0/ Im T = F+

0 /(Im T ∩F+
0 )⊗k[[z]]

k((z)). The rest of the proof can be carried out using ideas similar to
those of the first part. ¤

It is easy to prove the following

Lemma 3.19. Let E, F be objects of G and let T ∈ HomG(E, F ).
Then

(1) T−1(F )/ Ker T ∈ Gr(E0/ Ker T, T−1(F+
0 )/ Ker T ) together with

the morphism T : E0/ Ker T → F0 is the image of T . It is
isomorphic to the object given by Im T ∩ F ∈ Gr(Im T, Im T ∩
F+

0 ) and the morphism i : Im T ↪→ F0 (via the isomorphism
T : E0/ Ker T → Im T ).
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(2) T (E) ∈ Gr(Im T, T (E+
0 )) together with the morphism T : E0 →

Im T is the coimage of T . It is isomorphic to E/(Ker T ∩E) ∈
Gr(E0/ Ker T, E+

0 /(Ker T ∩ E+
0 )), with the natural morphism

p : E0 → E0/ Ker T .

One checks that the monomorphisms (resp. epimorphisms) of G
are those morphisms whose underlying linear maps are injective (resp.
surjective). Given an object F ∈ G a subobject of F is a diagram

EÄ _

²²

// FÄ _

²²
E0

Â Ä i // F0

,

where i the natural inclusion, which is a monomorphism.

Lemma 3.20. Let E, F be objects of G with E a subobject of F . Then
(F + E0)/E0 ' F/(F ∩ E0) is an object of G.

Proof. We have that (F + E0)/E0 = Coker i and it belongs to G by
Lemma 3.18. Moreover (F + E0)/E0 ∈ Gr(F0/E0). ¤

We give an abelian group structure for each set HomG(E, F ). Let
T, S ∈ HomG(E, F ). We define the addition of T with S as the diagram

EÄ _

²²

// FÄ _

²²
E0

T+S // F0

,

where T + S is the sum of T with S seen as underlying maps. It is
immediate to see that G is an additive category w.r.t. this addition
law.

Let us now construct the Harder-Narasimhan filtration.

Definition 3.21. Let E be a fixed object of G, we denote by G(E) the
full subcategory of G formed by the subobjects of E.

Lemma 3.22. Let us fix E an object of G and let F be an object of
G(E). Then, for any objet F̄ of G(E) such that F ↪→ F̄ ↪→ E and
r(F ) = r(F̄ ) it holds that µ(F ) ≤ µ(F̄ ), and the equality holds if and
only if F = F̄ . Among the objects F̄ as above, the object F0 ∩ E ∈
Gr(F0, F0 ∩ E+

0 ) has maximal slope.

Proof. We have F ∈ Gr(F0, F
+
0 ), F̄ ∈ Gr(F̄0, F̄

+
0 ), E ∈ Gr(E0, E

+
0 ). By

hypothesis, we have F0 ⊂ F̄0 ⊂ E0, F ⊂ F̄ ⊂ E and F+
0 ⊂ F̄+

0 ⊂ E+
0 .

Since the ranks are equal, we conclude that F0 = F̄0. We now apply
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the Snake Lemma to the following diagram

0 // F ⊕ F+
0

//

²²

F̄ ⊕ F̄+
0

//

²²

F̄
F
⊕ F̄+

0

F+
0

//

²²

0

0 // F0
// F0

// 0 // 0

obtaining the long exact sequence

0 → F ∩ F+
0 → F̄ ∩ F̄+

0 → F̄

F
⊕ F̄+

0

F+
0

→ F0

F + F+
0

→ F0

F̄ + F̄+
0

→ 0

From here we have that χ(F̄ ) = χ(F ) + dim
(

F̄
F
⊕ F̄+

0

F+
0

)
and, dividing

by r(F ) = r(F̄ ) = dim F0, we conclude the first part.
Moreover, the object F0 ∩ E ∈ Gr(F0, F0 ∩ E+

0 ) belongs to G(E),
because it is the image of i : F ↪→ E (Lemma 3.19) and it contains F
as subobject. Bearing in mind that if F̄ is an object of G(E) satisfying
the hypothesis then it holds that F̄0 = F0, F̄ ⊂ F0 ∩E, F̄+

0 ⊂ F0 ∩E+
0

and one concludes from the first part. ¤
If we have an object F of the category G(E), the cokernel of i : F ↪→

E is Coker i = (E/F0∩E, E0/F0, E
+
0 /F0∩E+

0 ), and its image is Im i =
(F0 ∩ E, F0, F0 ∩ E+

0 ). From now on, we shall say that the quotient
E/F exists if Coker i is (E/F, E0/F0, E

+
0 /F+

0 ). This happens precisely
when F0 ∩ E = F and F0 ∩ E+

0 = F+
0 , i.e., Im i = F . Lemma 3.22

proves that E/F exists if and only if F is maximal among those having
the same rank.

Lemma 3.23. Let F be an object of G(E) for which E/F exists , then

(1) r(E) = r(F ) + r(E/F ) and χ(E) = χ(F ) + χ(E/F ).
(2) If F is different from zero and from E

µ(F ) < µ(E) ⇔ µ(F ) < µ(E/F ) ⇔ µ(E) < µ(E/F )

µ(F ) > µ(E) ⇔ µ(F ) > µ(E/F ) ⇔ µ(E) > µ(E/F )

µ(F ) = µ(E) ⇔ µ(F ) = µ(E/F ) ⇔ µ(E) = µ(E/F )

Proof.

(1) The equality in the case of the ranks is trivial. For the charac-
teristics we apply its additivity property to the exact sequence
of complexes (written vertically)

0 // F ⊕ F+
0

//

²²

E ⊕ E+
0

²²

// E
F
⊕ E+

0

F+
0

²²

// 0

0 // F0
// E0

// E0

F0
' k((z))r(E

F
) // 0

(2) This is an easy computation.
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¤

Theorem 3.24. Let E be an object of G. Then E is (semi)stable for
the action of Sl(r, k[[z]]) if and only if any proper subobject F of E
satisfies µ(F ) (≤) < µ(E).

Proof. Note that the group Sl(r, k[[z]]) acts on Ob(G) and that it pre-
serves (semi)stability. Therefore, it suffices to prove the claim for the
case E+

0 = k[[z]]⊕r. Let E ∈ Gr(k((z))⊕r, k[[z]]⊕r) be semistable and
let F be a proper subobject. By Lemma 3.22 and the stability of E
(see Theorem 3.15), we have µ(F ) ≤ µ(F0 ∩ E) (≤) < µ(E).

Conversely, let us assume that µ(F ) (≤) < µ(E) holds for every
subobject F of E. Let H l ⊂ k((z))⊕r be an arbitrary k((z))-subspace.
If E∩H l /∈ Gr(H l, H l∩V+), then µ(E∩H l) = −∞ < µ(E). Moreover,
if E∩H l ∈ Gr(H l, H l∩V+), then it is a suboject of E and one concludes
by the definition of (semi)stability. ¤

Lemma 3.25. Let G ∈ G(E) be a subobject such that E/G exists.
Let F ∈ Gr(F0, F

+
0 ) be in G(E/G) and let π be the natural projection

E → E/G.
It holds that π−1(F0) ∩ E ∈ G(E). Further, if (E/G)/F exists, then

π−1(F0) ∩ E = π−1(F ) ∩ E and the quotient E/(π−1(F ) ∩ E) exists.

Proof. In order to prove that π−1(F0)∩E is an object of G(E) it suffices
to check that π−1(F0) ∩ E ∈ Gr(π−1(F0), π

−1(F0) ∩ E+
0 ) using expres-

sion (2.1). The subspace π−1(F0)∩E∩E+
0 is finite dimensional because

it is contained in E ∩ E+
0 and E ∈ Gr(E0, E

+
0 ).

It remains to check that π−1(F0)/(π
−1(F0)∩E +π−1(F0)∩E+

0 ) is of
finite dimension. Consider the surjective map induced by π

π−1(F0)

π−1(F0) ∩ E + π−1(F0) ∩ E+
0

→ F0

F0 ∩ E/G + F0 ∩ E+
0 /G+

0

The image has finite dimension because F0 ∩ E/G is an object of
G(E/G). The kernel, on the other hand, is

(π−1(F0) ∩ E) + (π−1(F0) ∩ E+
0 ) + G0

(π−1(F0) ∩ E) + (π−1(F0) ∩ E+
0 )

which is a quotient of G0/G+G+
0 , because G = G0∩E ⊂ (π−1(F0)∩E)

and G+
0 = G0 ∩ E+

0 ⊂ (π−1(F+
0 ) ∩ E+

0 ). We conclude that the kernel
and image have finite dimension, and hence π−1(F0)/(π

−1(F0) ∩ E +
π−1(F0) ∩ E+

0 ) has finite dimension too.
Let us prove the second claim. Observe that if (E/G)/F exists, then

F = F0 ∩E/G. Furthermore, π−1(F )∩E = π−1(F0)∩E is of the form
H0 ∩ E and the quotient E/(π−1(F ) ∩ E) exists. ¤

Definition 3.26. For E 6= 0, we denote by µm(E) the maximum
among the slopes of the non-zero objects of G(E).
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By G(µm(E)) we denote the set of objects, F , of G(E) such that
F = 0 or µ(F ) = µm(E). For these objects, since they are of maximum
slope, the quotient E/F exists.

Lemma 3.27. Let E be an object of G with E 6= 0. The following
properties hold

(1) µm(E) is a rational number.
(2) Let G be an object of G(µm(E)) with r(G) < r(E) maximal.

Then

µm(E/G) � µm(E) (3.8)

(3) There is a unique maximal object in G(µm(E)) with respect to
the inclusions, G(E).

(4) E/G(E) is an object of G.
(5) G(E) is semistable.
(6) Let F be a non-zero semistable object of G(E) such that the

quotient E/F exists. We then have

F = G(E) ⇔ µm(E/F ) < µm(E)

(7) Let F be a semistable object of G. Then

HomG(F,E) = 0 if µ(F ) > µm(E)

HomG(F,E) = HomG(F, G(E)) if µ(F ) = µm(E).

Proof. (1) Note that E has proper subobjects and therefore the set
of rational numbers

{µ(F ) =
χ(F )
r(F )

s.t. F ∈ G(E) and F 6= (0)}

is upper bounded. Thus, it does have a supremum. This
supremum is achieved because the set of ranks {r(F )}F∈G(E) is
finite.

(2) Let F̄ be an arbitrary non-zero object of G(µm(E/G)). Let
π : E0 → E0/G0 be the natural projection. Lemma 3.22 states
that F̄ = F̄0 ∩ E/G and Lemma 3.25 that F := π−1(F̄ ) ∩
E = π−1(F̄0) ∩ E is an object of G(E). Since G has maximal
slope, it follows that µ(F ) ≤ µ(G) = µm(E). If the equality
holds, we would have that F is an object of G(µm(E)) with
r(F ) = dimk((z)) F̄0 + dimk((z)) G0 > r(G). However, this is not
possible because r(G) is maximal in G(µm(E)). Accordingly,
we conclude that µ(F ) < µ(G). Applying Lemma 3.23 part 2,
to F and G (observe that the quotient exists and F/G = F̄ ), we
conclude that µ(F̄ ) < µ(G) for all F̄ , hence µm(E/G) < µm(E).

(3) If r(E) = 1, then Lemma 3.22 implies that E is itself the max-
imum. Let us now assume that r(E) > 1. Let G be an object
in G(µm(E)) with r(G) maximal. Since it has maximal slope,
we have that G = G0∩E, G+

0 = G0∩E+
0 and that the quotient
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E/G exists. If r(G) = r(E), then E0 = G0, G = E, G+
0 = E+

0

from Lemma 3.22. Thus, the maximum is E.
It remains to study the situation 1 ≤ r(G) < r(E). If this is the
case, then E/G exists and does not vanish. Let us now prove
that G is the maximum. Let F be an object of G(µm(E)). By
Lemma 3.19, we have that π(F ) is an object of G(E/G). If
π(F ) does not vanish, the inequality of part 2. yields

µ(F ) = µm(E) > µm(E/G) ≥ µ(π(F )) = µ(F/Kerπ ∩ F )

The space Ker π ∩ F exists as object in G(F ) because is the

kernel of the morphism F
π→ E/G. Then, Lemma 3.23 part

2. implies that µ(Ker π ∩ F ) > µ(F ) = µm(E), which is not
possible since Ker π ∩ F is also a subobject of E. We conclude
that π(F ) = (0) and hence F ⊂ G.

(4) We have proved that G has maximum slope, and hence the
quotient E/G exists.

(5) Let F be a subobject of G(E). Since F is also a subobject of
E, one has that µ(G(E)) = µm(E) ≥ µ(H), and the conclusion
follows from Theorem 3.24.

(6) If E 6= 0, formula (3.8) tells us that µm(E/F ) < µm(E) for
F = G(E). Conversely, let F be a non-zero semistable object
of G(E) such that µm(E/F ) < µm(E). Let us consider the map
G(E) ↪→ E → E/F and observe that µ(G(E)) = µm(E) >
µm(E/F ). Thus, with arguments analogous to those of part
3, we conclude that G(E) ⊂ F . Since F is semistable and
G(E) is a subobject, we conclude that µ(G(E)) ≤ µ(F ). The
maximality of µ(G(E)) implies that µ(G(E)) = µ(F ) and F
thus belongs to G(µm(E)). The maximality of the rank of G(E)
and Lemma 3.22 imply that G(E) = F .

(7) Let F be a semistable object of G and let T : F → E be a non-
zero morphism. Since F is semistable, it holds that µ(F ) ≥
µ(Ker T ∩ F ) and, by Lemma 3.23 part 2., one has that

µ(F ) ≤ µ(F/ KerT ∩ F ) = µ(T (F ))

Furthermore, µ(T (F )) ≤ µm(E) since T (F ) is a subobject of
E. And the first equality follows. In order to prove the second
claim, one uses arguments similar to those of part 3.

¤

Definition 3.28. Let E be an object of G. A Harder-Narasimhan
filtration of E is an ascending chain of subobjects

E0 := 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E

such that Ei ∈ G(E), the quotients Ei/Ei−1 are semistable, and the se-
quence of slopes, {µ(El/El−1), µ(El−1/El−2), . . . , µ(E1/E0)}, is strictly
decreasing.
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Theorem 3.29. Every object, E, of G has a unique Harder-Narasimhan
filtration.

Proof. Given E, we consider the filtration

E0 := 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E

defined recursively in the following way

• E1 := G(E)
• E2 := π−1

1 (G(E/E1)) ∩ E
• Ei := π−1

i−1(G(E/Ei−1)) ∩ E

where πi : E → E/Ei is the canonical projection. These Ei are objects
of G(E) for which the quotient E/Ei exists, by Lema 3.25. It is easy
to see that Ei/Ei−1 = G(E/Ei−1), and hence Ei/Ei−1 is semistable by
Lemma 3.27 part 5.

Lemma 3.27, part 6. yields the following inequality

µm((E/Ei−1)/(Ei/Ei−1)) < µm(E/Ei−1)

which is tantamount to µm(E/Ei) < µm(E/Ei−1). Therefore

µ(Ei+1/Ei) ≤ µm(E/Ei) < µm(E/Ei−1) = µ(G(E/Ei−1)) = µ(Ei/Ei−1).

We conclude that the previous filtration is a Harder-Narasimhan fil-
tration.

For proof of the uniqueness, we proceed by induction on the rank of
E. Let us assume that r(E) = 1. It is then easy to see that E admits
a unique Harder-Narasimhan filtration; namely, 0 ⊂ G(E) = E.

Let us address the general case. Let E be of rank r, i.e. r(E) = r.
Let 0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ El = E be an arbitrary Harder-
Narasimhan filtration. We claim that E1 = G(E). One easily checks
that this filtration induces a Harder-Narasimhan filtration for E/E1;
that is,

0 ⊂ E2/E1 ⊂ . . . ⊂ El/E1 = E/E1

Since r(E/E1) = r(E) − r(E1) < r(E), it follows from the induction
hypothesis that E2/E1 = G(E/E1). Hence

µ(E2/E1) = µ(G(E/E1)) = µm(E/E1)

and the condition on the sequence of slopes gives rise to

µ(E2/E1) < µ(E1/(0)) = µ(E1) ≤ µm(E)

Therefore, µm(E/E1) < µm(E) and, by applying Lemma 3.27, part 6,
we conclude that E1 = G(E). As was claimed.

Now, the induction hypothesis implies the uniqueness of the Harder-
Narasimhan filtration of E/G(E), and hence the uniqueness of the
filtration of E. ¤
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3.4. Jordan-Hölder filtration. We shall prove the existence of a
Jordan-Hölder filtration for the semistable points Gss

µ for which the
graded object does not depend on the filtration (Theorem 3.41).

Let Gss
µ (Gs

µ) be the full subcategory of G whose objects are E ∈ G
such that E is (semi)stable and E is zero or µ(E) = χ(E)

r(E)
= µ.

Lemma 3.30. Let E, F be objects of Gss
µ where F is a subobject of E.

Then, the quotient E/F exists and belongs to Gss
µ .

Proof. Note that Lemma 3.22 states that µ = µ(F ) ≤ µ(F0 ∩ E) and
from the semistability of E it follows that µ(F0 ∩ E) ≤ µ(E) = µ.
Accordingly, µ(F ) = µ(F0 ∩ E) and, by Lemma 3.22, F = F0 ∩ E and
the quotient E/F exists.

The slope of E/F is now computed from Lemma 3.23, part 2.
Finally, let us prove that E/F is semistable. Let H̄ be a proper

subobject of E/F . Let us consider the projection π : E → E/F .
Accordingly, Lemma 3.25 claims that π−1(H̄0)∩E is a subobject of E
and, due to the semistability of E, it holds that µ(π−1(H̄0)∩E) ≤ µ(E).
From Lemma 3.23, part 2, we deduce that

µ(E/F ) = µ(F ) ≥ µ(
π−1(H̄0) ∩ E

F
) = µ(H̄0 ∩ E/F ) ≥ µ(H̄).

E/F is therefore semistable. ¤

Lemma 3.31. Let F be a proper subobject of E such that E/F exists.
Let us assume that two of the k-spaces E, F and E/F have the same
slope.

Then, all three have the same slope. Moreover, E is semistable if
and only if F and E/F are semistable.

Proof. The first part is obtained from Lemma 3.23, part 2.
Let us see the second one. Let E be semistable. Since µ(F ) = µ(E),

it is trivial that F is also semistable. The previous Lemma shows that
E/F is semistable.

Conversely, let F and E/F be semistable with the same slope µ. Let
G be a proper subobject of E. Let us consider the exact sequence

0 → F ∩G0 → E ∩G0 → (E ∩G0)/(F ∩G0) → 0

One checks that the three terms are objects of G; µ(F ∩G0) ≤ µ(F ) =
µ because of the semistability of F ; and, µ((E ∩ G0)/(F ∩ G0)) ≤
µ(E/F ) = µ because of the semistability of E/F . Let us assume that
µ < µ(G). It then holds that

µ(F ∩G0) ≤ µ < µ(G) ≤ µ(G0 ∩ E)

This is equivalent, by Lemma 3.23, part 2, to µ((E∩G0)/(F∩G0)) > µ,
which contradicts the above-mentioned inequality. Thus, µ ≥ µ(G) and
E is semistable. ¤
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Corolary 3.32. Let E = F ⊕G, where F and G are two proper subob-
jects of E. Then, E is semistable if and only if F and G are semistable
and µ(F ) = µ(G). In particular, a stable element of G is indecompos-
able.

Lemma 3.33. Let E be a semistable object of G and G be the maximum
object of G(µm(E)). Then, E/G is stable.

Proof. Let π : E → E/G be the natural projection. If E/G were
semistable but non-stable, there would be a maximal subobject F̄ ∈
G(µm(E/G)). Consider F := π−1(F̄ ) ∩ E and observe that G ( F .
Since G is maximal, it must hold that µ(F ) < µ(G) = µ. Now, Lemma
3.23 part 2. implies that µ(E/G) = µ(G) > µ(F/G) = µ(F̄ ), which
contradicts the construction of F̄ . We conclude that E/G is stable. ¤

Lemma 3.34. Let E, F be objects of Gss
µ and letT : E → F be a

morphism. Then, Ker T∩E, Im T∩F , F/(Im T∩F ) and E/(Ker T∩E)
are objects of Gss

µ .

Proof. We already know by Lemmas 3.18 and 3.19 that all four objects
belong to G. The rest is straightforward. ¤

Theorem 3.35. The category Gss
µ is a stable category by direct factors

and by extensions. Moreover, it is an abelian category.

Proof. The first statement is obtained by Lemma 3.31, Corollary 3.32
and 3.34. To prove that it is abelian, it is enough to prove that given
T ∈ HomG(E, F ), we have

(1) if T is a monomorphism, then Ker(Coker(T )) = T ;
(2) if T is a epimorphism, then Coker(Ker(T )) = T .

Let us prove only the first case, the second one being analogous. Let
T ∈ HomG(E, F ) be a monomorphism. Then the underlying linear
map E0 → F0 is injective. Moreover, we have seen that F/ Im T ∩F ∈
Gr(F0/ Im T ) is the cokernel of T . It now remains to show that the
kernel of

FÄ _

²²

// // F/ Im T ∩ F
Ä _

²²
F0

π // // F0/ Im T

(where π is the quotient morphism) coincides with T . The kernel is
given by

Ker π ∩ F ∈ Gr(Ker π, Ker π ∩ F+
0 )

Since the category of k((z))-vector spaces is abelian, Ker(Coker T ) = T ,
i.e., Ker π = Im T and, hence

Ker π ∩ F = Im T ∩ F ∈ Gr(Im T )
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It suffices to prove that this object is equal to E; i.e., that the mor-
phisms

EÄ _

²²

Â Ä // FÄ _

²²
E0

Â Ä T // F0

and Im T ∩ FÄ _

²²

Â Ä // FÄ _

²²
Im T

Â Ä i // F0

define the same subobject of F ; i.e., that there is an isomorphism on
the category between the objects E ↪→ E0 and Im T ∩ F ↪→ Im T . We
leave the details to the reader. ¤
Corolary 3.36. If a morphism is a monomorphism and an epimor-
phism, then it is an isomorphism.

Lemma 3.37. The category Gss
µ is artinian and is noetherian.

Proof. Let us prove that it is artinian the other case being similar. Let
E be an object of Gss

µ and let

· · · ⊂ En ⊂ · · · ⊂ E2 ⊂ E1

be a decreasing chain of objects of Gss
µ where En ∈ Gr(En

0 ) are subob-
jects of E ∈ Gr(E0). Let r = dimk((z)) E0 and rn = dimk((z)) En

0 where
r ≥ rn ≥ rn+1 ≥ 0. Therefore, there is a l such that rn = rn+1 for
every n ≥ l. Thus En

0 = El
0 for every n ≥ l and, since En = E ∩ En

0 =
En+1 ∩ En

0 , it follows that En = El for every n ≥ l. ¤
Definition 3.38. An object F of Gss

µ is said to be simple if every
monomorphism α : E → F of Gss

µ is zero or is an isomorphism.

Corolary 3.39. An object of Gss
µ is simple if and only if it is stable.

Definition 3.40. Let E be a semistable object of G of slope µ. A
Jordan-Hölder filtration of E is a descending chain

S ≡ E0 := 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E

where Ei are objects of Gss
µ such that, for i ∈ {1, · · · , l}, the quotients

Ei/Ei−1 exist in the category Gs
µ.

Given a Jordan-Hölder filtration S, the graded object of S is defined
as the following object of G

grS := E1 ⊕ E2/E1 ⊕ · · · ⊕ El/El−1

Theorem 3.41. The graded object does not depend on the filtration,
up to isomorphism. It will be denoted by grE. Every object of Gss

µ

admits a Jordan-Hölder filtration.

Proof. Since our category is abelian, the first claim follows from The-
orem 2.1 of [Se1].

Let us prove the existence of the filtration. Let us assume that
there exists an object E that does not admit a Jordan-Hölder filtration.
Then, since 0 ↪→ E cannot be such a filtration, it follows that E cannot
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be simple. Accordingly, it admits a non-trivial subobject E1. The chain
of subobjects of E, 0 ⊂ E1 ⊂ E, cannot be a Jordan-Hölder filtration
and, hence, either E1 is not simple or E/E1 is not simple. In the
first case, we would have a non-trivial subobject and a new filtration
0 ⊂ E2 ⊂ E1 ⊂ E. In the second case, if we consider a proper
subobject Ē ⊂ E/E1, we have a filtration 0 ⊂ E1 ⊂ E2 ⊂ E, where
E2 is the kernel of E → (E/E1)/Ē. None of these two filtrations can
be of the Jordan-Holder type.

Since this procedure can be iterated indefinitely, we conclude that
E admits either an infinite ascending chain of subobjects or an infinite
descending chain of subobjects of E. However, this cannot happen,
because the category is both Noetherian and Artinian. ¤

4. Applications to the moduli of vector bundles

This final section is devoted to offering a geometric application of
the previous sections. Indeed, we will show that our results are deeply
related to the notion of (semi)stability and the construction of filtra-
tions of vector bundles on algebraic curves. For this goal, the Krichever
map will be the bridge between both constructions. We refer the reader
to [AM, Mu] and the references therein for the basic facts about the
Krichever map and the moduli scheme of vector bundles (endowed with
a formal trivialization at a smooth point).

We assume that the base field, k, is algebraically closed of charac-
teristic 0. Henceforth, a triple (C, p, tp) consisting of a irreducible non-
singular projective curve over k, a smooth point and an isomorphism
of k-algebras Ôp

∼→ k[[z]] will be fixed.
Following [AM], we know that there is a k-scheme, M∞(r), whose

set of rational points is given by
{

pairs (F , δ) s.t. F is a rank r vector bundle

on C and δ is an isomorphism F̂p
∼→ Ô⊕r

p

}
/ ∼

where we write (F , δ) ∼ (F ′, δ′) if and only if there exists an isomor-

phism of sheaves, f : F ∼→ F ′, compatible with δ and δ′.
The Krichever map is the scheme homomorphism given by

K : M∞(r) −→ Gr(V, V +)

(F , δ) 7−→ (tp ◦ δ)
(
H0(C \ {p},F)

)

with V := k((z))⊕r and V + := k[[z]]⊕r. Since this map is a closed
immersion, the schemeM∞(r) can be thought of as a closed subscheme
of Gr(V ). We also denote by K the map induced by the Krichever map
from the set of rational points of

⋃
r≥1M∞(r) to the set of objects of

the category G.
If F has degree d, the image K(F , δ) has characteristic d + r(1 −

g), where g is the genus of C. From now on, all points of M∞(r)



28 A. C. CASIMIRO, J. M. MUÑOZ AND F. J. PLAZA

and Gr(V, V +) are assumed to be rational. Thus, the explicit relation
between the (semi)stability notions is given by the following

Theorem 4.1. Let (F , δ) ∈ M∞(r) and let F be its image by the
Krichever map. Then, F is (semi)stable if and only if F is (semi)stable
for the action of Sl(r, k[[z]]).

The proof is a straightforward consequence of the results of sub-
section 3.2 and of the following generalization of Proposition 1 of [O]
(which deals with the rank 2 case)

Proposition 4.2. Let (F , δ) be a point in M∞(r) and let l be an
integer 0 < l < r. Let F = K(F , δ) ∈ Gr(V ).

There is a 1-1 correspondence between the set of rank l coherent
subsheaves of F such that the quotient is a coherent torsion-free sheaf
and the set of the l-dimensional k((z))-vector subspaces G0 of V such
that G0 ∩ F 6= 0 and the dimension of G0

G0∩F+G0∩V+
over k is finite.

Proof. The proof is a straightforward generalization of Proposition 1
of [O]. Let us simply sketch how subsheaves and subspaces are related.
Given a subsheaf G as in the statement, the corresponding subspace is
the image of

H0(C \ {p},G)⊗̂k[[z]]k((z)) ⊆ H0(C \ {p},F)⊗̂k[[z]]k((z)) ' V

Conversely, let G0 be a subspace in the above conditions. Then, the
properties of the Krichever map imply that G0 ∩F ∈ Gr(G0, G0 ∩ V +)
and, since G0 ∩ F ⊆ F , it defines a subbundle G of F . Moreover, the
composition Ĝp ⊆ F̂p

∼→ V + factorizes by G0 ∩ V + or, in other words,
the formal trivialization δ does induce a formal trivialization, making
the following diagram commutative

Ĝp
Â Ä //

o
²²

F̂p

o δ²²
G0 ∩ V+

Â Ä // V+

(4.1)

¤
Let us now focus on the relations between Harder-Narasimhan and

Jordan-Hölder filtrations. The case of vector bundles on algebraic
curves have been exhaustively studied in the literature (see [B, HL,
Os, Se2] and the references therein).

Lemma 4.3. Let (F , δ) ∈M∞(r), F be K(F , δ) ∈ Gr(V ) and

F 0 = 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ F l−1 ⊂ F l = F

be the Harder-Narasimhan filtration of F .
There therefore exist (F i, δi) vector bundles endowed with formal

trivialization such that F i = K(F i, δi). Moreover, there is a canon-
ical formal trivialization δ̄i of F i+1/F i such that the sequence

0 → F i → F i+1 → K(F i+1/F i, δ̄i) → 0 (4.2)
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is exact.

Proof. From Lemma 3.22, we know that F i = F ∩ F i
0 and, by Propo-

sition 4.2, there are subbundles, F i, carrying formal trivializations,
δi, such that K(F i, δi) = F i. Then, δ̄i is the map induced between
the cokernels of the monomorphisms of diagram (4.1) and the claim
follows. ¤

Theorem 4.4. Let (F , δ) ∈M∞(r), F be K(F , δ) ∈ Gr(V ).
Thus, the Krichever map transforms the Harder-Narasimhan filtra-

tion of F into the Harder-Narasimhan filtration of F and conversely.

Proof. Let

F 0 = 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ F l−1 ⊂ F l = F

be the Harder-Narasimhan filtration of F . The previous Lemma shows
that there is a corresponding filtration of F . We claim that it is the
Harder-Narasimhan filtration of F . By (4.2), one has that

K(F i/F i−1, δ̄i) ' K(F i, δi)/K(F i−1, δi−1) = F i/F i−1

Now, the semistability of F i/F i−1 follows from the fact that F i/F i−1

is semistable (Theorem 4.1). Moreover, the quotients F i/F i−1 and
F i/F i−1 have the same characteristic and rank, thus

µ(F i/F i−1) = µ(F i/F i−1)− (g − 1)

Accordingly the sequence of slopes of the quotients {F i/F i−1} is strictly
decreasing.

The converse is proved similarly. ¤

Let us complete the study of the Jordan-Hölder filtration.

Theorem 4.5. Let (F , δ) ∈M∞(r), F be K((F , δ)) ∈ Gr(V ).
Then, the Krichever map transforms the Jordan-Hölder filtration of

F into the Jordan-Hölder filtration of F , and conversely.
Moreover, the graded object of F is transformed into the graded object

of K(F , δ).

Proof. The first part is deduced with similar arguments as those need
for the previous Theorem with the help of the results of subsection 3.4.
To prove the second part, it suffices to note that the exactness of the
sequence (4.2) implies that

gr(F ) = ⊕F i/F i−1 = K(F i/F i−1, δ̄i−1)

¤
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