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Abstract. A stochastic variational principle for the (two dimensional) Navier-
Stokes equation is established. The velocity field can be considered as gener-
alized velocity of a diffusion process with values on the volume preserving
diffeomorphism group of the underlying manifold. Navier-Stokes equation is
reinterpreted as a perturbed equation of geodesics for the L2 norm. The
method described here should hold as well in higher dimensions.

1. Introduction

V. Arnold (cf. [A] and [A-K]) discovered a beautiful relation between the Euler
equation in hydrodynamics and the geometry of diffeomorphisms in L2(M) pre-
serving the volume measure of the underlying manifold M . This equation coincides
with the geodesic equation for the L2 metric. In particular geometric properties
like curvature reflect the dynamics of the Eulerian fluid. This discovery led in par-
ticular to new ideas in the study of geometry and topology of infinite dimensional
manifolds.

On the other hand it is natural to think of Navier-Stokes equation as a “perturba-
tion” of the Euler one, corresponding to a similar description, but of an underlying
stochastic nature, the stochasticity being encoded in the Laplacian. This work
explores this direction. We formulate solutions of Navier-Stokes as critical points
of some regularized functional and show how they can be regarded as stochasti-
cally perturbed geodesics of Arnold’s model. Our idea finds its roots in the works
[N-Y-Z], [Y]. Other different stochastic variational formulations for Navier-Stokes
can be found, for example in [I-F] or, more recently, in [Go] (c.f. also [C]). One
could also benefit from a comparaison with the approach of [G].

Our approach relies upon the construction of diffusions on the (infinite dimen-
sional) group of measure preserving homeomorphisms in the torus, a line of work
which has recently been developed by [M], [F1] and others.

When M is a compact n-dimensional Riemannian manifold without boundary,
we denote by (·, ·) the Riemannian metric and by μ the associated volume element.
Let Gs, s ≥ 0 be the infinite dimensional group of homeomorphisms on M which
belong to Hs (the Sobolev space of order s), namely g ∈ Gs if g : M → M is a
bijection and g, g−1 ∈ Hs.

For s > n
2 + 1 the group Gs is a C∞ infinite dimensional Hilbert manifold (see

[S]). For each g ∈ Gs, Gs is locally diffeomorphic to the Hilbert space

Hs
g(TM) = {X ∈ Hs(M, TM) : π ◦ X = g}

where π : TM → M is the canonical projection.
For g ∈ Gs denote by Lg and Rg respectively the right and left transformations

on the group, Lg : Gs → Gs (h → g ◦ h), Rg : Gs → Gs (h → h ◦ g).
The adjoint transformation Ad(g) is usually defined as follows:

Ad(g) : Gs → Gs

h → LgRg−1(h)
(1.1)
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For an arbitrary Lie group G, the Lie algebra G is the space of left invariant
vector fields on G, which can be identified with the tangent space at the identity.
In the case of the group Gs, the Lie algebra Gs can be identified with the space of
vector fields on M with Sobolev s-regularity.

We consider the volume preserving homeomorphism subgroup

Gs
V = {g ∈ Gs : g∗μ = μ}

For g ∈ Gs
V

Hs
g (TM) = {X ∈ Hs(M, TM) : π ◦ X = g and ∇ · X = 0}

The Lie algebra Gs
V of the subgroup Gs

V corresponds to the space of divergence free
vector fields on M which are in Hs.

We shall deal with the L2 inner product defined on the Lie algebra Gs
V by

(Xg, Yg)L2 =
∫

M

(Xg(x), Yg(x))g(x)dμ(x) (1.2)

Since this inner product is right invariant it defines a metric on each tangent space
Tg(Gs

V ). Therefore, Gs
V remains endowed with a Riemannian structure.

Arnold ([A]) has given a variational formulation for the Hydrodynamic Euler
equation. More precisely, the motion of an ideal fluid (i.e., non viscous and in-
compressible) on M corresponds to a flow on G0

V which is critical for the energy
functional

S[g] =
1
2

∫ T

0

‖ġ(t)‖2
L2dt (1.3)

Its velocity satisfies Euler equation
∂u

∂t
+ u · ∇u = ∇p, ∇ · u = 0.

In this work we consider the Navier-Stokes equation on the two dimensional torus
T

2 during the time interval [0, T ],

∂u

∂t
+ u · ∇u − νΔu = ∇p

∇ · u = 0
(1.4)

This equation describes de motion of an incompressible fluid on T
2 with viscosity

ν > 0. The vector field u(t, ·) represents the velocity of the fluid and the function
p the pressure.

Since the incompressibility condition ∇·u = 0 is intrinsically associated with the
space Gs

V , and the Brownian motion is closely related with the Laplacian operator,
a stochastic approach of the above framework using Gs

V -valued processes seems to
be natural when the viscosity is strictly positive.

We introduce a concept of solution of (the deterministic) Navier-Stokes equation
as a the mean velocity of some stochastic flow.

First we define a generalization of the energy functional (1.3) for stochastic flows
with values in G0

V .
Let (Ω,Ft, P ) be a probability space endowed with an increasing filtration Ft.

Given a stochastic flow gω(t) with values in G0
V and adapted to the filtration, we

generalize the above energy functional by considering:

S[g] =
1
2
E

∫ T

0

‖ lim
Δt→0

1
Δt

EFt
(
gω(t + Δt) − gω(t)

)‖2
L2dt (1.5)

where the increment gω(t + Δt) − gω(t) is understood as the difference in the re-
spective local coordinates and EFt is the conditional expectation with respect to
the filtration. Notice that formally, when ν → 0, the functional (1.5) reduces to
(1.3).
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Referring to the variational calculus on path spaces of a Lie group, in the fi-
nite dimensional case, Üstünel [U], considers right as well as left derivatives. Such
derivatives are defined by the multiplication on the right or on the left by a deter-
ministic path of bounded variation. In that case the left product corresponds, at
the level of paths, to shifts by an element in the Cameron-Martin subspace of the
Wiener space. On the other hand, the right product corresponds to a rotation of
the path in the Wiener space. Starting with a metric on the Lie algebra which is
invariant for the ad transformation (the differential of Ad(g) at the identity), both
left and right variations are well defined from the measure theoretic point of view
and Malliavin’s calculus of variations can be used. Unfortunately, in our case, as
refered in [A-K], an invariant metric for the ad(g) transformation does not exist in
G0

V . We shall deal with G0
V -valued stochastic flows and for each g ∈ G0

V a suitable
“tangent space” of variations will be defined.

Let g ∈ G0
V and f be a C2 function defined on M . The action of g on f is:(

g∗f
)
(ξ) = f(g(ξ))

In this work we shall consider M = T
2, the two dimensional torus that we identify

with [0, 2π]× [0, 2π], and denote by G0
V the space of volume preserving maps from

T
2 to T

2. Our construction is based on the fundamental fact that the generator
of our (infinite dimensional) process actually coincides with the finite-dimensional
Laplacian when computed on functions of the torus (Theorem 2.2). It is not clear
that this property can be generalized in three dimensions; nevertheless there is no
conceptual reason preventing a priori the development of our construction in any
dimension.

Let Ak, Bk, k ∈ Z
2 be divergence free vector fields defined in local coordinates

by
Ak = A1

k∂1 + A2
k∂2 with A1

k = k2 cos(k · θ), A2
k = −k1 cos(k · θ)

and
Bk = B1

k∂1 + B2
k∂2 with B1

k = k2 sin(k · θ), B2
k = −k1 sin(k · θ)

where θ = (θ1, θ2) ∈ T 2 and k · θ = k1θ1 + k2θ2. Then
{Ak

|k| ,
Bk

|k| : k �= 0
}

is a

complete system of the space of divergence free vector fields u in L2(T2) such that∫
T2 u(θ)dθ = 0.

2. Brownian motion on the group of homeomorphisms

Let xk(t) = (x1
k(t), x2

k(t)), t ≥ 0, be a sequence of R
2-valued independent stan-

dard Brownian motions defined on the probability space (Ω,Ft, P ).
We define a Brownian motion on the space of divergence free vector fields on the

two dimensional torus by

dx(t) =
∑
k �=0

1
|k|β

(
Akdx1

k(t) + Bkdx2
k(t)

)
(2.1)

with β ≥ 3. Using standard probabilistic techniques, this series can be shown to
converge uniformly in [0, T ] × T

2 a.e. and the stochastic process x(t) belongs to
Hα, for 0 < α < β − 2.

Let us consider the Stratonovich stochastic differential equation with respect to
the filtration Ft

{
dg(t) =

(◦dx(t)
)
(g(t))

g(0) = e,
(2.2)
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where e denotes the identity of the group, or, more explicitly

dg1(t) =
∑
k �=0

1
|k|β

[
A1

k(g(t)) ◦ dx1
k(t) + B1

k(g(t)) ◦ dx2
k(t)

]

dg2(t) =
∑
k �=0

1
|k|β

[
A2

k(g(t)) ◦ dx1
k(t) + B2

k(g(t)) ◦ dx2
k(t)

] (2.3)

Lemma 2.1. Equation (2.2) can be written in the Itô form as follows

dg1(t) =
∑
k �=0

1
|k|β

[
A1

k(g(t)) · dx1
k(t) + B1

k(g(t)) · dx2
k(t)

]

dg2(t) =
∑
k �=0

1
|k|β

[
A2

k(g(t)) · dx1
k(t) + B2

k(g(t)) · dx2
k(t)

] (2.4)

i. e., the Itô contraction term vanishes.

Proof. We have:

d
(
A1

k(g(t)
)

=
(
∂1A

1
k

)
(g(t)) ◦ dg1(t) +

(
∂2A

1
k

)
(g(t)) ◦ dg2(t)

=
∑
m �=0

1
|m|β

(
∂1A

1
k

)
(g(t))

[
A1

m(g(t)) ◦ dx1
m(t) + B1

m(g(t)) ◦ dx2
m(t)

]

+
∑
m �=0

1
|m|β

(
∂2A

1
k

)
(g(t))

[
A2

m(g(t)) ◦ dx1
m(t) + B2

m(g(t)) ◦ dx2
m(t)

]

Since dx1
m · dx1

k = δmkdt and dx2
m · dx1

k = 0 we obtain

d
(
A1

k(g(t)
) · dx1

k(t) =
1

|k|β
[(

∂1A
1
k

)
(g(t))A1

k(g(t))dt +
(
∂2A

1
k

)
(g(t))A2

k(g(t))dt
]

=
1

|k|β
[−(k2)2k1 sin(k · θ) cos(k · θ)dt

+ (k2)2k1 sin(k · θ) cos(k · θ)dt
]

= 0

All other Itô contractions can be shown to be zero in an analogous way.
�

¿From the classical theory of stochastic flows (cf. [K]), for β > 3, the solution
g(t) of the equation (2.2) is well defined as a stochastic flow of diffeomorphisms.

For β = 3, we can follow [F1] to prove that the quadratic variation of the
stochastic process x(t)(θ) − x(t)(θ′) can be estimated by C|θ − θ′|2 log 1

|θ−θ′| for
|θ − θ′| small enough. This estimate enables to prove the existence of the process
g(t).

More precisely, we have:

Theorem 2.1. For β = 3, the solution g(t) of the stochastic differential equation
(2.2) exists and is a continuous process with values in the space of homeomorphisms
on T

2 preserving the volume measure.

Proof. We follow the methodology of [F1]. We fix θ and denote by gn
i (t)(θ) the

solution of the following finite-dimensional s.d.e.:

dγn
1 (t) =

∑
k �=0

|k|≤2n

1
|k|3

[
A1

k(γn(t)) · dx1
k(t) + B1

k(γn(t)) · dx2
k(t)

]

dγn
2 (t) =

∑
k �=0

|k|≤2n

1
|k|3

[
A2

k(γn(t)) · dx1
k(t) + B2

k(γn(t)) · dx2
k(t)

] (2.5)
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with initial condition (γn
1 (0), γn

2 (0)) = (θ1, θ2). Denote ηi(t) = γn
i (t)−γn+1

i (t)

25 ; we
have

dηi(t) · dηi(t) =
1

210

{ ∑
k �=0

|k|≤2n

k2
j

|k|6
[(

cos(k · γn+1(t)) − cos(k · γn(t))
)2

+
(
sin(k · γn+1(t)) − sin(k · γn(t))

)2]

+
∑
k �=0

2n+1≤|k|≤2n+1

k2
j

|k|6
[
cos2(k · γn+1(t)) + sin2(k · γn+1(t))

]}

≤ 1
210

{ ∑
k �=0

|k|≤2n

k2
j

|k|6 4 sin2

(
k · γn+1(t) − γn(t)

2

)

+
∑
k∈Z

2

2n+1≤|k|≤2n+1

k2
j

|k|6
}

Now
∑
k �=0

|k|≤2n

k2
j

|k|6 sin2

(
k · γn+1(t) − γn(t)

2

)
≤ C|η(t)|2 log

1
|η(t)|

and
∑
k �=0

2n+1≤|k|≤2n+1

k2
j

|k|6 ≤
∑
k �=0

2n+1≤|k|≤2n+1

1
|k|4 ≤ C2−n

where C =
∑

|k|≥1
1

|k|3 .
By Itô’s formula, for p ≥ 1,

dη2p
i (t) = 2pη2p−1

i (t) · dηi(t) + p(2p − 1)η2p−2
i (t)dηi(t) · dηi(t)

we have

E
Ft

(
η2p

i (t + ε) − η2p
i (t)

) ≤ K0p

∫ t+ε

t

E
Ft

(
|η(s)|2p log

1
|η(s)|2p

ds

)
+ Kp2−nε

Defining the function ϕ(t) = E(η2p
1 (t) + η2p

2 (t)), we obtain

ϕ′(t) ≤ K0p · E
(
|η(s)|2p log

1
|η(s)|2p

)
+ Kp2−n

therefore
ϕ(t) ≤ Cp2−nδp(t)

where δp(t) is a constant verifying limp→+∞ δp(t) = 0 and limt→0+ δp(t) = 1.
By the martingale maximal inequality,

E

(
sup

0≤t≤T
|gn(t)(θ) − gn+1(t)(θ)|2p

)
≤ Cp2−nδp(T )

Using Borel-Cantelli we deduce that

g(t)(θ) = lim
n

gn(t)(θ) exists uniformly in t ∈ [0, T ]
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Following [F1], one can show that g(t) satisfies equation (2.4) and that it is its
unique solution.

The following estimate holds

E

(
sup

0≤t≤T
|g(t)(θ) − g(t)(θ′)|2p

)
≤ Cp|θ − θ′|2pδp(T )

Using this inequality, for fixed small T , we can apply Kolmogorov theorem to show
that g(t)(·) is Hölder continuous. Following [F1] and [M], the flow property can be
used to prove that the stochastic process g(t) lives in the space of volume preserving
homeomorphisms.

�

Definition 2.1. Let f be a function in C2 defined on T
2. On a functional F (g)(θ) =

f(g(θ)), θ ∈ T
2, the infinitesimal generator of the process g(t) is defined by

L(F )(θ) = lim
t→0

1
t
E

(
(g(t))∗f(θ) − f(θ)

)
(2.6)

This infinitesimal generator corresponds to the usual Laplacian operator Δ on
the torus, more precisely, we have:

Theorem 2.2. Let L be the infinitesimal generator of the stochastic process g(t).
Then there exists a positive constant c such that, for F (g)(θ) = f(g(θ)),

L(F ) = cΔf, f ∈ C2(T2)

Proof. Itô’s formula reads

df(g(t)) =
∑
k �=0

1
|k|β

[(
Akf

)
(g(t)) · dx1

k(t) +
(
Bkf

)
(g(t)) · dx2

k(t)
]

+
1
2

∑
k �=0

1
|k|2β

[(
Ak

(
Akf

))
(g(t))dt +

(
Bk

(
Bkf

))
(g(t))dt

]

We have
1

|k|2β

(
Ak

(
Akf

))
(θ) =

1
|k|2β

[
k2 cos(k · θ)∂1

(
k2 cos(k · θ)∂1f − k1 cos(k · θ)∂2f

)
− k1 cos(k · θ)∂2

(
k2 cos(k · θ)∂1f − k1 cos(k · θ)∂2f

)]
=

1
|k|2β

[
(k2)2 cos2(k · θ)∂2

1f − 2k1k2 cos2(k · θ)∂1∂2f

+ (k1)2 cos2(k · θ)∂2
2f

]
and

1
|k|2β

(
Bk

(
Bkf

))
(θ) =

1
|k|2β

[
k2 sin(k · θ)∂1

(
k2 sin(k · θ)∂1f − k1 sin(k · θ)∂2f

)
− k1 sin(k · θ)∂2

(
k2 sin(k · θ)∂1f − k1 sin(k · θ)∂2f

)]
=

1
|k|2β

[
(k2)2 sin2(k · θ)∂2

1f − 2k1k2 sin2(k · θ)∂1∂2f

+ (k1)2 sin2(k · θ)∂2
2f

]
Therefore the infinitesimal generator is given by

1
2

∑
k �=0

1
|k|2β

[
(k2)2∂2

1f + (k1)2∂2
2f − 2k1k2∂1∂2f

]

Since ∑
k �=0

1
|k|2β

k1k2 = 0 and
∑
k �=0

1
|k|2β

(k1)2 =
∑
k �=0

1
|k|2β

(k2)2
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the result follows from taking c = 1
2

∑
k �=0

1
|k|2β (k1)2. �

3. Stochastic differential equations on the group of homeomorphisms

Let us consider u : [0, T ] → G0
V . For each t, u(t) is a divergence free vector field

on T
2. We can associate to u(t) the following Ft stochastic differential equation

dgu(t) =
(

u(t)dt +
√

ν

c
◦ dx(t)

)
(gu(t))

gu(0) = e

(3.1)

where c denote the constant defined in theorem 2.2.
This equation can be written in local coordinates as follows:

dg1
u(t) =

(
u1(t)dt +

√
ν

c
dx1(t)

)
(gu(t))

dg2
u(t) =

(
u2(t)dt +

√
ν

c
dx2(t)

)
(gu(t))

gu(0) = e

(3.2)

The method to solve this stochastic equation depends on the regularity of the
underlying Brownian motion and of the drift. When β = 3 (the most irregular
case) we can use Girsanov transformation as in [F2] with u(t) ∈ H2. In this case, if
u belong to C([0, T ];G2

V ), one can show the existence of a stochastic process gu(t),
solution of the s.d.e. (3.1), with values in the space of homeomorphisms of the torus
preserving the Lebesgue measure.

In the case where only L2 regularity is available, we prove the following

Theorem 3.1. Let u belong to the space L2([0, T ];G0
V ); then there exists a stochas-

tic process gu(t), weak solution of the s.d.e. (3.1), with values in G0
V .

Proof. Since u ∈ H0
V , we can write

u(t, θ) =
∑
k �=0

[
u1

k(t)
Ak(θ)
|k| + u2

k(t)
Bk(θ)
|k|

]
(3.3)

with
∑

k �=0 |u1
k|2 + |u2

k|2 < +∞.
Let us consider the following smooth aproximation un of the vector field u,

un(t, θ) =
∑
k �=0
|k|≤n

[
u1

k(t)
Ak(θ)
|k| + u2

k(t)
Bk(θ)
|k|

]
(3.4)

and a smooth finite dimensional aproximation xn(t) of the Brownian motion x(t)
defined in (2.1)

dxn(t, θ) =
∑
k �=0
|k|≤n

1
|k|β

(
Ak(θ)dx1

k(t) + Bk(θ)dx2
k(t)

)
(3.5)

Then there exists a smooth global stochastic flow, strong solution of the stochastic
differential equation (3.1) with u replaced by un and x(t) replaced by xn(t). More
precisely, there exists gn(t)(θ) such that

gn(t)(θ) = θ +
∫ t

0

un(τ, gn(τ )(θ))dτ +
√

ν

c

∫ t

0

dxn(τ, gn(τ )(θ)) (3.6)
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We consider the sequence of measures νn, defined on the space C([0, T ]; G0
V ) as

the laws of gn. We prove that this sequence is tight. It is sufficient to show that:

lim
R→∞

sup
n

νn(‖y(0)‖L2 > R) = 0 (3.7)

lim
δ→0

sup
n

νn

(
max

|t−s|≤δ
s,t∈[0,T ]

‖y(t) − y(s)‖L2 ≥ ρ

)
= 0, ∀ρ > 0 (3.8)

Since gn(0)(θ) = θ, condition (3.7) is clearly satisfied. Concerning condition (3.8),
we have

νn

(
max

|t−s|≤δ
s,t∈[0,T ]

‖y(t) − y(s)‖L2 ≥ ρ

)
≤ 1

ρ
E

(
max

|t−s|≤δ
s,t∈[0,T ]

‖gn(t) − gn(s)‖L2

)

≤ 1
ρ
E

(
max

|t−s|≤δ
s,t∈[0,T ]

∥∥∥∥
∫ t

s

un(τ, gn(τ )(θ))dτ

∥∥∥∥
L2

)
+ E

(
max

|t−s|≤δ
s,t∈[0,T ]

∥∥∥∥
∫ t

s

dxn(τ, gn(τ )(θ))
∥∥∥∥

L2

)

Using the invariance with respect to Lebesgue measure of the flow gn(t)(·), we
obtain

E

(
max

|t−s|≤δ
s,t∈[0,T ]

∥∥∥∥
∫ t

s

un(τ, gn(τ )(θ))dτ

∥∥∥∥
L2

)
≤

√
δ‖u‖L2([0,T ];T2)

Also by the invariance of Lebesgue measure and the Hölder continuity of the Brow-
nian motion, we have

E

(
max

|t−s|≤δ
s,t∈[0,T ]

∥∥∥∥
∫ t

s

dxn(τ, gn(τ )(θ))
∥∥∥∥

L2

)
= E

(
max

|t−s|≤δ
s,t∈[0,T ]

∥∥∥∥
∫ t

s

dxn(τ, θ)
∥∥∥∥

L2

)
≤ Cδ2α

with 0 < α ≤ 1. Condition (3.8) follows.
The space L2 endowed with the weak topology is a relatively compact space and

the σ-algebras generated by the Borelian sets defined by the weak and the strong
topologies are the same. Therefore, there exists a subsequence νnk

of νn and a
measure ν such that νnk

→ ν, with respect to the weak topology on the space of
measures on C([0, T ]; L2). To simplify the notation, we still denote such subse-
quence by νn. By Skorohod’s theorem, there exists a probability space (Ω,F , P )
and a family of stochastic processes g̃n

ω(t), gω(t), ω ∈ Ω with laws, respectively, νn

and ν such that for a.e. ω, g̃n
ω(·) → gω(·) in the space C([0, T ]; L2).

For any continuous function f defined on T
2 and a.e. ω ∈ Ω, we have∫

T2
f(gn

ω(t)(θ))dθ =
∫

T2
f(θ)dθ

The left hand side integral can be identified in law with∫
T2

f(g̃n
ω(t)(θ))dθ

For a.e. ω, the convergence of g̃n to g implies the existence of a subsequence
g̃

nj
ω (t)(θ) of g̃n

ω(t)(θ) such that g̃
nj
ω (t)(θ) → gω(t)(θ) for a.e. θ. Using Lebesgue’s

theorem ∫
T2

f(g̃nj
ω (t)(θ))dθ →

∫
T2

f(gω(t)(θ))dθ

which proves that g lives in G0
V .
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We now prove that the stochastic process gω(t)(θ) is a weak solution of the s.d.e.
(3.1). The process gn(t) can be identified in law with the solution of equation (3.6);
we have:

E

∫
T2

∣∣∣∣
∫ t

0

un(τ, g̃n(τ )(θ))dτ −
∫ t

0

u(τ, g(τ )(θ))dτ

∣∣∣∣
2

≤ E

∫
T2

∣∣∣∣
∫ t

0

un(τ, g̃n(τ )(θ))dτ −
∫ t

0

u(τ, g̃n(τ )(θ))dτ

∣∣∣∣
2

+ E

∫
T2

∣∣∣∣
∫ t

0

u(τ, g̃n(τ )(θ))dτ −
∫ t

0

u(τ, g(τ )(θ))dτ

∣∣∣∣
2

= In
1 + In

2

By the invariance of the Lebesgue measure and the fact that un → u in L2([0, T ]; T2)
the integral In

1 converges to zero as n → ∞. Applying Lusin’s theorem to the vector
field u on [0, T ] × T

2, and considering, for a.e. ω, a subsequence of g̃n
ω(t)(θ) that

converges to gω(t)(θ) uniformly in t and θ, there exists a subsequence of the integral
In
2 that converges to zero. Concerning the stochastic integral, for a.e. ω, we have:

∫
T2

∣∣∣∣
∫ t

0

dxn(τ, g̃n(τ )(θ))−
∫ t

0

dx(τ, g(τ )(θ))
∣∣∣∣
2

≤
∫

T2

∣∣∣∣
∫ t

0

dxn(τ, g̃n(τ )(θ))−
∫ t

0

dx(τ, g̃n(τ )(θ))
∣∣∣∣
2

+
∫

T2

∣∣∣∣
∫ t

0

dx(τ, g̃n(τ )(θ))−
∫ t

0

dx(τ, g(τ )(θ))
∣∣∣∣
2

= In
1 (ω) + In

2 (ω)

Using again the invariance with respect to Lebesgue measure

∫
T2

∣∣∣∣
∫ t

0

dxn(τ, θ) − dx(τ, θ)
∣∣∣∣
2

dθ =
∫

T2

∣∣∣∣xn(t, θ) − x(t, θ)
∣∣∣∣
2

dθ

≤ C sup
t∈[0,T ],θ∈T2

|xn(t, θ) − x(t, θ)|

which converges to zero as n → ∞. Since for a.e. ω, xω(t, θ) are continuous random
variables on [0, T ] × T

2, there exists a subsequence of the integral
∫

T2

∣∣x(τ, g̃n(τ )(θ))− x(τ, g(τ )(θ))
∣∣2dθ

that converges to zero.
Therefore, taking the limit in L2(Ω × T

2) of the integral equation (3.6), we
conclude that g(τ )(θ) satisfies the s.d.e. (3.1).

�

Corollary 3.1. Suppose that u satisfy the hypothesis of Theorem 3.1 and let gu(t)
the solution of equation (3.1). Then the infinitesimal generator of this process,
when computed at functionals of the form F (g)(θ) = f(g(θ)), is given by

LuF = u · ∇f + νΔf, ∀f ∈ C2(T2) (3.9)

Proof. The proof is analogous to the proof of theorem 2.2. �
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4. The variational principle

Given a G0
V -valued stochastic process g(t) we define the action functional

S[g] =
1
2
E

∫ T

0

‖Dg(t)‖2
L2dt − 1

2
E‖Dg(T )‖2

L2 (4.1)

where D is the generalized derivative, defined for smooth functionals F by

DF (g(t), t) = lim
ε→0

1
ε
EFt

(
F

(
g(t + ε), t + ε

) − F
(
g(t), t

))
(4.2)

Given v ∈ C1
(
[0, T ];G∞

V

)
with v(0, ·) = 0, consider the following ordinary differ-

ential equation

det(v)
dt

= v̇(t, et(v))

e0(v) = e
(4.3)

where v̇ =
dv

dt
. Since v is divergence free, e·(v) is a G∞

V - valued deterministic path.

Let us denote by P the set of continuous G0
V -valued Ft-semimartingales g(t)

such that g(0) = e.
The left product et(v) ◦ gu(t) of the diffusion gu(t) by an arbitrary deterministic

path e·(v) is well defined on P. So, we define the derivative of a functional on P at
a process g ∈ P using the left product by an arbitrary element of the following set

H =
{
et(v) : v ∈ C1

(
[0, T ];G∞

V

)
and v(0, ·) = 0

}
This set can be considered as the “tangent” space to P, appropriate to a calculus of
variation for (4.1). A small perturbation of g ∈ P in the direction h(t) = et(v) ∈ H
will correspond to the product et(εv) ◦ gu(t) where et(εv) is the solution of (4.3)
associated with the perturbation εv of v.

Definition 4.1. Let J be a functional defined on P taking values in R. We define
its left and right derivatives in the direction of h(·) = e·(v) ∈ H at a process g ∈ P,
respectively, by:

(DL)hJ [g] =
d

dε
J [e·(εv) ◦ g(·)]∣∣

ε=0
,

(DR)hJ [g] =
d

dε
J [g(·) ◦ e·(εv)]

∣∣
ε=0

A process g ∈ P will be called a critical point of the functional J if

(DL)hJ [g] = (DR)hJ [g] = 0, ∀h ∈ H,

Theorem 4.1. Let u ∈ L2([0, T ];G0
V ) and gu(t) ∈ C([0, T ]; G0

V ) be a weak solution
of equation (3.1). The stochastic process gu(t) is a critical point of the energy
functional S defined in (4.1) if and only if the vector field u(t) verifies the Navier-
Stokes equation: ⎧⎪⎨

⎪⎩
∂u

∂t
+ (u · ∇)u = νΔu + ∇p

∇ · u = 0
u(T, θ) = uT (θ)

(4.4)

Proof. Since the functional S is right invariant, the right derivative is not relevant.
Let ε > 0 and h(t) = et(v) an arbitrary element in the “tangent” space H. We

have

et(εv) = e + ε

∫ t

0

v̇(s, es(εv))ds (4.5)
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Since et(0)(θ) = θ for all t,

d

dε
et(εv)

∣∣
ε=0

=
∫ t

0

v̇s(θ)ds = vt(θ) (4.6)

therefore

d

dε

(
et(εv) ◦ gu(t)

)∣∣
ε=0

= vt ◦ gu(t) (4.7)

and

d

dε
S[e·(εv) ◦ gu(·)]

∣∣∣∣
ε=0

=E

∫ T

0

(
Dgu(t), D(v(t, gu(t)))

)
L2dt

−
∫

T2

(
uT (θ)v(T, θ)

)
dθ

(4.8)

Using Itô’s formula

d
(
Dgu(t), v(t, gu(t))

)
L2 =

(
dDgu(t), v(t, gu(t))

)
L2 +

(
Dgu(t), dv(t, gu(t))

)
L2

+
(
dDgu(t), dv(t, gu(t))

)
L2

and the expression of the contraction term,

(
dDgu(t), dv(t, gu(t))

)
L2 = 2ν

∫
T2

2∑
i,j=1

∂vi

∂θj
(t, gu(t))

∂ui

∂θj
(t, gu(t))dθ, (4.9)

we deduce that

E

∫ T

0

(
Dgu(t), D(v(t, gu(t)))

)
L2dt = E

(
Dgu(T ), v(T, gu(T ))

)
L2

− E

∫ T

0

(
DDgu(t), v(t, gu(t))

)
L2dt − E

∫ T

0

(
dDgu(t), dv(t, gu(t))

)
L2dt

=
∫

T2
u(T, θ)v(T, θ)dθ −

∫ T

0

∫
T2

(
∂u

∂t
+ (u · ∇u) + νΔu

)
(t, θ)v(t, θ)dθdt

− 2ν

∫
T2

2∑
i,j=1

∂vi

∂θj
(t, θ)

∂ui

∂θj
(t, θ)dθdt

=
∫

T2
u(T, θ)v(T, θ)dθ −

∫ T

0

∫
T2

(
∂u

∂t
+ (u · ∇u) − νΔu

)
(t, θ)v(t, θ)dθdt

Therefore

d

dε
S[e·(εv) ◦ gu(·)]

∣∣∣∣
ε=0

= 0, ∀v ∈ H

is equivalent to
∫ T

0

∫
T2

(
∂u

∂t
+ (u · ∇u) − νΔu

)
(t, θ)v(t, θ)dθdt =

∫
T2

(
u(T, θ) − uT (θ)

)
v(T, θ)dθ,

which corresponds to the weak formulation of the Navier-Stokes equation (4.4),
since v is arbitrary in C1

(
[0, T ];G∞

V

)
. �
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5. Existence of the critical diffusion

In this paragraph, we consider the action functional S defined in (4.1) on the
set P of semimartingales. The next theorem proves the existence of a process in P
that is a minimum of the functional.

Theorem 5.1. The action functional S defined in (4.1) has a minimum g(t) on
the subset of P with fixed final energy ‖Dg(T )‖L2 .

Proof. The functional is bounded below, let α be its infimum. We consider gn(t) a
minimizing sequence of the functional S. This means that S[gn(·)] → α as n → ∞.
Let us denote by un the drift of gn(t). The sequence 2S[gn(·)] = ‖un‖L2([0,T ];T2) −
‖uT ‖L2 is bounded, therefore there exists a subsequence unj

of un that converges
with respect to the weak topology, more precisely there exists u ∈ L2([0, T ]; T2)
such that

unj
→ u, weakly in L2([0, T ]; T2)

We obtain
∫ T

0

∫
T2 u(t, θ)∇f(θ)dtdθ = 0, for all regular function f , which implies

that u(t, ·) ∈ G0
V a.e. in t. The limit function u satisfies the assumptions of

Theorem 3.1. Then we can construct a stochastic process gu(t) in P as solution of
the stochastic differential equation (3.1). Since

S
[
gu(·)] ≤ S

[
gnj (·)], ∀j

we deduce that S
[
gu(·)] = α and gu(t) is a minimum. �

We may define a solution of the Navier-Stokes equation as the drift (ou mean
velocity) of the critical process obtained in the last theorem. We have,

Corollary 5.1. The mean generalized velocity of the minimum of the action func-
tional in Theorem 5.1 is a solution of the Navier-Stokes equation (4.4). More-
over, the generalized kinetic energy ‖Dgu(t)‖2

L2 of such minimum gu(t) is a Ft-
supermartingale.

Proof. By construction gu(t), the minimum of the action functional obtained in
Theorem 5.1, satisfies the stochastic differential equation (3.1). Let us consider
an arbitrary deterministic path h(t) = et(εv) ∈ H with v(T ) = 0. The final en-
ergy of all variations et(εv) ◦ gu(t) coincide with the final energy of the minimum
‖Dgu(T )‖2

L2 . Therefore (DL)hJ [g] = 0 and, according to theorem 4.1, u(t, θ) satis-
fies Navier-Stokes equation.

We prove that

EFs
(‖Dgu(t)‖2

L2

) ≤ ‖Dgu(s)‖2
L2 , 0 ≤ s ≤ t ≤ T.

Using Itô’s formula for the functional gu(t)(θ), we have:

d‖Dgu(t)‖2
L2 = 2(dDgu(t), Dgu(t))L2 + (dDgu(t), dDgu(t))L2

Considering the expression of the stochastic contraction term (4.9), we derive

EFs
(‖Dgu(t)‖2

L2

) − ‖Dgu(s)‖2
L2 = 2E

∫ t

s

(DDgu(τ ), Dgu(τ ))L2

+ 2ν‖∇u(τ, gu(τ ))‖2
L2

= 2
∫ t

s

∫
T2

(∂u

∂t
+ u · ∇u

)
(τ, θ)u(τ, θ)dθdτ

= −2ν

∫ t

s

∫
T2

|∇u(τ, θ)|2dθdτ

�
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Since we have associated stochastic processes to solutions of Navier-Stokes equa-
tion, a detailed study of these processes will determine various properties of Navier-
Stokes flows. On the other hand, the existence of a variational principle should lead
naturally to a study of the symmetries of our action functional, their probabilistic
interpretation and geometrical implications for the same flow.
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