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Abstract

In this paper the exact distribution of the logarithm of the product of a given
number of independent Beta random variables whose second parameter is ratio-
nal is obtained under the form of a Generalized Integer Gamma distribution and
near-exact distributions are obtained either as Generalized Near-Integer Gamma
distributions or mixtures of these distributions. As particular cases of interest we
have the exact and near-exact distributions of the generalized Wilks Lambda statis-
tic.

Key words: Generalized Integer Gamma (GIG) distribution, Generalized
Near-Integer Gamma distribution (GNIG) distribution of sum of independent
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1. INTRODUCTION

The aim of this paper is to obtain the exact distribution of the logarithm
of the product of a given number of independent Beta distributed random
variables whose second parameter is rational, under the form of a Generalized
Integer Gamma (GIG) distribution or near-exact distributions of such product
under the form of a Generalized Near-Integer Gamma (GNIG) distribution or
mixtures of these distributions. Results are obtained under fairly wide condi-
tions. The only restrictions imposed are that the step in the first parameter
has to be equal to the reciprocal of that same integer value, that is, if we write
the second parameter in the Beta distributions as m/k, for m, k € IN (we will
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be using IN to represent the set of positive integers, ) the set of rationals,
with @' representing the set of positive rationals, and IR to represent the set
of all reals, with JR™ representing the set of positive reals), then the step in
the first parameter of the Beta random variables involved in the product has
to be equal to 1/k, and in order to be able to obtain the exact distribution we
need the number of such Beta distributed random variables to be a multiple of
the integer in the denominator of the second parameter, say, nk, with n € IV.

As a summary, we may say that the aim of this paper is to obtain the
exact or near-exact distribution of statistics of the form

P

W'=1[Y; and W =—logW (1.1)

j=1
where .
jom

Vi~ Bla-2 20 -1

7 ( ka k) J J » D
with m, k € IN.

Since such distributions will assume the form of Generalized Integer
Gamma (GIG) or Generalized Near-Integer Gamma (GNIG) distributions,
we introduce now these distributions.

Let X be a random variable with a Gamma distribution with shape param-
eter r and rate parameter A (we call this parameter 'rate’, given the relation it
has, for integer r, with the rate of a Poisson process). Then the pdf (probability
density function) of X will be given by

fx(x) = F)(\:") et (> 0)

and we will represent this fact by
X ~ T'(r,A).

Let
XZNF(T‘Z,)\Z) i:17...,n

be n independent Gamma distributed random variables with r; € IV, for
i € {1,...,n} and all )\; different. Then the distribution of the random variable

is what Coelho (1998, 2004) called a GIG distribution of depth n. The pdf
and cdf (cumulative distribution function) of Z are respectively given by

f2(2) = K3 Pi(z)e ™" (1.2)



and

Fy(z) = 1-KY) Pj(z)e™”* (1.3)
j=1
where
n Tj
K = H /\7]"] R PJ(Z) = chk Zkil (14)
j=1 k=1
and
'k—l P
Z Cjk ) ; Z'/\k 7
with . .
Cjrj ( . 1)[ H(/\Z )‘J)_n ) J = 17 y 10, (1 5)
i=1
i£]
and
1 & (rj—k+i—1)
=k k; (r; —k—1)! R(i jyn) Gy eiy > (K =1,005m = 1)
(j=1,...,n)
(1.6)
where .
R(i,j,n Zrk)\—)\k (i=1,...,15—1). (1.7)

g,_.

We will denote the fact that the random variable Z has a GIG distribution
of depth n, with the above pdf and cdf by

Z o~ GIG(Tl,...,T'n; )\1;“-7)\71)-

The GNIG distribution (Coelho, 2004) arises as the distribution of the
sum of two independent random variables, one with a GIG distribution and
the other with a Gamma distribution.

Let
Z1 ~ G]G(rl,...,rn;/\l,...,)\n)

and
ZQ ~ F(T, )\)

be two independent random variables. Let further A # \; (i = 1,...,n) and
r € IR"\IN. Then the random variable

Z:Z1+Z2

has a GNIG distribution of depth n + 1, with pdf

Jo(2) = KAT i@j@ e



and cdf

r ZT . r = * —Ajz
Fy(z) = A 7F(r+1) Firyr+1;=A2) — KA ;Qj(z)e
where
QRi(z) = ic- &zk”’l Fi(rik+r;(\ — N)z)
’ k=1 jkr(k+r) SR Y
and
T k—1 r+i \i
« Cik 2N :
= ——TI'(k e T O 1:(N — A

with K and cj given respectively by (1.4) and (1.5) through (1.7) above, and

1Fi(a,b;x) = P(bf(ab))rw) /01 et 91(1 — )bo1 gy
_ I & Ta+i) o
" T ST

being the Kummer confluent hypergeometric function.

We will denote the fact that the random variable Z has a GNIG distribu-
tion of depth n + 1, with the above pdf and cdf by

Z o~ GNIG(T1y .. Tpy T3 ALy ooy Apy A).

Since in section 3 we will be dealing with mixtures of these distributions
we will now settle the notation for such mixtures. A mixture of k& GNIG
distributions, the j-th of which has weight 6; and depth m;, will be denoted
by

MkGN]G (91;7“11,...,T1m1;/\11,...,/\1m1’ ‘Hk;T'kl,...,Tkmk;/\kl,...,)\kmk) .

2. THE EXACT DISTRIBUTION

The following Theorem gives the exact distribution of W or W' in (1.1)
when p = nk, for some n € IV, under a much manageable form.

THEOREM 1: Let m, k,n € IN and a€ IR*, with a>n and m/k €@ \IN, and
let

J m ,
Y}wB(a—k,k> j=1,...,nk



be nk independent Beta distributed random variables. Let further
nk
W'=1]Y; and W =—logW'. (2.1)
1=1

Then the exact distribution of W is a GIG distribution of depth m + k(n — 1)
with shape parameters

h; j=1,....k
r;y = (22)
hj+Tj—k j:k—i—l,,m—l—k(n—l)

where
1 j=1,...,min(nk,m)
h; = 0  j=14min(nk,m),..., max(nk, m) (2.3)
-1 j=1+max(nk,m),....,m+k(n—1)
or

h; = (# of elements in {nk,m} > j)—1,

and rate parameters

) — 1
a—n—i—jT j=1,....m+kn—1),

that s,

~ v/

W ~ GIG(Tl,Tg,...,Tm+k(n_1);a—n,a—n—l—%,...,a—l%—mgl). (2.4)

m—+k(n—1) m-+k(n—1)

Proof: Since we know that if
X ~ B(a,b)

then the A-th moment of X is

I'(a+0b0) T'(a+h)
I'(a) T(a+b+h)

E(X") = (h > —a) (2.5)
and since in (2.1) the Gamma functions are defined for any strictly complex

h, and given the independence of the nk random variables Y; in (1.4), using
the Gauss multiplication formula for the Gamma function,

1 , ol k
[(nz) = 2m)2 = pm2 I T <Z—i— >

k=0 n



and yet the fact that for ¢ € € and n € IV,

Fla+n) " .
T [T+

J=0

we may write the characteristic function of W as
P, (t) = FE (eitW) - B (e—z’t logW’)
E (W/—z't> _ ln—k[ B (Yj—z’t)
j=1

T (a—f+%) T(a—1f-it)
i T(a—12) r(a-2+2—it)

T (k(a—j)+m) T (k(a—j)— kit)
a—7j)) T (k(a—j)+m— kit)

I
s
’1
=

j=1
n m—1
=TI (k(a —j)+s) (k(a—j) +s— kit)”
7=1 s=0
ﬁm1< s S -1
= a—j—i—) (a—j—l——zt)
j=1 s=0 k k
m+k(n—1) j—1 7 . N\
= H (a—n+> (a—n—i——zt) ,
j=1 ki

that is the characteristic function of the sum of m + k(n — 1) = m — k 4+ nk
independent Gamma random variables with integer shape parameters r; given
by (2.2) and (2.3) and rate parameters

— 1
a—n+jT j=1,....m+kn-1),

that is the GIG distribution in (2.4).

The exact pdf and cdf of W are thus easily derived from (1.2) and (1.3),
and from these, the exact pdf and cdf of W’ = =W, are also easily obtained.

In the above Theorem, nk and m are interchangeable. This result is stated
in the following Theorem.

THEOREM 2: Let m,k,n € IN and a € IR with a > n and let

Y}*NB(@—TH—ZL—QTO j=1,....m



be m independent Beta distributed random variables. Let further
W2:HY;.* and Wy = —log W.
j=1

Then W5 and Wy have, respectively, the same distribution as W' and W in
(2.1) in Theorem 1.

Proof: Using the same technique and arguments used in the proof of The-
orem 3, we may write

@Wz(t) _ E(eitVVg) - B (e—it 1ogW5)
nk

B (W;it) _ 1:[ B (Y}*fit)

j=1

m P(a—n+2-24n) Dla—n+2—2—it)
] F(a—n—i—%—%) F(a—n—i—%—%%—n—it)
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so that the distributions of W5 and W are the same and thus so are the
distributions of Wy =e "2 and W' =e¢ . u

Given the result in Theorem 2, the interchangeability of m and nk in
Theorem 3 becomes more evident if we take in Theorem 1

* 4 m ith >
a=a n—— w1 a -
k k

so that then in Theorem 2 we have a —n + 2 = a*, with ¢* > 7%, so that we



may write

Y; ~B<a—k,n) j=1,....,m.
Yet under another equivalent view, the duality is in the fact that in Theorem
3 we have

: m _jm :
Yj~B<a +n_k_k’k‘> j=1,...,nk

with a* > 7, while in Theorem 2 we have

%*NB(CH—ZL—TL—‘;,?%) j=1,....m

with a > n.

3. NEAR-EXACT DISTRIBUTIONS

When we are not able to write p as nk for some n € IN, then we are not
able to obtain the exact distribution of W or W’ under a manageable form.
For these cases, the use of a near-exact distribution is a much adequate option.

The following Theorem gives near-exact distributions for W when p # nk,
under the form of a GNIG distribution or mixtures of GNIG distributions.

THEOREM 3: Let m,k € IN and a € R™, with m/k€@QT\IN, and let

J m :
Y}wB(a—k,k> g=1...p
be p independent random variables, where a>p/k and p#£n*k for any n* € IN.
Let further

w'=1]Y;. W=—logW' and n=|p/k]|.

Then, near-exact distributions for W may be obatined under the form of a
GNIG distribution of depth m~+k(n—1)+1 or miztures of 2 or 3 such distri-
butions. More precisely, we may write

W =~ GNIG (7“1, ooy Tt k(n—1), T3 Alyenns )\erk(n,l), )\) , (3.1)

W R M2GNIG (0;71, .., Tsktn1)s 75 Ay oo A1), Al )
3.2

1—9;7’1, ~-~7rm+k(n—1)>r*;/\17 ---;/\m+k(n—1)7)\;) N



and
W B MBGNIG (01571, Tmc(nm1)s 51 My -3 k(o) 21|
02371, s Timk(n—1) S ALy « -3 Amp(n—1), V2| (3.3)
1=01—0271, s T k(n=1)> S5 ALy o5 Agk(n—1)> y3) ,

rne

where "% 7 45 to be read as is near-exactly distributed as’, 0 < 0,60,,0, < 1
and where for j =1,....om+k(n —1),

h; j=1...k
r; = (34)
hij+riy j=k+1,...om+k(n—-1)

where
1 j=1,...,min(nk,m)
hj = 0  j =1+ min(nk,m),..., max(nk,m) (3.5)
-1 j=1+max(nk,m),....m+k(n—1)
or

h; = (# of elements in {nk,m} > j) —1,

p,J—1 ,
)\j:a_E—i_T j=1,... m+kn—1),
and r and X in (3.1) defined in such a way that the two first moments of the

exact and near-exact distribution coincide, that is,

2
r=_H 5 and A= ot 5 (3.6)
H2 — M1 M2 — M1
where
dh [Pk T (a— L4 m ['(a—4—1t
'uh:dth< ( kjk) (j km ) (h=1,2) (3.7)
j=1 F(a—E) F(a—E—F?—zt) o

and 6, r*, A} and A} in (3.2) are defined in such a way that
dh (Pﬁkf‘(a—i%—’}j) F(a—%—ét) )
dth j=1 F(a—%) F(a—%—i—%—it) _
['(r* + h)
[(r*)

=40



and by, 02, s, vy, vy and v3 in (3.3) are defined in such a way that

dh (pﬁkr(a_i+’£) F(a—%—it) )

dth =1 F(a—%) F(G_%+%_it) t=0
_ T(s+h) o [(s+h) L . ['(s+h) Jh
e T b2 ois) 2 " (1=6-6) T(s)
(h=1,...,6).
(3.9)

Proof: Let n=|p/k]. Then, we may write the characteristic function of W as

(3.10)
withr; (j=1,..., m+k(n—1)) given by (3.1) and (3.2), and where in passing

10



from

Dy(t) =
j=1 F(CL—FTL—%—%) r CL—I—TL—%—%—F%—H;)
to o
m+k(n—1 r ,
p J—1\" p j—1 i
=" o) (3
0= T (o) (oo

we used the result coming from the proof of Theorem 1, when handling the
characteristic function of W replacing a by a+n—p/k.

Then in (3.10) we may approximate ®;(¢) in several different ways, as for
example by

OI(t) = A"(A—at) " (3.11)
in such a way that
d" dh
ﬁél(t) = %(bl(t) for h = 172

yielding A and r given by (3.6) and (3.7) in the Theorem statement, or by
() = ONT (N —it)" (L= DN (N5 —it)™ (3.12)
in such a way that

d" d"
Wél(t):ﬁ(bl (t) for hzl,,4

yielding 0, A}, A3 and r* given by (3.8) in the Theorem statement, or yet by
(I)ik** (t) = 91 Vls(l/l —Z.t)is —+ 92 I/S(VQ—’L.t)is -+ (1—91 —02)V§ (1/3—@‘26)78 (313)
in such a way that

d" d"

yielding 6y, 04, v1, 12, v3 and s given by (3.9) in the Theorem statement.

Then if we approximate ®y,(¢) by keeping ®5(¢) unchanged and replacing
®,(t) by the characteristic functions in (3.11), (3.12) or (3.13), we will get
near-exact approximations of @y (¢) which are respectively the GNIG distri-
bution, the mixture of two GNIG distributions or the mixture of three GNIG
distributions respectively in (3.1), (3.2) and (3.3) in the statement of the The-
orem, with these distributions yielding respectively the first two, four and six
moments equal to the exact ones. =

We should stress that the expressions in Theorem 3 will work and give the
correct result for any value of n = |p/k| > 0, since at first sight this may be
not completely clear for n =1 and n = 0.

11



We will define, as it is usual, that a product that is empty of terms, that is,
a product which upper limit is smaller than its lower limit, is equal to 1. Given
the definition of n(= |p/k]) and given that we consider p # nk, we will always
have p — nk > 1, so that the product that defines ®;(¢) is never empty, while
the product that defines ®5() is never empty for n > 1. However, for n = 1,
there may be some questions about the definition of the shape parameters r;
given by (3.4) and (3.5), since we may either have m > kor m < k. If n =1
and m > k, there is clearly no problem with the definitions in (3.4) and (3.5),
with the upper limit of the index j for r; being m, both in (3.4) and (3.10). If
m < k, (3.4) will give

1 j=1,....,m
h; =
0 j=m+1,...,k

and (3.5)
Tj:hj j:177l€
with only the first m of them, all equal to 1, being used in ®5(¢) in (3.10).

For n =0, ®,(t) doesn’t exist, or rather, it is equal to 1 and the whole
®yy (1), in this case reduced to ®4(t), is asymptotically approximated by ®%(t),
O1*(t) or ®1**(t). For n=0, if m < k, ®5(¢) will clearly reduce to 1 since in
this case the upper limit of the product that defines ®4(¢) will be m — k < 0
and thus this product reduces to 1. However, if n=0 and m > k, the product
defining ®,(t) will have its upper limit equal to m — k£ > 0 and it may seem
that in this case ®,(¢) would not reduce to 1. But indeed, in this case, all the
shape parameters r; in ®4(¢) will be equal to zero since from (3.5) we will have

hy=0, j=1,.., m—k

and from (3.4),

Another issue related with Theorem 3 is that one may question why was it
that in the proof of Theorem 3 the decomposition of the characteristic function
of W was not done in a much simpler way, like




) (o)

m
k
z‘:nk+1 r (a—%) r (a—%—f—%—zt)

/

(3.14)
with ; (j =1,...,m+ k(n — 1)) given by (2.2) and (2.3), allowing a direct
use of the result obtained in the proof of Theorem 1, when passing from

. r( _%4_%) F(a—%—it)
@ﬂ”“}{ F(a—2) T(a—i+2—it)

to
m+k(n—1)

_1 7‘]' _1 —7"]'

7j=1
and approximating then ®y,(¢) by keeping ®,(t) unchanged and replacing
®,(t) by the characteristic functions in (3.11), (3.12) or (3.13), now with the
parameters respectively defined in such a way that

d" . _T(r+h) _ B
ﬁq)l(t) tzo—gr(r) AP (h=1,2)
jthél(t)tO—QW/\’{‘th(l—Q)W)\;‘h (h=1,...4)
d" - _ Ls+h) I(s+h) I(s+h)
ﬁ%(t)t:o 7 T 2 + 6, ) Uy '+ (1—0,—05) () 2
(h=1,...,6),

obtaining this way near-exact approximations for ®y (¢) which would be sim-
ilar to the GNIG distribution, the mixture of two GNIG distributions or the
mixture of three GNIG distributions respectively in (3.1), (3.2) and (3.3) in
the statement of the Theorem, with
j—1 :
)\j:a—n+T j=1,....m+kn—-1),

still yielding respectively the first two, four and six moments equal to the
exact ones? Well, the answer is: because the way the decomposition of the
characteristic function of W was done in the proof of Theorem 3 yields much
better approximations, as it may be confirmed by observing the results in

13



the next section. But not only this. Also, while the near-exact distributions
obtained in Theorem 3 display a marked asymptotic behaviour for increasing
values of p which yielding the same values for p — nk show higher values of n,
these latter distributions would have a worse performance for these increasing
values of p, as it may be observed by analysing the results obtained in the
numerical studies in the next section. This is due to the fact that in either
case ®q(t) is the characteristic function of either a Logbeta random variable
or the sum of independent Logbeta random variables and these distributions
are much better approximated by Gamma random variables or mixtures of
Gamma random variables when ther first parameter in the Logbeta random
variables has higher values.

In the next section we will carry out a numerical study in order to evaluate
the performance of the near-exact approximations proposed.

4. NUMERICAL STUDIES

A rather extensive numerical study was carried out for different values of
each of the parameters in the distributions, a, m, k and p, in order to better
assess the proximity between the exact and the near-exact distributions. All
cases considered are cases for which we do not have the exact distribution
given by Theorem 1, that is, cases for which p/k € @*T\IN. All studies were
carried out for the distribution of the statistic W in (1.1).

In order to evaluate the proximity between the exact and the near-exact
distributions, and given that the exact pdf or cdf is not known, two measures
based on the characteristic function are used. These measures are

+00
1 Dy (1) — D*(t)]
AI_%_/ Qw ()~ @ (B)]dt and Ay = /‘ : dt

where ®yy(t) represents the exact characteristic function of W and ®*(¢)
the characteristic function corresponding to the near-exact distribution un-
der study. Both A; and A, are directly derived from the inversion formulas
respectively for the pdf and the cdf, with

max|Fy(w) — F*(w)] < Ay and  max|fiw(w) — f*(w)] < A,

where Fy (w) and fi (w) represent respectively the exact cdf and pdf of W
evaluated at w > 0 and F*(w) and f*(w) represent respectively the near-
exact cdf and pdf of W corresponding to the characteristic function ®*(¢).
The measure A, was already used by Grilo & Coelho (2007) and it may also
be directly derived from the Berry-Esseen bound (Grilo & Coelho, 2007), while
the measure A is a slight modification of a measure used by the same authors,
in order to enable us to obtain a bound on the absolute value of the difference
between the exact and near-exact pdf’s.

14



In all tables we denote by GNIG, M2GNIG and M3GNIG the three
near-exact distributions with similar acronyms in Theorem 3 and by GNIGx,
M2GNIGx and M3GNIGx the three 'corresponding’ near-exact distributions
obtained by following the procedure outlined after Theorem 3, by replacing
®, () in By (t) respectively by ®*(t), ®*(t) and &***(¢) in (3.11), (3.12) and

(3.13).

Table 1 — Values of As for m = 5 and several values of a, k and p.

GNIG* M2GNIGx* M3GNIGx
a m k p GNIG M2GNIG M3GNIG
73 5 3 16 1.945%10~* 4.067x10~7 2.492x10~?
8.311x10°7 1.496x10 11 2.357x10715
123 5 3 16 9.189x10°6 6.337x10710 3.649x1013
7.647x10~7 7.243x10712 2.324x10~15
73 5 3 17 5.475x10% 5.039%x10°6 3.912x10°8
1.594x10~6 1.744x10~10 2.970x10~14
123 5 3 17 2.115x107° 9.992x10~° 6.180x10~12
1.657x106 1.152x10~10 1.302x10 14
73 5 3 19 8.542x10 % 9.783%x10°6 2.259x108
2.516x10~7 2.245%x10~12 1.815x1016
123 5 3 19 1.167x107°? 1.107x107? 3.146x10~13
4.719x10~7 3.308x10~12 7.947x10716
73 5 3 20 3.446x1073 1.530x10~* 6.768x10~6
3.683x10~7 1.762x10 11 1.442x10715
123 5 3 20 2.756x10°° 1.727x10°8 1.343x10 1!
1.026x10~6 5.283%x10~ 1! 4.490x10~15
73 5 3 31 — — —
123 5 3 31 1.553x10~* 2.868x10~7 1.560x10~?
4.797x1078 7.985x10~14 4.830x10~!8
73 5 6 31 2.161x107° 1.883x10~6 1.174x10~7
7.709x10°8 1.056x10~? 1.525x10 11
123 5 6 31 8.977x10~7 5.796x10~8 3.534x107?
7.100x10~8 1.818x107? 4.796x10~11
73 5 6 32 3.052x10°° 2.482x10°6 1.127x10°7
9.980x10~8 1.326x107? 1.930x10~ 1!
123 5 6 32 1.270x10~6 8.419x1078 5.455x10~?
9.807x10°8 2.553%x1079 7.109%x10 11
73 5 6 35 2.125%104 7.021x10°7 9.463x107?
2.861x10~7 1.184x1011 9.629x10~16
123 5 6 35 5.058x10~6 1.081x107? 3.960x10~13
3.498x10~7 1.074x1011 1.008x10 12

In Tables 1 through 5 we may see the values of A, for a number of different
combinations of values for the parameters a, m, k and p and in Appendix A,
in Tables A.1 through A.5 the values of A; for the same combinations of
parameters.
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Table 2 — Values of Ay for m =7, k = 3, and several values of a and p.

GNIG* M2GNIGx* M3GNIGx
a m k p GNIG M2GNIG M3GNIG
73 7 3 16 3.283x10~* 2.216x1076 1.715x10~8
1.698x10 6 2.345%x10710 3.504x10 14
123 7 3 16 1.775%x107° 9.750%x10~? 5.073x1012
1.536x10~6 1.334x10~10 1.120x10~ 14
73 7 3 17 8.109x10~% 1.274x107° 2.240x10~7
2.976x10° 7.285x10 10 2.216x10~ 13
123 7 3 17 3.683x10°° 3.980%x10°8 4.657x10 11
3.016x10~6 4.899x10~10 9.175x10~14
73 7 3 19 1.341x1073 2.959%x10~° 7.469x10~7
5.446x10~7 3.787x10 11 2.998x10 15
123 7 3 19 2.221x107° 1.550x10~8 1.050x10~ 1!
9.550x10~7 6.126x10 1 3.845x10715
73 7 3 31 — — —
123 7 3 31 2.585x10~4 1.515%x10° 1.029x108
1.043x10~7 1.625x10~12 2.602x10~17

We may see that, as it was indeed expected, the conclusions drawn when
comparing distributions using the values of the measure A, in Tables 1 through
5 or the values of the measure A; in Tables A.1 through A.5 are exactly the
same, since the relations among the values of both measures are similar.

In Tables 1 and 2, and also in Tables A.1 and A.2, the cases with a = 7.3,
k = 3 and p = 31 are displayed only for the sake of completeness and also to
alert us, that as stated in Theorems 1 and 3, we need to have a > p/k.

All starred versions of the distributions (see note before Table 1) display
higher values of the measures, indicating a less good proximity to the exact
distribution. Indeed all the near-exact distributions obtained in Theorem 3
show a very good behaviour, with the mixtures, which also equate more of the
first exact moments showing a much better performance, mainly the mixture
of three GNIG distributions, which shows and outstanding performance for
all cases.

We should stress that for |p/k| = 0 the starred and the non-starred ver-
sions of the near-exact distributions coincide (see section 3, Table 4 and Table
A.4), since in these cases the part of the characteristic function of W that is
usually left untouched is actually lacking.

We may also see how increases in the value of the parameter a lead to a
slight worsening (higher values) of the measures for the non-starred versions
of the near-exact distributions and to an improvement on the values of the
measures (lower values) for the starred versions, indicating that the former do
not display an asymptotic behaviour with respect to this parameter. On the
limit, that is, for very high values of a (see Tables 5 and A.5), the corresponding
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starred and non-starred versions of the near-exact distributions converge to
the same value of the measures, nevertheless with the non-starred versions

always with better (smaller) values of the measures.

Table 3 — Values of Ay for m =7, kK = 6, and several values of a and p.

GNIG* M2GNIG* M3GNIGx
a m k p GNIG M2GNIG M3GNIG
73 7 6 16 3.196x10°° 1.780x10~8 1.159x10~ 1
6.530x10~6 1.097x107? 4.331x10713
123 7 6 16 6.561x10~6 7.635x10~10 2.850x10~13
2.783x10°6 1.720x 1010 3.955%10 14
73 7 6 17 5.037x104 5.226x1078 5.843x10 11
9.943x10~* 3.130x10~? 1.258x10~12
123 7 6 17 1.008x10? 2.267x107? 6.570x1013
4.232x10~6 5.036x10~10 8.240x10~14
73 7 6 31 1.890x107° 2.653x1078 1.543x107?
7.465%x1078 3.426x10~ 12 7.976x10 14
123 7 6 31 8.573x10~7 1.671x1010 1.727x10~ 1
6.832x10~8 2.098x10~12 9.277x10~14
73 7 6 35 3.919x10~* 2.990x10~6 2.210x10~8
6.726x10~7 4.023x1011 3.406x10~15
123 7 6 35 1.148x107° 3.713x107? 1.472x10~ 12
8.096x10~7 3.454x10~ 1 2.149x10~15
73 7 6 37 8.196x10°° 7.286x1078 4.436x10°8
2.324x10~8 5.181x10~13 5.926x10~15
123 7 6 37 1.089x10~6 2.651x10~10 2.515x10~11
4.184%x10°8 9.396x10~ 13 2.985x10 14
73 7 6 41 3.872x102 1.893x10~* 1.061x10°
1.089x10~7 2.256x10~"2 7.343x10717
123 7 6 41 1.537x107? 6.711x10~° 3.445x10~12
4.981x10~7 1.558x10 11 7.188x10 16

But when looking at the values of the measures for fixed values of a, m
and k£ and different values of p, we may see how the non-starred versions
of the near-exact distributions show a very good asymptotic behaviour for
increasing values of p, opposite to the starred versions. More precisely, the
non-starred versions of the near-exact distributions display much lower values
for the measures when for fixed values of a, m, k and p/k — |p/k] the value
of |p/k] increases.

When a, m, k and |p/k| remain fixed and p/k — |p/k| increases, then
the behaviour of the near-exact distributions, although consistent for different
values of the parameter a, it seems to be different for different values of p
and also for the other parameters. All the near-exact distributions, both the
starred and non-starred versions seem to display worse (higher) values of both
measures when we go from p/k—|p/k| =1to p/k—|p/k] = 2. However, when
for example for m =5 and k = 6 we go from p = 31 to p = 35 both measures
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worsen for the single GNIG near-exact distribution but both measures improve
for the near-exact distributions based on mixtures. But, when we take a similar
jump on the value of p, now for m = 7 and k = 6, considering now p = 37 and
p = 41, the measures worsen for all the near-exact distributions except for
the non-starred version of the mixture of 3 GNIG distributions, which shows
a sharp improvement in its measures values.

Table 4 — Values of As for a = 7.3, p = 16 and different values of m and
higher vales of k, yielding values of n =1 or n = 0.

73 7 9 16 1.072x107° 6.948%10~7 1.982x10~ 1!
5.125x10~6 2.124x107? 4.042x10~12
73 7T 19 16 1.789x107° 4.746x1076 1.523x1076
1.789x107° 4.746x10~6 1.523x106
73 27 9 16 1.611x10°* 7.639x10°7 3.837x1077
8.128x107° 2.317x107 6.890x10~10
7.3 27 19 16 8.259x10~° 1.456x10~7 2.430x1010
8.259x107° 1.456x10°7 2.430%1019

Table 5 — Values of Ay for m =7, k =3, p =16 and higher values of a.

GNIG M2GNIG M3GNIG
a m k p GNIG* M2GNIG* MSGNIG*
123 7 3 16 3.871x10°8 6.171x10~ 14 1.229x10 1%
3.169x10~8 4.340x10~14 5.612x10~17
223 7 3 16 1.107x10~8 5.106x10~15 9.783x10~17
9.926x10~9 4.211x10°15 5.588x 1017
523 7 3 16 1.928x107? 1.095x 10~ 1% 1.603x 1016
1.840%x1079 4.202x10~16 1.522x1016

For smaller values of m all distributions show a decrease in the value of
their measures of proximity, what shows an improvement of their proximity to
the exact distribution. For smaller values of k it seems that the starred versions
of the near-exact distributions display a worse behaviour than for higher val-
ues of k, while the non-starred versions show the opposite behaviour. Only for
|p/k| =0, in which case the starred and non-starred versions coincide, the dis-
tributions based on mixtures improve their performance for higher values of k.

5. FINAL REMARKS

All the near-exact distributions developed show a very good behaviour. As
expected, the ones that equate more moments exhibiting a better behaviour
and also the versions built in Theorem 3 with a better performance than the
corresponding versions specified after Theorem 3. The mixture of 3 GNIG
distributions developed in Theorem 3, which equates six moments has the
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best performance among all the near-exact distributions and, when compared
with the mixture of 2 GNIG distributions, seems to be well worth the extra
effort of determining two more parameters whenever some extra precision is
reuired, showing that going beyond the mitic number of four moments may
be worth the effort.

A particular case of interest of the above results arises for k=2, as the exact
distribution of the generalized Wilks A statistic (Wilks, 1932, 1935) used to
test the independence of severeal sets of normally distributed variables, when
at most one of them has an odd number of variables (Coelho, 1998, 1999).

APPENDIX A

Table 1 — Values of A; for m = 5 and several values of a, k and p.

73 5 3 16 2.413x1074 6.515x10 7 4.711x107?
1.140x106 2.859x 101! 5.705x10~15
123 5 3 16 2.754%x107° 2.494x107° 1.740x10~12
2.386x1076 3.066x10~ 1" 1.202x10~ ™
73 5 3 17 6.051x107% 7.226x1076 6.575x10~8
1.957x1076 3.002x1010 6.422x10 14
123 5 3 17 5.996x107° 3.731x1078 2.741x10~ 11
4.885x1076 4.611x10710 6.353x10~14
73 5 3 19 6.893x10~* 1.016x107° 2.769%108
2.373x107 3.031x1012 3.162x1016
123 5 3 19 2.950x107° 3.665x107° 1.303x10~12
1.247x1076 1.188x10~ 11 3.496x10~15
73 5 3 20 2.241x1073 1.282x10°* 6.637x106
2.912x107 2.039x10~ 11 2.170x10715
123 5 3 20 6.600x107° 5.435x1078 5.013x10~ 1
2.567x106 1.798x10~10 1.868x10 14
73 5 3 31 — — —
123 5 3 31 1.760x10~* 4.193x10~7 2.686x10~°
5.961x1078 1.377x10~13 1.039x1017
73 5 6 31 2.611x107° 3.171x1076 2.448x107
1.031x10~7 2.002x10~° 3.684x10~ 11
123 5 6 31 2.673x10°6 2.382x10 7 1.790x10~8
2.205x10~7 7.853%x107° 2.588x10~10
73 5 6 32 3.498x107° 3.976x10~6 2.269x10~7
1.262x10°7 2.380x10~° 4.418x10~ 11
123 5 6 32 3.676x10°6 3.362x107 2.683x1078
2.958x10~7 1.070x108 3.719x1010
73 5 6 35 1.996x104 8.573x107 1.367x10°8
3.007x1077 1.756x10~ 11 1.814x10~1°
123 5 6 35 1.345%x107° 3.789x10~° 1.664x10~ 12
9.677x10°7 4.037x10~ 1L 4.629%x10°1°
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Table 2 — Values of Ay for m =7, k = 3, and several values of a and p.

a m k p GGJJV\/II%k ]\1\/[422%%11%* %33%%1100*
73 7 3 16 3.668x10~* 3.236x1076 2.952x108
2.044%10~6 3.891x10~10 7.193x10714
123 7 3 16 4.602x107° 3.339x10°8 2.065x10~ 11
4.099x1076 4.810x10~10 4.905x10~14
73 7 3 17 8.112x10~% 1.663x107° 3.452x10~7
3.221x10°6 1.091x107? 4.121x10713
123 7 3 17 9.045%x107° 1.291x10°7 1.797x10~10
7.616x107° 1.671x107? 3.801x10713
73 7 3 19 9.980x10~* 2.858x107° 8.486x107
4.576x1077 4.479x10~ 11 4.466x10~1°
123 7 3 19 4.884x107° 4.492x10~8 3.614x10~ 11
2.168x106 1.881x1010 1.436x10 14
73 7 3 31 — — —
123 7 3 31 2.636x1074 2.016x1076 1.612x1078
1.139%10°7 2.434x10 12 4.807x10 17

Table 3 — Values of A

for m =7, k = 6, and several values of a and p.

73 7 6 16 7.242x107° 5.322x10~8 4.175x10~ 11
1.534%x107° 3.491x107° 1.686x10~ 12
123 7 6 16 2.797x107° 4.319x107° 1.932x10~ 12
1.209x107° 1.006x107? 2.802x1013
73 7T 6 17 1.084x10~4 1.486x10°7 1.980x10~ 10
2.215x107° 9.454x10~° 4.625x10~12
123 7 6 17 4.120x107° 1.230x1078 4.260x10~12
1.761x107° 2.820x10~° 5.579x10713
73 7 6 31 2.001x107° 3.717x10~8 2.745x107°
8.501x1078 5.379x10712 1.570x10~13
123 7 6 31 2.176x10~6 5.602x10~19 7.149x10~ 11
1.787x10~7 7.420x1012 4.060x10~13
73 7 6 35 3.260x10~4 3.245x1076 2.823x1078
6.058x10~7 5.031x10~ 11 5.314x10715
123 7 6 35 2.607x107° 1.114%x1078 5.254x10712
1.891x106 1.090x10~10 8.240%1015
73 7 6 37 5.756x107° 7.307x1078 5.027x1078
1.817x1078 5.678x10~13 8.226x1071°
123 7 6 37 2.331x1076 7.487x10710 8.738x10~ 1
9.260x108 2.814x1012 1.103x10~13
73 7 6 41 1.695x1073 1.072x10~4 7.067x107°
5.642x108 1.706x10~12 7.219%x1017
123 7 6 41 2.950%x10° 1.699x1078 1.036x10~ 11
9.871x10~7 4.179x10~ 1 2.347x1071°
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Table 4 — Values of A; for a = 7.3, p = 16 and different values of m and
higher vales of k, yielding values of n =1 or n = 0.

GNIG M2GNIG M3GNIG
a m k p GNIG* MQGNIG* MSGN[G*
73 7 9 16 3.293x10°° 2.851x10°8 9.815x10 11
1.614x107° 9.060x10~? 2.103x10~11
73 7 19 16 9.803x10~° 4.075x107° 1.813x107°
9.803x107° 4.075%x107° 1.813x10°°
73 27 9 16 2.722x10~4 1.719x10°6 1.035x10~8
1.382x10~* 5.276x10~7 1.917x107°
73 27 19 16 2.053x10~% 4.834x10~7 9.692x10~10
2.053x10~4 4.834%x107 9.692x1010

Table 5 — Values of Ay for m =7, k = 3, p = 16 and higher values of a.

GNIG M2GNIG M3GNIG
a m k p GNIG* M2GNIG* MSGNIG*
123 7 3 16 1.260x10° 2.679x10712 5.872x1014
1.034x10~6 1.892x1012 2.617x10715
223 7 3 16 6.594x10~7 4.055x10~13 4.266x10~15
5.917x10~7 3.352x10713 4.047x10715
523 7 3 16 2.704x10~7 3.069x10~ 14 3.000x10~ 4
2.583x10~ 7 2.705x10~ 14 2.627x10~ 14
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