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Abstract
In this paper the exact distribution of the logarithm of the product of a givennumber of independent Beta random variables whose second parameter is ratio-nal is obtained under the form of a Generalized Integer Gamma distribution andnear-exact distributions are obtained either as Generalized Near-Integer Gammadistributions or mixtures of these distributions. As particular cases of interest wehave the exact and near-exact distributions of the generalized Wilks Lambda statis-tic.
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1. IntroductionThe aim of this paper is to obtain the exact distribution of the logarithmof the product of a given number of independent Beta distributed randomvariables whose second parameter is rational, under the form of a GeneralizedInteger Gamma (GIG) distribution or near-exact distributions of such productunder the form of a Generalized Near-Integer Gamma (GNIG) distribution ormixtures of these distributions. Results are obtained under fairly wide condi-tions. The only restrictions imposed are that the step in the �rst parameterhas to be equal to the reciprocal of that same integer value, that is, if we writethe second parameter in the Beta distributions as m=k, for m; k 2 IN (we will1 This research was �nancially supported by the Portuguese Foundation for Scienceand Technology (FCT).



be using IN to represent the set of positive integers, /Q the set of rationals,with /Q+ representing the set of positive rationals, and IR to represent the setof all reals, with IR+ representing the set of positive reals), then the step inthe �rst parameter of the Beta random variables involved in the product hasto be equal to 1=k, and in order to be able to obtain the exact distribution weneed the number of such Beta distributed random variables to be a multiple ofthe integer in the denominator of the second parameter, say, nk, with n 2 IN .As a summary, we may say that the aim of this paper is to obtain theexact or near-exact distribution of statistics of the form
W 0 = pY

j=1Yj and W = � logW 0 (1.1)
where Yj � B �a� jk ; mk

� j = 1; : : : ; p
with m; k 2 IN .Since such distributions will assume the form of Generalized IntegerGamma (GIG) or Generalized Near-Integer Gamma (GNIG) distributions,we introduce now these distributions.LetX be a random variable with a Gamma distribution with shape param-eter r and rate parameter � (we call this parameter 'rate', given the relation ithas, for integer r, with the rate of a Poisson process). Then the pdf (probabilitydensity function) of X will be given by

fX(x) = �r�(r) e��x xr�1 ; (x > 0)
and we will represent this fact by

X � �(r; �) :
Let Xi � �(ri; �i) i = 1; : : : ; nbe n independent Gamma distributed random variables with ri 2 IN , fori 2 f1; : : : ; ng and all �i di�erent. Then the distribution of the random variable

Z = nX
i=1Xi

is what Coelho (1998, 2004) called a GIG distribution of depth n. The pdfand cdf (cumulative distribution function) of Z are respectively given by
fZ(z) = K nX

j=1Pj(z) e��j z (1.2)
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and FZ(z) = 1�K nX
j=1P �j (z) e��j z (1.3)

where
K = nY

j=1�rjj ; Pj(z) = rjX
k=1 cjk zk�1 (1.4)

and
P �j (z) = rjX

k=1 cjk (k � 1)! k�1Xi=0
zii!�k�iiwith cj;rj = 1(rj � 1)!

nY
i=1i6=j

(�i � �j)�ri ; j = 1; : : : ; n ; (1.5)
and

cj;rj�k = 1k
kX
i=1

(rj � k + i� 1)!(rj � k � 1)! R(i; j; n) cj;rj�(k�i) ; (k = 1; : : : ; rj � 1)
(j = 1; : : : ; n) (1.6)where R(i; j; n) = nX

k=1k 6=j
rk (�j � �k)�i (i = 1; : : : ; rj � 1) : (1.7)

We will denote the fact that the random variable Z has a GIG distributionof depth n, with the above pdf and cdf by
Z � GIG(r1; : : : ; rn; �1; : : : ; �n) :

The GNIG distribution (Coelho, 2004) arises as the distribution of thesum of two independent random variables, one with a GIG distribution andthe other with a Gamma distribution.Let Z1 � GIG(r1; : : : ; rn;�1; : : : ; �n)and Z2 � �(r; �)be two independent random variables. Let further � 6= �i (i = 1; : : : ; n) andr 2 IR+nIN . Then the random variable
Z = Z1 + Z2

has a GNIG distribution of depth n+ 1, with pdf
fZ(z) = K�r nX

j=1Qj(z) e��jz
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and cdf
FZ(z) = �r zr�(r + 1) 1F1(r; r + 1;��z)�K�r nX

j=1Q�j(z) e��jz
where

Qj(z) = rjX
k=1 cjk

�(k)�(k + r) zk+r�1 1F1 (r; k + r; (�j � �)z)
and

Q�j(z) = rjX
k=1

cjk�kj �(k)
k�1X
i=0

zr+i �ij�(r + i+ 1) 1F1 (r; r + i+ 1; (�j � �)z)
with K and cjk given respectively by (1.4) and (1.5) through (1.7) above, and

1F1(a; b;x) = �(b)�(b� a) �(a)
Z 10 ext ta�1(1� t)b�a�1 dt

= �(b)�(a)
1X
i=0

�(a+ i)�(b+ i) x
i
i!

being the Kummer conuent hypergeometric function.We will denote the fact that the random variable Z has a GNIG distribu-tion of depth n+ 1, with the above pdf and cdf by
Z � GNIG(r1; : : : ; rn; r; �1; : : : ; �n; �) :

Since in section 3 we will be dealing with mixtures of these distributionswe will now settle the notation for such mixtures. A mixture of k GNIGdistributions, the j-th of which has weight �j and depth mj, will be denotedby
MkGNIG (�1; r11; : : : ; r1m1 ;�11; : : : ; �1m1j : : : j�k; rk1; : : : ; rkmk ;�k1; : : : ; �kmk) :

2. The exact distribution
The following Theorem gives the exact distribution of W or W 0 in (1.1)when p = nk, for some n 2 IN , under a much manageable form.

Theorem 1: Let m; k; n 2 IN and a2IR+, with a>n and m=k2 /Q+nIN , and

let

Yj � B �a� jk ; mk
� j = 1; : : : ; nk
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be nk independent Beta distributed random variables. Let further

W 0 = nkY
j=1Yj and W = � logW 0 : (2.1)

Then the exact distribution of W is a GIG distribution of depth m+ k(n� 1)
with shape parameters

rj =
8>><>>:
hj j = 1; : : : ; k
hj + rj�k j = k + 1; : : : ;m+ k(n� 1) (2.2)

where

hj =
8>>>>><>>>>>:

1 j = 1; : : : ;min(nk;m)
0 j = 1 +min(nk;m); : : : ;max(nk;m)

�1 j = 1 +max(nk;m); : : : ;m+ k(n� 1)
(2.3)

or hj = (# of elements in fnk;mg � j)� 1 ;
and rate parameters

a� n+ j � 1k j = 1; : : : ;m+ k(n� 1) ;
that is,

W � GIG� r1; r2; : : : ; rm+k(n�1)| {z }m+k(n�1) ; a� n; a� n+ 1k ; : : : ; a� 1 + m�1k| {z }m+k(n�1)
� : (2.4)

Proof : Since we know that if
X � B(a; b)

then the h-th moment of X is
E �Xh� = �(a+ b)�(a) �(a+ h)�(a+ b+ h) (h > �a) (2.5)

and since in (2.1) the Gamma functions are de�ned for any strictly complexh, and given the independence of the nk random variables Yj in (1.4), usingthe Gauss multiplication formula for the Gamma function,
�(nz) = (2�) 12 (1�n) nnz� 1

2
n�1Y
k=0 �

 z + kn
!
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and yet the fact that for a 2 /C and n 2 IN ,
�(a+ n)�(a) = n�1Y

j=0(a+ j)
we may write the characteristic function of W as

�W (t) = E �eitW� = E �e�it logW 0�
= E �W 0�it� = nkY

j=1E
�Y �itj �

= nkY
j=1

� �a� jk + mk �� �a� jk�
� �a� jk � it�

� �a� jk + mk � it�
= nY

j=1
� (k(a� j) +m)� (k(a� j)) � (k(a� j)� kit)� (k(a� j) +m� kit)

= nY
j=1

m�1Y
s=0 (k(a� j) + s) (k(a� j) + s� kit)�1

= nY
j=1

m�1Y
s=0

�a� j + sk
� �a� j + sk � it��1

= m+k(n�1)Y
j=1

�a� n+ j � 1k
�rj �a� n+ j � 1k � it��rj ;

that is the characteristic function of the sum of m + k(n � 1) = m � k + nkindependent Gamma random variables with integer shape parameters rj givenby (2.2) and (2.3) and rate parameters
a� n+ j � 1k j = 1; : : : ;m+ k(n� 1) ;

that is the GIG distribution in (2.4).
The exact pdf and cdf of W are thus easily derived from (1.2) and (1.3),and from these, the exact pdf and cdf of W 0 = e�W , are also easily obtained.In the above Theorem, nk and m are interchangeable. This result is statedin the following Theorem.
Theorem 2: Let m; k; n 2 IN and a 2 IR+ with a > n and let

Y �j � B �a� n+ mk � jk ; n
� j = 1; : : : ;m
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be m independent Beta distributed random variables. Let further

W 2 = mY
j=1Y �j and W2 = � log W 02 :

Then W 02 and W2 have, respectively, the same distribution as W 0 and W in(2.1) in Theorem 1.

Proof : Using the same technique and arguments used in the proof of The-orem 3, we may write
�W2(t) = E �eitW2

� = E �e�it logW 02
�

= E �W 0�it2 � = nkY
j=1E

�Y ��itj �

= mY
s=1

� �a� n+ mk � sk + n�
� �a� n+ mk � sk�

� �a� n+ mk � sk � it�
� �a� n+ mk � sk + n� it�

= mY
s=1

� �a� n+ s�1k + n�
� �a� n+ s�1k �

� �a� n+ s�1k � it�
� �a� n+ s�1k + n� it�

= mY
s=1

n�1Y
j=0

�a�n+j+ s�1k
� �a�n+j + s�1k �it��1

= mY
s=1

nY
j=1

�a�n�1+j+ s�1k
� �a�n�1+j+ s�1k �it��1

= nY
j=1

m�1Y
s=0

�a� (n+ 1� j) + sk
� �a� (n+ 1� j) + sk � it��1

= nY
j=1

m�1Y
s=0

�a� j + sk
� �a� j + sk � it��1

= �W (t) ;
so that the distributions of W2 and W are the same and thus so are thedistributions of W 02 = e�W2 and W 0 = e�W .

Given the result in Theorem 2, the interchangeability of m and nk inTheorem 3 becomes more evident if we take in Theorem 1
a = a� + n� mk with a� > mk

so that then in Theorem 2 we have a� n+ mk = a�, with a� > mk , so that we
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may write
Y �j � B �a� � jk ; n

� j = 1; : : : ;m :
Yet under another equivalent view, the duality is in the fact that in Theorem3 we have

Yj � B �a� + n� mk � jk ; mk
� j = 1; : : : ; nk

with a� > mk , while in Theorem 2 we have
Y �j � B �a+ mk � n� jk ; n

� j = 1; : : : ;m
with a > n.

3. Near-exact distributions
When we are not able to write p as nk for some n 2 IN , then we are notable to obtain the exact distribution of W or W 0 under a manageable form.For these cases, the use of a near-exact distribution is a much adequate option.The following Theorem gives near-exact distributions for W when p 6= nk,under the form of a GNIG distribution or mixtures of GNIG distributions.

Theorem 3: Let m; k 2 IN and a 2 IR+, with m=k2 /Q+nIN , and let

Yj � B �a� jk ; mk
� j = 1; : : : ; p

be p independent random variables, where a>p=k and p 6=n�k for any n�2IN .

Let further

W 0 = pY
j=1Yj ; W = � logW 0 and n = bp=kc :

Then, near-exact distributions for W may be obatined under the form of a

GNIG distribution of depth m+k(n�1)+1 or mixtures of 2 or 3 such distri-

butions. More precisely, we may write

W ne� GNIG �r1; : : : ; rm+k(n�1); r;�1; : : : ; �m+k(n�1); �� ; (3.1)
W ne�M2GNIG ��; r1; : : : ; rm+k(n�1); r�;�1; : : : ; �m+k(n�1); ��1j

1��; r1; : : : ; rm+k(n�1); r�;�1; : : : ; �m+k(n�1); ��2� ; (3.2)
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and

W ne�M3GNIG ��1; r1; : : : ; rm+k(n�1); s;�1; : : : ; �m+k(n�1); �1j
�2; r1; : : : ; rm+k(n�1); s;�1; : : : ; �m+k(n�1); �2j
1��1��2; r1; : : : ; rm+k(n�1); s;�1; : : : ; �m+k(n�1); �3� ;

(3.3)

where '
ne� ' is to be read as 'is near-exactly distributed as', 0 < �; �1; �2 < 1

and where for j = 1; : : : ;m+ k(n� 1),
rj =

8>><>>:
hj j = 1; : : : ; k
hj + rj�k j = k + 1; : : : ;m+ k(n� 1) (3.4)

where

hj =
8>>>>><>>>>>:

1 j = 1; : : : ;min(nk;m)
0 j = 1 +min(nk;m); : : : ;max(nk;m)

�1 j = 1 +max(nk;m); : : : ;m+ k(n� 1)
(3.5)

or hj = (# of elements in fnk;mg � j)� 1 ;
�j = a� pk + j � 1k j = 1; : : : ;m+ k(n� 1) ;

and r and � in (3.1) de�ned in such a way that the two �rst moments of the

exact and near-exact distribution coincide, that is,

r = �21�2 � �21 and � = �1�2 � �21 (3.6)
where

�h = dhdth
0@p�nkY

j=1
� �a� jk + mk �� �a� jk�

� �a� jk � it�
� �a� jk + mk � it�

1A������t=0 (h = 1; 2) (3.7)
and �, r�, ��1 and ��2 in (3.2) are de�ned in such a way that

dhdth
0@p�nkY

j=1
� �a� jk + mk �� �a� jk�

� �a� jk � it�
� �a� jk + mk � it�

1A������t=0
= � �(r� + h)�(r�) ���h1 + (1� �) �(r� + h)�(r�) ���h2 (h = 1; : : : ; 4)

(3.8)
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and �1, �2, s, �1, �2 and �3 in (3.3) are de�ned in such a way that

dhdth
0@p�nkY

j=1
� �a� jk + mk �� �a� jk�

� �a� jk � it�
� �a� jk + mk � it�

1A������t=0
= � �(s+h)�(s) ��h1 + �2 �(s+h)�(s) ��h2 + (1��1��2) �(s+h)�(s) ��h3

(h = 1; : : : ; 6):(3.9)
Proof : Let n=bp=kc. Then, we may write the characteristic function of W as
�W (t) = pY

j=1
� �a� jk + mk �� �a� jk�

� �a� jk � it�
� �a� jk + mk � it�

= p�nkY
j=1

� �a� jk+mk �� �a� jk�
� �a� jk�it�� �a� jk+mk �it�pY

j=p�nk+1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�
= p�nkY

j=1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�nkY
j=1

� �a� j+p�nkk +mk �� �a� j+p�nkk � � �a� j+p�nkk �it�
� �a� j+p�nkk +mk �it�

= p�nkY
j=1

� �a� jk+mk �� �a� jk�
� �a� jk�it�� �a� jk+mk �it�nkY

j=1
� �a+n� pk� jk+mk �� �a+n� pk� jk�

� �a+n� pk� jk�it�� �a+n� pk� jk+mk �it�
= p�nkY

j=1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�| {z }�1(t) m+k(n�1)Y
j=1

�a� pk+ j�1k
�rj �a� pk+ j�1k �it��rj| {z }�2(t) (3.10)with rj (j = 1; : : : ;m+k(n�1)) given by (3.1) and (3.2), and where in passing
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from
�2(t) = nkY

j=1
� �a+n� pk� jk+mk �� �a+n� pk� jk�

� �a+n� pk� jk�it�� �a+n� pk� jk+mk �it�to
�2(t) = m+k(n�1)Y

j=1
�a� pk+ j�1k

�rj �a� pk+ j�1k �it��rj
we used the result coming from the proof of Theorem 1, when handling thecharacteristic function of W , replacing a by a+n�p=k.Then in (3.10) we may approximate �1(t) in several di�erent ways, as forexample by ��1(t) = �r(�� it)�r (3.11)in such a way that

dhdth �1(t) = dhdth ��1(t) for h = 1; 2
yielding � and r given by (3.6) and (3.7) in the Theorem statement, or by

���1 (t) = � ��r�1 (��1 � it)�r� + (1� �)��r�2 (��2 � it)�r� (3.12)
in such a way that

dhdth �1(t) = dhdth ���1 (t) for h = 1; : : : ; 4
yielding �, ��1, ��2 and r� given by (3.8) in the Theorem statement, or yet by
����1 (t) = �1 �s1(�1�it)�s + �2 �s2(�2�it)�s + (1��1��2)�s3(�3�it)�s (3.13)

in such a way that
dhdth �1(t) = dhdth ����1 (t) for h = 1; : : : ; 6

yielding �1, �2, �1, �2, �3 and s given by (3.9) in the Theorem statement.Then if we approximate �W (t) by keeping �2(t) unchanged and replacing�1(t) by the characteristic functions in (3.11), (3.12) or (3.13), we will getnear-exact approximations of �W (t) which are respectively the GNIG distri-bution, the mixture of two GNIG distributions or the mixture of three GNIGdistributions respectively in (3.1), (3.2) and (3.3) in the statement of the The-orem, with these distributions yielding respectively the �rst two, four and sixmoments equal to the exact ones.
We should stress that the expressions in Theorem 3 will work and give thecorrect result for any value of n = bp=kc � 0, since at �rst sight this may benot completely clear for n = 1 and n = 0.
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We will de�ne, as it is usual, that a product that is empty of terms, that is,a product which upper limit is smaller than its lower limit, is equal to 1. Giventhe de�nition of n(= bp=kc) and given that we consider p 6= nk, we will alwayshave p� nk � 1, so that the product that de�nes �1(t) is never empty, whilethe product that de�nes �2(t) is never empty for n � 1. However, for n = 1,there may be some questions about the de�nition of the shape parameters rjgiven by (3.4) and (3.5), since we may either have m > k or m < k. If n = 1and m > k, there is clearly no problem with the de�nitions in (3.4) and (3.5),with the upper limit of the index j for rj being m, both in (3.4) and (3.10). Ifm < k, (3.4) will give
hj =

8><>: 1 j = 1; : : : ;m
0 j = m+ 1; : : : ; k

and (3.5) rj = hj j = 1; : : : ; kwith only the �rst m of them, all equal to 1, being used in �2(t) in (3.10).For n = 0, �2(t) doesn't exist, or rather, it is equal to 1 and the whole�W (t), in this case reduced to �1(t), is asymptotically approximated by ��1(t),���1 (t) or ����1 (t). For n=0, if m < k, �2(t) will clearly reduce to 1 since inthis case the upper limit of the product that de�nes �2(t) will be m� k < 0and thus this product reduces to 1. However, if n=0 and m > k, the productde�ning �2(t) will have its upper limit equal to m � k > 0 and it may seemthat in this case �2(t) would not reduce to 1. But indeed, in this case, all theshape parameters rj in �2(t) will be equal to zero since from (3.5) we will have
hj = 0 ; j = 1; : : : ; ;m� k

and from (3.4), rj = hj = 0 ; j = 1; : : : ;m� k :
Another issue related with Theorem 3 is that one may question why was itthat in the proof of Theorem 3 the decomposition of the characteristic functionof W was not done in a much simpler way, like

�W (t) = pY
j=1

� �a� jk + mk �� �a� jk�
� �a� jk � it�

� �a� jk + mk � it�
= nkY

j=1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�pY
j=nk+1

� �a� jk+mk �� �a� jk�
� �a� jk�it�� �a� jk+mk �it�
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= m+k(n�1)Y
j=1

�a�n+ j�1k
�rj �a�n+ j�1k �it��rj| {z }~�2(t) pY

j=nk+1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�| {z }~�1(t) (3.14)with rj (j = 1; : : : ;m + k(n � 1)) given by (2.2) and (2.3), allowing a directuse of the result obtained in the proof of Theorem 1, when passing from
~�2(t) = nkY

j=1
� �a� jk+mk �� �a� jk�

� �a� jk�it�� �a� jk+mk �it�
to ~�2(t) = m+k(n�1)Y

j=1
�a�n+ j�1k

�rj �a�n+ j�1k �it��rj ;
and approximating then �W (t) by keeping ~�2(t) unchanged and replacing~�1(t) by the characteristic functions in (3.11), (3.12) or (3.13), now with theparameters respectively de�ned in such a way that

dhdth ~�1(t)�����t=0 =
�(r + h)�(r) ��h (h = 1; 2)

dhdth ~�1(t)�����t=0 = � �(r�+h)�(r�) ���h1 + (1��) �(r�+h)�(r�) ���h2 (h = 1; : : : ; 4)
or
dhdth ~�1(t)�����t=0 = � �(s+h)�(s) ��h1 + �2 �(s+h)�(s) ��h2 + (1��1��2) �(s+h)�(s) ��h3

(h = 1; : : : ; 6);
obtaining this way near-exact approximations for �W (t) which would be sim-ilar to the GNIG distribution, the mixture of two GNIG distributions or themixture of three GNIG distributions respectively in (3.1), (3.2) and (3.3) inthe statement of the Theorem, with

�j = a� n+ j � 1k j = 1; : : : ;m+ k(n� 1) ;
still yielding respectively the �rst two, four and six moments equal to theexact ones? Well, the answer is: because the way the decomposition of thecharacteristic function of W was done in the proof of Theorem 3 yields muchbetter approximations, as it may be con�rmed by observing the results in
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the next section. But not only this. Also, while the near-exact distributionsobtained in Theorem 3 display a marked asymptotic behaviour for increasingvalues of p which yielding the same values for p� nk show higher values of n,these latter distributions would have a worse performance for these increasingvalues of p, as it may be observed by analysing the results obtained in thenumerical studies in the next section. This is due to the fact that in eithercase �1(t) is the characteristic function of either a Logbeta random variableor the sum of independent Logbeta random variables and these distributionsare much better approximated by Gamma random variables or mixtures ofGamma random variables when ther �rst parameter in the Logbeta randomvariables has higher values.In the next section we will carry out a numerical study in order to evaluatethe performance of the near-exact approximations proposed.
4. Numerical Studies

A rather extensive numerical study was carried out for di�erent values ofeach of the parameters in the distributions, a, m, k and p, in order to betterassess the proximity between the exact and the near-exact distributions. Allcases considered are cases for which we do not have the exact distributiongiven by Theorem 1, that is, cases for which p=k 2 /Q+nIN . All studies werecarried out for the distribution of the statistic W in (1.1).In order to evaluate the proximity between the exact and the near-exactdistributions, and given that the exact pdf or cdf is not known, two measuresbased on the characteristic function are used. These measures are
�1 = 12�

+1Z
�1 j�W (t)� ��(t)j dt and �2 = 12�

+1Z
�1

������W (t)� ��(t)jt
����� dt

where �W (t) represents the exact characteristic function of W and ��(t)the characteristic function corresponding to the near-exact distribution un-der study. Both �1 and �2 are directly derived from the inversion formulasrespectively for the pdf and the cdf, with
maxw>0 jFW (w)� F �(w)j � �2 and maxw>0 jfW (w)� f �(w)j � �1 ;

where FW (w) and fW (w) represent respectively the exact cdf and pdf of Wevaluated at w > 0 and F �(w) and f �(w) represent respectively the near-exact cdf and pdf of W corresponding to the characteristic function ��(t).The measure �2 was already used by Grilo & Coelho (2007) and it may alsobe directly derived from the Berry-Esseen bound (Grilo & Coelho, 2007), whilethe measure �1 is a slight modi�cation of a measure used by the same authors,in order to enable us to obtain a bound on the absolute value of the di�erencebetween the exact and near-exact pdf's.
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In all tables we denote by GNIG, M2GNIG and M3GNIG the threenear-exact distributions with similar acronyms in Theorem 3 and by GNIG�,
M2GNIG� and M3GNIG� the three 'corresponding' near-exact distributionsobtained by following the procedure outlined after Theorem 3, by replacing~�1(t) in �W (t) respectively by ��1(t), ���1 (t) and ����1 (t) in (3.11), (3.12) and(3.13).

Table 1 { Values of �2 for m = 5 and several values of a, k and p.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 5 3 16 1:945�10�4 4:067�10�7 2:492�10�98:311�10�7 1:496�10�11 2:357�10�1512.3 5 3 16 9:189�10�6 6:337�10�10 3:649�10�137:647�10�7 7:243�10�12 2:324�10�157.3 5 3 17 5:475�10�4 5:039�10�6 3:912�10�81:594�10�6 1:744�10�10 2:970�10�1412.3 5 3 17 2:115�10�5 9:992�10�9 6:180�10�121:657�10�6 1:152�10�10 1:302�10�147.3 5 3 19 8:542�10�4 9:783�10�6 2:259�10�82:516�10�7 2:245�10�12 1:815�10�1612.3 5 3 19 1:167�10�5 1:107�10�9 3:146�10�134:719�10�7 3:308�10�12 7:947�10�167.3 5 3 20 3:446�10�3 1:530�10�4 6:768�10�63:683�10�7 1:762�10�11 1:442�10�1512.3 5 3 20 2:756�10�5 1:727�10�8 1:343�10�111:026�10�6 5:283�10�11 4:490�10�157.3 5 3 31 | | || | |12.3 5 3 31 1:553�10�4 2:868�10�7 1:560�10�94:797�10�8 7:985�10�14 4:830�10�187.3 5 6 31 2:161�10�5 1:883�10�6 1:174�10�77:709�10�8 1:056�10�9 1:525�10�1112.3 5 6 31 8:977�10�7 5:796�10�8 3:534�10�97:100�10�8 1:818�10�9 4:796�10�117.3 5 6 32 3:052�10�5 2:482�10�6 1:127�10�79:980�10�8 1:326�10�9 1:930�10�1112.3 5 6 32 1:270�10�6 8:419�10�8 5:455�10�99:807�10�8 2:553�10�9 7:109�10�117.3 5 6 35 2:125�10�4 7:021�10�7 9:463�10�92:861�10�7 1:184�10�11 9:629�10�1612.3 5 6 35 5:058�10�6 1:081�10�9 3:960�10�133:498�10�7 1:074�10�11 1:008�10�15

In Tables 1 through 5 we may see the values of �2 for a number of di�erentcombinations of values for the parameters a, m, k and p and in Appendix A,in Tables A.1 through A.5 the values of �1 for the same combinations ofparameters.
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Table 2 { Values of �2 for m = 7, k = 3, and several values of a and p.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 3 16 3:283�10�4 2:216�10�6 1:715�10�81:698�10�6 2:345�10�10 3:504�10�1412.3 7 3 16 1:775�10�5 9:750�10�9 5:073�10�121:536�10�6 1:334�10�10 1:120�10�147.3 7 3 17 8:109�10�4 1:274�10�5 2:240�10�72:976�10�6 7:285�10�10 2:216�10�1312.3 7 3 17 3:683�10�5 3:980�10�8 4:657�10�113:016�10�6 4:899�10�10 9:175�10�147.3 7 3 19 1:341�10�3 2:959�10�5 7:469�10�75:446�10�7 3:787�10�11 2:998�10�1512.3 7 3 19 2:221�10�5 1:550�10�8 1:050�10�119:550�10�7 6:126�10�11 3:845�10�157.3 7 3 31 | | || | |12.3 7 3 31 2:585�10�4 1:515�10�6 1:029�10�81:043�10�7 1:625�10�12 2:602�10�17

We may see that, as it was indeed expected, the conclusions drawn whencomparing distributions using the values of the measure �2 in Tables 1 through5 or the values of the measure �1 in Tables A.1 through A.5 are exactly thesame, since the relations among the values of both measures are similar.In Tables 1 and 2, and also in Tables A.1 and A.2, the cases with a = 7:3,k = 3 and p = 31 are displayed only for the sake of completeness and also toalert us, that as stated in Theorems 1 and 3, we need to have a > p=k.All starred versions of the distributions (see note before Table 1) displayhigher values of the measures, indicating a less good proximity to the exactdistribution. Indeed all the near-exact distributions obtained in Theorem 3show a very good behaviour, with the mixtures, which also equate more of the�rst exact moments showing a much better performance, mainly the mixtureof three GNIG distributions, which shows and outstanding performance forall cases.We should stress that for bp=kc = 0 the starred and the non-starred ver-sions of the near-exact distributions coincide (see section 3, Table 4 and TableA.4), since in these cases the part of the characteristic function of W that isusually left untouched is actually lacking.We may also see how increases in the value of the parameter a lead to aslight worsening (higher values) of the measures for the non-starred versionsof the near-exact distributions and to an improvement on the values of themeasures (lower values) for the starred versions, indicating that the former donot display an asymptotic behaviour with respect to this parameter. On thelimit, that is, for very high values of a (see Tables 5 and A.5), the corresponding
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starred and non-starred versions of the near-exact distributions converge tothe same value of the measures, nevertheless with the non-starred versionsalways with better (smaller) values of the measures.
Table 3 { Values of �2 for m = 7, k = 6, and several values of a and p.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 6 16 3:196�10�5 1:780�10�8 1:159�10�116:530�10�6 1:097�10�9 4:331�10�1312.3 7 6 16 6:561�10�6 7:635�10�10 2:850�10�132:783�10�6 1:720�10�10 3:955�10�147.3 7 6 17 5:037�10�4 5:226�10�8 5:843�10�119:943�10�4 3:130�10�9 1:258�10�1212.3 7 6 17 1:008�10�5 2:267�10�9 6:570�10�134:232�10�6 5:036�10�10 8:240�10�147.3 7 6 31 1:890�10�5 2:653�10�8 1:543�10�97:465�10�8 3:426�10�12 7:976�10�1412.3 7 6 31 8:573�10�7 1:671�10�10 1:727�10�116:832�10�8 2:098�10�12 9:277�10�147.3 7 6 35 3:919�10�4 2:990�10�6 2:210�10�86:726�10�7 4:023�10�11 3:406�10�1512.3 7 6 35 1:148�10�5 3:713�10�9 1:472�10�128:096�10�7 3:454�10�11 2:149�10�157.3 7 6 37 8:196�10�5 7:286�10�8 4:436�10�82:324�10�8 5:181�10�13 5:926�10�1512.3 7 6 37 1:089�10�6 2:651�10�10 2:515�10�114:184�10�8 9:396�10�13 2:985�10�147.3 7 6 41 3:872�10�3 1:893�10�4 1:061�10�51:089�10�7 2:256�10�12 7:343�10�1712.3 7 6 41 1:537�10�5 6:711�10�9 3:445�10�124:981�10�7 1:558�10�11 7:188�10�16

But when looking at the values of the measures for �xed values of a, mand k and di�erent values of p, we may see how the non-starred versionsof the near-exact distributions show a very good asymptotic behaviour forincreasing values of p, opposite to the starred versions. More precisely, thenon-starred versions of the near-exact distributions display much lower valuesfor the measures when for �xed values of a, m, k and p=k � bp=kc the valueof bp=kc increases.When a, m, k and bp=kc remain �xed and p=k � bp=kc increases, thenthe behaviour of the near-exact distributions, although consistent for di�erentvalues of the parameter a, it seems to be di�erent for di�erent values of pand also for the other parameters. All the near-exact distributions, both thestarred and non-starred versions seem to display worse (higher) values of bothmeasures when we go from p=k�bp=kc = 1 to p=k�bp=kc = 2. However, whenfor example for m = 5 and k = 6 we go from p = 31 to p = 35 both measures
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worsen for the single GNIG near-exact distribution but both measures improvefor the near-exact distributions based on mixtures. But, when we take a similarjump on the value of p, now for m = 7 and k = 6, considering now p = 37 andp = 41, the measures worsen for all the near-exact distributions except forthe non-starred version of the mixture of 3 GNIG distributions, which showsa sharp improvement in its measures values.
Table 4 { Values of �2 for a = 7:3, p = 16 and di�erent values of m andhigher vales of k, yielding values of n = 1 or n = 0.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 9 16 1:072�10�5 6:948�10�9 1:982�10�115:125�10�6 2:124�10�9 4:042�10�127.3 7 19 16 1:789�10�5 4:746�10�6 1:523�10�61:789�10�5 4:746�10�6 1:523�10�67.3 27 9 16 1:611�10�4 7:639�10�7 3:837�10�98:128�10�5 2:317�10�7 6:890�10�107.3 27 19 16 8:259�10�5 1:456�10�7 2:430�10�108:259�10�5 1:456�10�7 2:430�10�10
Table 5 { Values of �2 for m = 7, k = 3, p = 16 and higher values of a.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG123 7 3 16 3:871�10�8 6:171�10�14 1:229�10�153:169�10�8 4:340�10�14 5:612�10�17223 7 3 16 1:107�10�8 5:106�10�15 9:783�10�179:926�10�9 4:211�10�15 5:588�10�17523 7 3 16 1:928�10�9 1:095�10�15 1:603�10�161:840�10�9 4:202�10�16 1:522�10�16

For smaller values of m all distributions show a decrease in the value oftheir measures of proximity, what shows an improvement of their proximity tothe exact distribution. For smaller values of k it seems that the starred versionsof the near-exact distributions display a worse behaviour than for higher val-ues of k, while the non-starred versions show the opposite behaviour. Only forbp=kc=0, in which case the starred and non-starred versions coincide, the dis-tributions based on mixtures improve their performance for higher values of k.
5. Final Remarks

All the near-exact distributions developed show a very good behaviour. Asexpected, the ones that equate more moments exhibiting a better behaviourand also the versions built in Theorem 3 with a better performance than thecorresponding versions speci�ed after Theorem 3. The mixture of 3 GNIGdistributions developed in Theorem 3, which equates six moments has the
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best performance among all the near-exact distributions and, when comparedwith the mixture of 2 GNIG distributions, seems to be well worth the extrae�ort of determining two more parameters whenever some extra precision isreuired, showing that going beyond the mitic number of four moments maybe worth the e�ort.A particular case of interest of the above results arises for k=2, as the exactdistribution of the generalized Wilks � statistic (Wilks, 1932, 1935) used totest the independence of severeal sets of normally distributed variables, whenat most one of them has an odd number of variables (Coelho, 1998, 1999).
Appendix ATable 1 { Values of �1 for m = 5 and several values of a, k and p.

a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 5 3 16 2:413�10�4 6:515�10�7 4:711�10�91:140�10�6 2:859�10�11 5:705�10�1512.3 5 3 16 2:754�10�5 2:494�10�9 1:740�10�122:386�10�6 3:066�10�11 1:202�10�147.3 5 3 17 6:051�10�4 7:226�10�6 6:575�10�81:957�10�6 3:002�10�10 6:422�10�1412.3 5 3 17 5:996�10�5 3:731�10�8 2:741�10�114:885�10�6 4:611�10�10 6:353�10�147.3 5 3 19 6:893�10�4 1:016�10�5 2:769�10�82:373�10�7 3:031�10�12 3:162�10�1612.3 5 3 19 2:950�10�5 3:665�10�9 1:303�10�121:247�10�6 1:188�10�11 3:496�10�157.3 5 3 20 2:241�10�3 1:282�10�4 6:637�10�62:912�10�7 2:039�10�11 2:170�10�1512.3 5 3 20 6:600�10�5 5:435�10�8 5:013�10�112:567�10�6 1:798�10�10 1:868�10�147.3 5 3 31 | | || | |12.3 5 3 31 1:760�10�4 4:193�10�7 2:686�10�95:961�10�8 1:377�10�13 1:039�10�177.3 5 6 31 2:611�10�5 3:171�10�6 2:448�10�71:031�10�7 2:002�10�9 3:684�10�1112.3 5 6 31 2:673�10�6 2:382�10�7 1:790�10�82:205�10�7 7:853�10�9 2:588�10�107.3 5 6 32 3:498�10�5 3:976�10�6 2:269�10�71:262�10�7 2:380�10�9 4:418�10�1112.3 5 6 32 3:676�10�6 3:362�10�7 2:683�10�82:958�10�7 1:070�10�8 3:719�10�107.3 5 6 35 1:996�10�4 8:573�10�7 1:367�10�83:007�10�7 1:756�10�11 1:814�10�1512.3 5 6 35 1:345�10�5 3:789�10�9 1:664�10�129:677�10�7 4:037�10�11 4:629�10�15
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Table 2 { Values of �1 for m = 7, k = 3, and several values of a and p.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 3 16 3:668�10�4 3:236�10�6 2:952�10�82:044�10�6 3:891�10�10 7:193�10�1412.3 7 3 16 4:602�10�5 3:339�10�8 2:065�10�114:099�10�6 4:810�10�10 4:905�10�147.3 7 3 17 8:112�10�4 1:663�10�5 3:452�10�73:221�10�6 1:091�10�9 4:121�10�1312.3 7 3 17 9:045�10�5 1:291�10�7 1:797�10�107:616�10�6 1:671�10�9 3:801�10�137.3 7 3 19 9:980�10�4 2:858�10�5 8:486�10�74:576�10�7 4:479�10�11 4:466�10�1512.3 7 3 19 4:884�10�5 4:492�10�8 3:614�10�112:168�10�6 1:881�10�10 1:436�10�147.3 7 3 31 | | || | |12.3 7 3 31 2:636�10�4 2:016�10�6 1:612�10�81:139�10�7 2:434�10�12 4:807�10�17

Table 3 { Values of �1 for m = 7, k = 6, and several values of a and p.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 6 16 7:242�10�5 5:322�10�8 4:175�10�111:534�10�5 3:491�10�9 1:686�10�1212.3 7 6 16 2:797�10�5 4:319�10�9 1:932�10�121:209�10�5 1:006�10�9 2:802�10�137.3 7 6 17 1:084�10�4 1:486�10�7 1:980�10�102:215�10�5 9:454�10�9 4:625�10�1212.3 7 6 17 4:120�10�5 1:230�10�8 4:260�10�121:761�10�5 2:820�10�9 5:579�10�137.3 7 6 31 2:001�10�5 3:717�10�8 2:745�10�98:501�10�8 5:379�10�12 1:570�10�1312.3 7 6 31 2:176�10�6 5:602�10�10 7:149�10�111:787�10�7 7:420�10�12 4:060�10�137.3 7 6 35 3:260�10�4 3:245�10�6 2:823�10�86:058�10�7 5:031�10�11 5:314�10�1512.3 7 6 35 2:607�10�5 1:114�10�8 5:254�10�121:891�10�6 1:090�10�10 8:240�10�157.3 7 6 37 5:756�10�5 7:307�10�8 5:027�10�81:817�10�8 5:678�10�13 8:226�10�1512.3 7 6 37 2:331�10�6 7:487�10�10 8:738�10�119:260�10�8 2:814�10�12 1:103�10�137.3 7 6 41 1:695�10�3 1:072�10�4 7:067�10�65:642�10�8 1:706�10�12 7:219�10�1712.3 7 6 41 2:950�10�5 1:699�10�8 1:036�10�119:871�10�7 4:179�10�11 2:347�10�15
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Table 4 { Values of �1 for a = 7:3, p = 16 and di�erent values of m andhigher vales of k, yielding values of n = 1 or n = 0.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG7.3 7 9 16 3:293�10�5 2:851�10�8 9:815�10�111:614�10�5 9:060�10�9 2:103�10�117.3 7 19 16 9:803�10�5 4:075�10�5 1:813�10�59:803�10�5 4:075�10�5 1:813�10�57.3 27 9 16 2:722�10�4 1:719�10�6 1:035�10�81:382�10�4 5:276�10�7 1:917�10�97.3 27 19 16 2:053�10�4 4:834�10�7 9:692�10�102:053�10�4 4:834�10�7 9:692�10�10
Table 5 { Values of �1 for m = 7, k = 3, p = 16 and higher values of a.
a m k p GNIG�GNIG M2GNIG�M2GNIG M3GNIG�M3GNIG123 7 3 16 1:260�10�6 2:679�10�12 5:872�10�141:034�10�6 1:892�10�12 2:617�10�15223 7 3 16 6:594�10�7 4:055�10�13 4:266�10�155:917�10�7 3:352�10�13 4:047�10�15523 7 3 16 2:704�10�7 3:069�10�14 3:000�10�142:583�10�7 2:705�10�14 2:627�10�14
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