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Abstract

We prove in this Note the existence and uniqueness of a strong local solution to the
Cauchy problem for the quasilinear Benney system (1).

1. Introduction and main result.

We consider the system introduced by Benney in [1] to study the interaction between
short and long waves, for example gravity waves in fluids :







iut + uxx = |u|2u+ vu (a)
x ∈ R, t ≥ 0,

vt + [f(v)]x = |u|2x (b)
(1)

where f is a polynomial real function, u and v (real) represent the short and the long wave,
respectively.

In [2] the existence of weak solutions for (1) was proved for f(v) = av2 − bv3, with a
and b real constants, b > 0, in the following sense:

Theorem 1.1 Given u0, v0 ∈ H1(R) with v0 real-valued, there exists functions

u ∈ L∞(R+;H1(R)), v ∈ L∞(R+; (L4 ∩ L2)(R))

such that

i

∫ ∞

0

∫

R

u
∂ϕ

∂t
dx dt+

∫ ∞

0

∫

R

∂u

∂x

∂ϕ

∂x
dx dt+

∫

R

u0(x)ϕ(x, 0) dx+

∫ ∞

0

∫

R

|u|2uϕdx dt+

∫ ∞

0

∫

R

vuϕ dx dt = 0,

∫ ∞

0

∫

R

v
∂ψ

∂t
dx dt+

∫ ∞

0

∫

R

f(v)
∂ψ

∂x
dx dt+

∫

R

v0(x)ψ(x, 0) dx−

∫ ∞

0

∫

R

∂

∂x
|u|2ψ dx dt = 0,

for all functions ϕ, ψ ∈ C1
0 (R × [0,+∞[) (i.e. in the class of continuously differentiable

functions with compact support), with ϕ being complex-valued and ψ real-valued.
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This result was obtained for this particular system by application of the vanishing
viscosity method and we could not extend the necessary estimates to the Burger’s case
(a = 1, b = 0) or to more general cases. Here we will prove the existence of (local) strong
solutions to (1) for general f , extending previous results in [6, 7] for f linear :

Theorem 1.2 Let (u0, v0) ∈ H3(R)×H2(R) and f ∈ C3(R). Then there exists a unique
strong solution (u, v) of the Cauchy problem associated to (1), with

(u, v) ∈ Cj([0, T ];H3−2j(R)) × Cj([0, T ];H2−j(R)), j = 0, 1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (u0, v0).

The main difficulty here is the derivative-loss in the right-hand side of equation (1 −
a). This cannot be handled easily by the Schrödinger kernel, due to its limited smoo-
thing properties. The method employed in [6, 7] for f linear, based in the inhomogeneous
smoothing effect of the Schrödinger group, can not be easily implemented for f nonlinear.
We will address this problem by introducing some auxiliary functions and rewriting system
(1) without derivative loss. A similar technique was introduced in [5] to solve the fully
nonlinear wave equation and employed in [4], in the context of the Zakharov-Rubenchik
system.

Another interesting open problem is the study of the probable blow-up of the local
smooth solutions.

2. An equivalent system.

Let us take (u, v) a solution of (1). By setting F = ut, we obtain from (1 − a)

iF + uxx − u = |u|2u+ u(v − 1),

and
u = (∆ − 1)−1(|u|2u+ u(v − 1) − iF ), (2)

with ∆ =
∂2

∂x2
. Also, differentiating (1 − a) with respect to t leads to

iFt + Fxx = 2|u|2F + u2F̄ + Fv + uvt,

and from (1 − b),

iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|u|2x − uvxf
′(v). (3)

These computations are our motivation to consider the following Cauchy problem:



















iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v) (a)

vt + [f(v)]x = |ũ|2x (b)

F (x, 0) = F0(x) ∈ H1(R), v(x, 0) = v0(x) ∈ H2(R)

(4)
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where u and ũ are given in terms of F by

u(x, t) = u0 +

∫ t

0

F (x, s)ds and ũ(x, t) = (∆ − 1)−1(|u|2u+ u(v − 1) − iF ). (5)

Note that in this system derivative losses do not occur. Indeed, the regularization of
(∆ − 1)−1 puts ũ in H3 and therefore the right-hand side of (4 − a) is in H1, like F .

We will prove the following lemma:

Lemma 2.1 Let (F0, v0) ∈ H1(R)×H2(R) and f ∈ C3(R). Then there exists T > 0 and
a unique strong solution (F, v) of the Cauchy problem (4 − a, b), with

(F, v) ∈ Cj([0, T ];H1−2j(R)) × Cj([0, T ];H2−j(R)), j = 0, 1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (F0, v0).

This lemma will be proved in the next section, using the general theory of Kato for quasi-
linear equations ([3]).

We now explain why Lemma 2.1 implies our main Theorem 1.2:

If (F, v) is a solution of (4), by differentiating (5) with respect to t we obtain

ut = F.

Replacing in (1 − a) yields by (4 − b)

(iut + uxx)t = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v)

= 2|u|2ut + u2ūt + utv + uvt

Hence (iut + uxx − |u|2u− uv)t = 0 and we get

iut + uxx − |u|2u− uv = φ0(x),

where φ0(x) = iF0(x) + u′′0(x) − |u0(x)|
2u0(x) − u0(x)v0(x). By setting

F0(x) = i(u′′0(x) − |u0(x)|
2u0(x) − u0(x)v0(x)), (6)

we obtain φ0 = 0 and (u, v) satisfies (1 − a). Furthermore, from (1 − a),

u = (∆ − 1)−1(|u|2u+ u(v − 1) − iut). (7)

Therefore u = ũ and (u, v) satisfies (1 − b). Note that ut = F ∈ C([0, T ];H1(R)). Also

u(., t) = u0(.) +
∫ t

0
F (., s)ds ∈ C([0, T ];H1(R)), but from (7) we have in fact

u ∈ C([0, T ];H3(R)).
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3. Proof of Lemma 2.1.

In order to apply a variant of theorem 6 in [3] we need to set the Cauchy problem (4)
in the framework of real spaces. We introduce the new variables

F1 = ℜF, F2 = ℑF, u1 = ℜu, u2 = ℑu

and, with U = (F1, F2, v), F10 = ℜF0, F20 = ℑF0, (4) can be written as follows :







∂

∂t
U + A(U)U = g(t, U)

(F1(x, 0), F2(x, 0), v(x, 0)) = (F10(x), F20(x), v0(x)) ∈ (H1(R))2 ×H2(R)

(8)

where

A(U) =







0 ∆ 0
−∆ 0 0

0 0 f ′(v)
∂

∂x







and

g(t, U) =











2|u2|F2 − (u2
1 − u2

2)F2 + 2u1u2F1 + F2v + u2|ũ|
2
x − u2vxf

′(v)

−2|u2|F1 − (u2
1 − u2

2)F1 − 2u1u2F2 − F1v − u1|ũ|
2
x + u1vxf

′(v)

|ũ|2x











which is a non-local source term.
Now we set X = (H−1(R))2×L2(R), Y = (H1(R))2 ×H2(R) and introduce S : Y −→ X

defined by S = (1−∆)I, which is an isomorphism. Moreover A : U = (F1, F2, v) ∈W −→
G(X, 1, β), where W is an open ball in Y centered at the origin and with radius R and
G(X, 1, β) denotes the set of all linear operators D in X such that −D generates a C0 -
semigroup

{

e−tD
}

with
∥

∥e−tD
∥

∥ ≤ eβt, t ∈ [0,+∞[,

β =
1

2
sup
x∈R

|f ′′(v(x)) vx(x)| ≤ cRα(R),

where c > 0 is a numerical constant and α(R) is a continuous function (cf.[3], §8). It is
easy to see that g verifies, for fixed T > 0,

‖g(t, U)‖Y ≤ λ, t ∈ [0, T ], U ∈W.

Now, with B0(v) ∈ L(L2(R)), v in a ball W1 in H2(R), B0(v) defined by (8.7) in [3]

B0(v) = −[f ′′(v)vxx + f ′′′(v)v2
x]
∂

∂x
(1 − ∆)−1 − 2f ′(v)vx

∂2

∂x2
(1 − ∆)−1,
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we introduce an operator B(U) ∈ L(X), U = (F1, F2, v) ∈W , defined by





0 0 0
0 0 0
0 0 B0(v)





In [3], §8, Kato proved that for v ∈W1 we have

(1 − ∆)

(

f ′(v)
∂

∂x

)

(1 − ∆)−1 = f ′(v)
∂

∂x
+B0(v).

Hence, we easily derive for U ∈W

SA(U)S−1 = A(U) +B(U).

Now, for each pair (U,U∗), U = (F1, F2, v) and U∗ = (F ∗
1 , F

∗
2 , v

∗) in W we will prove that

‖g(t, U)− g(t, U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X (9)

for T ′ ∈ [0, T ] where c(T ′) is a continuous increasing function such that c(0) = 0.
Let us point out that if h ∈ L2(R) and w ∈ H1(R) we easily derive

‖hw‖H−1 ≤ ‖h‖H−1‖w‖H1 .

Hence, for example, we get, with an obvious notation,

‖F1u1(u
∗
1 − u1)‖H−1 ≤ ‖F1‖H1‖u1‖H1‖u∗1 − u1‖H−1

and, for t ≤ T ′

∥

∥

∥

∥

f ′(v)vx

(
∫ t

0

F2dτ −

∫ t

0

F ∗
2 dτ

)
∥

∥

∥

∥

H−1

≤ ‖f ′(v)vx‖H1

∫ t

0

‖F − F ∗‖H−1dτ

≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X

where c(T ′) is a continuous increasing function such that c(0) = 0. Now, Lemma 2.1 is an
easy consequence of Theorem 6 in [3], where the local condition (7.7) is replaced by (9)
which is sufficient for the proof of this theorem.

Acknowledgements: This research was partially supported by FCT under program
POCI 2010 (Portugal/FEDER-EU).

REFERENCES

5



[1] D.J. Benney, A general theory for interactions between short and long waves, Studies
in Appl. Math., 56 (1977), 81-94.

[2] J.P. Dias and M. Figueira, Existence of weak solutions for a quasilinear version of
Benney equations, J. Hyp. Diff. Eq., to appear.

[3] T. Kato, Quasi-linear equations of evolution, with applications to partial differential
equations, Lecture Notes in Math.,Springer, 448 (1975), 25-70.

[4] F. Oliveira, Stability of the Solitons for the one-dimensional Zakharov-Rubenchik
Equation, Physica D, 175 (2003), 220-240.

[5] Y. Shibata and Y. Tsutsumi, Local existence of solutions for the initial boundary
problem of fully nonlinear wave equation, Nonlinear Analysis TMA, 11 (1987), 335-
365.

[6] M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for the long wave
- short wave resonance equations, Nonlinear Anal., TMA, 22 (1994), 155-171.

[7] M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for Benney’s
first equations of long wave short wave interactions, Funkcialaj Ekvacioj, 37 (1994),
289-316.

6


