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Abstract

We prove in this Note the existence and uniqueness of a strong local solution to the
Cauchy problem for the quasilinear Benney system (1).

1. Introduction and main result.

We consider the system introduced by Benney in [1] to study the interaction between
short and long waves, for example gravity waves in fluids :

iU + Uge = [ul?u 4+ vu (a)
zeR,t>0, (1)
vi + [f ()] = |ul2 (b)

where f is a polynomial real function, u and v (real) represent the short and the long wave,
respectively.

In [2] the existence of weak solutions for (1) was proved for f(v) = av? — bv3, with a
and b real constants, b > 0, in the following sense:

Theorem 1.1 Given ug,vg € HY(R) with vy real-valued, there exists functions
uwe L*Ry HY(R)),  vel®Ry;(L'NL*)(R))

such that

/ / dxdt—f—/ / 9z 8xd x dt+
/uo( Ye(x,0 dac—l—/ / |u\2ug0dxdt—|—/ /vugpdajdt—o
R

/ /v—da:dt+/ /f da:dt+/ o(z)(z,0) dz— / /—\u| Wdxdt =0,

for all functions o, € CE(R x [0,+00[) (i.e. in the class of continuously differentiable
functions with compact support), with ¢ being complex-valued and ¢ real-valued.
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This result was obtained for this particular system by application of the vanishing
viscosity method and we could not extend the necessary estimates to the Burger’s case
(a =1,b=0) or to more general cases. Here we will prove the existence of (local) strong
solutions to (1) for general f, extending previous results in [6, 7] for f linear :

Theorem 1.2 Let (ug,vg) € H*(R) x H*(R) and f € C3(R). Then there exists a unique
strong solution (u,v) of the Cauchy problem associated to (1), with

(u,0) € C7([0,T); H**(R)) x C7([0,T]; H*/(R)), j = 0, 1.
Here, the life-span T > 0 depends exclusively on f and on the initial data (ug,vg).

The main difficulty here is the derivative-loss in the right-hand side of equation (1 —
a). This cannot be handled easily by the Schrodinger kernel, due to its limited smoo-
thing properties. The method employed in [6, 7] for f linear, based in the inhomogeneous
smoothing effect of the Schrodinger group, can not be easily implemented for f nonlinear.
We will address this problem by introducing some auxiliary functions and rewriting system
(1) without derivative loss. A similar technique was introduced in [5] to solve the fully
nonlinear wave equation and employed in [4], in the context of the Zakharov-Rubenchik
system.

Another interesting open problem is the study of the probable blow-up of the local
smooth solutions.

2. An equivalent system.

Let us take (u,v) a solution of (1). By setting F' = wu;, we obtain from (1 — a)
iF + Uy — u = |u)?u+u(v — 1),

and
w= (A =1 (|ul*u+ u(v = 1) —iF), (2)

0
with A= 3.2 Also, differentiating (1 — a) with respect to t leads to
x

iFy 4 Fpp = 2|u|®F +u*F + Fv + uvy,
and from (1 —b),
iFy + Fpp = 2\ul®*F 4+ v*F + Fo 4 ulu)? — wv, f'(v). (3)
These computations are our motivation to consider the following Cauchy problem:

iFy + Fpp = 2|ul?F +u?F + Fo + u|i|?2 — uv, f'(v) (a)

ve+ [f(0)]a = Ul (b) (4)

F(x,0) = Fy(z) € HY(R), v(x,0) = vo(z) € H*(R)



where u and @ are given in terms of F' by
t
u(x,t) = uo + / F(z,s)ds and a(z,t) = (A — 1) (JulPu+u(v—1)—iF). (5)
0

Note that in this system derivative losses do not occur. Indeed, the regularization of
(A —1)7! puts @ in H? and therefore the right-hand side of (4 — a) is in H!, like F.

We will prove the following lemma:

Lemma 2.1 Let (Fy,v) € HY(R) x H?>(R) and f € C*>(R). Then there exists T > 0 and
a unique strong solution (F,v) of the Cauchy problem (4 — a,b), with

(F.v) € C7((0, T); H'"(R)) x C7((0, T); H*(R)), j = 0,1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (Fo,vo).

This lemma will be proved in the next section, using the general theory of Kato for quasi-
linear equations ([3]).

We now explain why Lemma 2.1 implies our main Theorem 1.2:

If (F,v) is a solution of (4), by differentiating (5) with respect to t we obtain
Uy = F.
Replacing in (1 — a) yields by (4 —b)

(g 4 Upe )t = 2/ul*F +u?F + Fv + u|@]2 — uvg f'(v)

= 2\u|2ut + w2 a4 uv + uvy
Hence (iug + Uz — |ul?u — uv); = 0 and we get
iy + U — |ul?u — wv = ¢o(x),
where ¢o(1) = iFo(x) + uf (z) — |uo(z)[Puo(x) — uo(x)ve(z). By setting
Folw) = i(ul (&) — uo()[Puo(z) — uo()uo()), (6)
we obtain ¢g = 0 and (u,v) satisfies (1 — a). Furthermore, from (1 — a),
u=(A -1 Julfu+ulv—1) —dug). (7)

Therefore v = @ and (u,v) satisfies (1 — b). Note that u; = F € C([0,T]; H*(R)). Also
u(.,t) = ug(.) + fg F(.,s)ds € C([0,T]; H'(R)), but from (7) we have in fact

u € C([0,T); H*(R)).
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3. Proof of Lemma 2.1.

In order to apply a variant of theorem 6 in [3] we need to set the Cauchy problem (4)
in the framework of real spaces. We introduce the new variables

Fy =RF, F, =SF, up = Ru, us = Su
and, with U = (Fy, Fy,v), F1g = REFy, Foo = SFp, (4) can be written as follows :

0

—U+ A(U)U = g¢(t,U)
ot (8)
(F1(z,0), F5(x,0),v(x,0)) = (Fio(z), Fao(z), vo(x)) € (H'(R))* x H*(R)
where
0 A 0
A(U) = —-A 0 0 5
, [
00 )5
and
20u?|Fy — (u? — ud)Fy + 2uiua Fy + Fov + ug|a|? — ugv, f'(v)
g(t,U) = | =2|u?|Fy — (u} — ud)Fy — 2uqus By — Fiv — ug|a|? + uve f/(v)

jal;

which is a non-local source term.
Now we set X = (H 1(R))?x L?(R), Y = (H'(R))? x H*(R) and introduce S : Y — X
defined by S = (1 — A)I, which is an isomorphism. Moreover A : U = (Fy, Fy,v) € W —
G(X,1,3), where W is an open ball in Y centered at the origin and with radius R and
G(X,1, ) denotes the set of all linear operators D in X such that —D generates a Cy -
semigroup {e '’} with

He*tDH < ePt tel0,+oo],

5= 5 sup | (0(2) wale)| < e Ra(R),
zeR

where ¢ > 0 is a numerical constant and «a(R) is a continuous function (cf.[3], §8). It is
easy to see that g verifies, for fixed T' > 0,

lg(t. U)|ly <A, te€0,T], UeW.
Now, with By(v) € L(L?(R)), v in a ball Wy in H?(R), By(v) defined by (8.7) in [3]

2
Bo(v) = 1" (0)vme + £ (00252 (1= A = 27 (0)oa

A1
o (1-2)",
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we introduce an operator B(U) € L(X), U = (Fy, Fa,v) € W, defined by

0 0 0
0 0 0
0 0 Bo(v)

In [3], §8, Kato proved that for v € W; we have

(1-2) (F0)52 ) (1= 8) ! = F0) 5 + Bofo).

Hence, we easily derive for U € W
SA(UHS™t = A(U) + B(U).
Now, for each pair (U, U*), U = (Fy, Fy,v) and U* = (F}, F5,v*) in W we will prove that

lg(t,U) — g(t, U")||Lr(o,r75x) < c(T") sup [|U(t) —U* ()| x (9)
0<t<T"

for 77 € [0, T] where ¢(1") is a continuous increasing function such that ¢(0) = 0.
Let us point out that if h € L?(R) and w € H'(R) we easily derive

[hwll -+ < Al -1 lwll -
Hence, for example, we get, with an obvious notation,
[Frus(uy — un)l[g— < [|Eu[ g Jun g ey — v |l -

and, for ¢t < T’

¢ ¢ ¢
’f’(v)vx (/0 ngT—/O FQ*dT)H < Hf’(v)vaHl/O |F — F*| g-1dr
H-1

<c(T') sup |U1) —U*(t)llx

0<t<T"

where ¢(T") is a continuous increasing function such that ¢(0) = 0. Now, Lemma 2.1 is an
easy consequence of Theorem 6 in [3], where the local condition (7.7) is replaced by (9)
which is sufficient for the proof of this theorem.
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