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Abstract. In many areas of application, like for instance Climatology, Hydrology, Insurance, Finance

and Statistical Quality Control, a typical requirement is to estimate a high quantile of probability 1− p,

a value, high enough, so that the chance of an exceedance of that value is equal to p, small. The

semi-parametric estimation of high quantiles depends not only on the estimation of the tail index γ,

the primary parameter of extreme events, but also on the adequate estimation of a scale first order

parameter, C. Recently, apart from new classes of reduced-bias estimators for γ > 0, new classes of the

scale parameter C have been introduced in the literature. In all those classes, the second order parameters

in the bias are estimated at a level k1 of a larger order than that of the level k at which we compute the

tail index estimators. The use of one of those classes of C-estimators in quantile estimation enables us

to introduce new classes of high quantiles’ estimators. The asymptotic distributional properties of the

proposed classes of estimators are derived and the estimators are compared with alternative ones, not

only asymptotically, but also for finite samples through Monte Carlo techniques. An application to the

log-exchange rates of the Euro against the Sterling Pound is also provided.
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1 Introduction and preliminaries

A model F is said to be heavy-tailed if the tail function F := 1 − F ∈ RV−1/γ , γ > 0, where

RVα denotes the class of regularly varying functions with index of regular variation equal to α,

i.e., non-negative measurable functions g such that, for all x > 0, g(tx)/g(t) → xα, as t → ∞

(Gnedenko, 1943). Let us denote U(t) := F←(1 − 1/t) = inf{x : F (x) ≥ 1 − 1/t}. Then, we

may equivalently say that F is heavy-tailed if and only if U ∈ RVγ (de Haan, 1970), i.e.

lim
t→∞

U(tx)
U(t)

= xγ , for any x > 0. (1.1)

For small values of p, we want to estimate χ1−p, a value such that F (χ1−p) = 1 − p, a typical

parameter in the most diversified areas of application, among which we mention climatology,

hydrology, economics, insurance and finance. More specifically, we want to estimate

χ1−p = U(1/p), p = pn → 0, npn → K as n →∞, K ∈ [0, 1], (1.2)

and we shall assume to be working in Hall’s class of models (Hall 1982; Hall and Welsh, 1985),

where there exist γ > 0, ρ < 0, C > 0 and β 6= 0 such that

U(t) = Ctγ(1 + γβtρ/ρ + o(tρ)). (1.3)

For some details in the paper we shall refer to a sub-class of Hall’s class, such that

U(t) = Ctγ(1 + γβtρ/ρ + β′t2ρ + o(t2ρ)), (1.4)

i.e., relatively to Hall’s class we merely make explicit a third order term β′t2ρ, β′ 6= 0. Such a

class contains most of the heavy-tailed models important in applications, like the Fréchet, the

Generalized Pareto and the Student’s-t.

We are going to base inference on the largest k top order statistics (o.s.), and as usual

in semi-parametric estimation of parameters of extreme events, we shall assume that k is an

intermediate sequence of integers in [1, n[, i.e.,

k = kn →∞, k/n → 0, n →∞. (1.5)

Since, from (1.2) and (1.3),

χ1−p = U(1/p) ∼ Cp−γ , as p → 0,
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an obvious estimator of χ1−p is Ĉp−γ̂ , with Ĉ and γ̂ any consistent estimators of C and

γ, respectively. Given a sample (X1, X2, . . . , Xn), let us denote Xi:n, 1 ≤ i ≤ n, the set of

associated ascending order statistics (o.s.). Denoting Y a standard Pareto model, i.e., a model

such that FY (y) = 1 − 1/y, y > 1, the use of the universal uniform transformation enables us

to write Xn−k:n
d= U(Yn−k:n). Next, since Yn−k:n

p∼ (n/k) for intermediate k and (1.3) holds,

we get Xn−k:n
p∼ CY γ

n−k:n

p∼ C(n/k)γ , as n −→ ∞. Consequently, an obvious estimator of C,

proposed by Hall and Welsh (1985), is

Cγ̂(k) := Xn−k:n

(
k

n

)γ̂

(1.6)

and

Q
(p)
γ̂ (k) = Ĉp−γ̂ = Xn−k:n

(
k

np

)γ̂

(1.7)

is the obvious quantile-estimator at the level p (Weissman, 1978).

For heavy tails, the classical tail index estimator, usually the one which is plugged in (1.7),

for a semi-parametric quantile estimation, is the Hill estimator γ̂ = γ̂(k) =: H(k) (Hill, 1975),

with the functional expression,

H(k) :=
1
k

k∑
i=1

Vik =
1
k

k∑
i=1

Ui, (1.8)

where Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, are the log-excesses, and

Ui := i (lnXn−i+1:n − lnXn−i:n) , 1 ≤ i ≤ k < n, (1.9)

are the scaled log-spacings. We thus get the so-called classical quantile estimator, based on the

Hill tail index estimator H, with the obvious notation, Q
(p)
H (k).

In order to derive the asymptotic non-degenerate behaviour of semi-parametric estimators

of extreme events’ parameters, we need more than the first order condition in (1.1). A typical

condition for heavy-tailed models, which holds for the models in (1.3), with

A(t) = γ β tρ, γ > 0, β 6= 0, ρ < 0, (1.10)

is the following:

lim
t→∞

U(tx)
U(t) − xγ

A(t)
= xγ xρ − 1

ρ
, (1.11)
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or equivalently,

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

xρ − 1
ρ

, (1.12)

for all x > 0, where A is a function of constant sign near infinity (positive or negative), and

ρ ≤ 0 is the shape second order parameter.

Under the second order framework in (1.11) or in (1.12), and for intermediate k, i.e., when-

ever (1.5) holds, we may guarantee the asymptotic normality of the Hill estimator H(k), for an

adequate k. Indeed, we may write (de Haan and Peng, 1998),

H(k) d= γ +
γ√
k
Zk +

A(n/k)
1− ρ

(1 + op(1)), (1.13)

with Zk =
√

k
(∑k

i=1 Ei/k − 1
)
, and {Ei} i.i.d. standard exponential r.v.’s. Consequently, if

we choose k such that
√

k A(n/k) → λ 6= 0, finite, as n →∞,
√

k(H(k)− γ) is asymptotically

normal, with variance equal to γ2 and a non-null bias given by λ/(1−ρ). Most of the times, this

type of estimates exhibits a strong bias for moderate k and sample paths with very short stability

regions around the target value γ. This has recently led researchers to consider the possibility

of dealing with the bias term in an appropriate way, building new estimators, γ̂R(k) say, the

so-called second order reduced-bias estimators discussed by Peng (1998), Beirlant et al. (1999),

Feuerverger and Hall (1999), Gomes et al. (2000), among others. Then, for k intermediate, i.e.,

such that (1.5) holds, and under the second order framework in (1.12), we may write, with ZR
k

an asymptotically standard normal r.v.,

γ̂R(k) d= γ +
γσR√

k
ZR

k + op(A(n/k)), (1.14)

where σR > 0, being A again the function in (1.12). Consequently, the sequence of r.v.’s,
√

k(γ̂R(k) − γ) is asymptotically normal with variance equal to (γσR)2 and a null mean value

even when
√

k A(n/k) → λ 6= 0, finite, as n → ∞, possibly at expenses of an asymptotic

variance γ2σ2
R

> γ2. Gomes and Figueiredo (2006) suggest the use, in (1.7), of reduced-bias tail

index estimators, like the ones in Gomes and Martins (2001, 2002) and Gomes et al. (2004), all

with σR > 1 in (1.14), being then able to reduce also the dominant component of the classical

quantile estimator’s asymptotic bias.

More recently, Gomes et al. (2004), Caeiro et al. (2005) and Gomes et al. (2005) consider

new classes of tail index estimators, for which (1.14) holds with σR = 1 at least for values k
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such that
√

k A(n/k) → λ, finite. These classes are dependent on (β̂, ρ̂), an adequate consistent

estimator of the vector of the second order parameters (β, ρ) in (1.10). The influence of these

tail index estimators in quantile estimation has been studied by Gomes and Pestana (2005) and

Beirlant et al. (2006).

Also recently, new estimators of C have been proposed (Caeiro, 2006), where, instead of

Xn−k:n alone, a spacing Xn−[θk]:n−Xn−k:n, 0 < θ < 1, is considered. More specifically, we may

replace Cγ̂(k) in (1.6) by

C̃γ̂
R
(k; θ) :=

Xn−[θk]:n −Xn−k:n

θ−γ̂
R − 1

(
k

n

)γ̂
R

, (1.15)

where θ ∈]0, 1[ is a tuning parameter and γ̂R ≡ γ̂R(k) is a second order reduced-bias extreme

value index estimator. Similarly to the way developed by Caeiro et al. (2005) for the extreme

value index estimation, Caeiro (2006) has worked out the main dominant component of the

asymptotic bias of C̃γ̂
R
(k; θ). With the parametrization A(t) = γ β tρ, already given in (1.10),

such a component is given by C × Bθ(γ, ρ, β), where

Bθ(γ, ρ, β) =
θ−(γ+ρ) − 1

θ−γ − 1
× γ β (n/k)ρ

ρ
.

It is thus sensible to consider the semi-parametric C-estimator,

C γ̂
R
(k; θ) :=

Xn−[θk]:n −Xn−k:n

θ−γ̂
R − 1

(
k

n

)γ̂
R

× (1− Bθ(γ̂R , ρ̂, β̂)). (1.16)

We shall here consider, for θ = 1/2, the associated quantile estimator Q
(p)
γ̂

R
(k) ≡ Q

(p)

γ̂
R

,ρ̂,β̂
(k),

with

Q
(p)

γ̂
R

,ρ̂,β̂
(k) :=

Xn−[k/2]:n −Xn−k:n

2γ̂
R − 1

(
k

n p

)γ̂
R

× (1− B1/2(γ̂R , ρ̂, β̂)). (1.17)

Moreover, we shall restrict our attention to the second order reduced-bias extreme value

index estimator estimator introduced in Caeiro et al. (2005),

H(k) ≡ H β̂,ρ̂(k) := H(k)
(
1− β̂

1−ρ̂

(
n
k

)ρ̂) (1.18)

for adequate consistent estimators β̂ and ρ̂ of the second order parameters β and ρ, respectively.

After a brief sketch on the estimation of the second order parameters, in Section 2, we

provide, in Section 3, details on the reduced-bias estimators of γ and C, to be used for quantile
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estimation. Section 4 is devoted to the asymptotic behavior of quantile estimators and Section

5, to their finite sample properties. In Section 6, we study the robustness of the proposed class

of quantile estimators to underlying heavy-tailed models that may be no longer supported by

the developed theory. Finally, in Section 7, we provide an illustration, for data from the field

of finance.

2 Estimation of second order parameters

The reduced-bias tail index estimator in (1.18) requires the estimation of the second order

parameters ρ and β in (1.10). Such an estimation will now be briefly discussed.

2.1 Estimation of the shape second order parameter ρ

We shall consider here particular members of the class of estimators of the second order param-

eter ρ proposed by Fraga Alves et al. (2003). Such a class of estimators may be parameterized

by a tuning real parameter τ ∈ R (Caeiro and Gomes, 2004). These ρ-estimators depend on

the statistics

T (τ)
n (k) :=



(
M

(1)
n (k)

)τ
−

(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2
−

(
M

(3)
n (k)/6

)τ/3 , if τ 6= 0

ln
(
M

(1)
n (k)

)
−1

2 ln
(
M

(2)
n (k)/2

)
1
2 ln

(
M

(2)
n (k)/2

)
−1

3 ln
(
M

(3)
n (k)/6

) , if τ = 0

,

which converge towards 3(1 − ρ)/(3 − ρ), independently of the tuning parameter τ , whenever

the second order condition (1.12) holds and k is such that (1.5) holds and
√

k A(n/k) →∞, as

n →∞. The ρ-estimators considered have the functional expression,

ρ̂(τ)
n (k) := −min

(
0 ,

3(T (τ)
n (k))− 1

T
(τ)
n (k)− 3

)
. (2.1)

Remark 2.1. Under adequate general conditions, and for an appropriate tuning parameter τ

the ρ-estimators in (2.1) show highly stable sample paths as functions of k, the number of top

o.s. used, for a wide range of large k-values.
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Remark 2.2. The theoretical and simulated results in Fraga Alves et al. (2003), together with

the use of these estimators in different reduced-bias statistics, has led us to advise in practice

the estimation of ρ through the estimator in (2.1), computed at the value

k1 :=
[
n0.995

]
, (2.2)

not chosen in any optimal way, and the choice of the tuning parameter τ = 0 for the region

ρ ∈ [−1, 0) and τ = 1 for the region ρ ∈ (−∞,−1). In the simulations of section 5 we have

indeed done this. Anyway, we again advise practitioners not to choose blindly the value of τ in

(2.1). It is sensible to draw a few sample paths of ρ̂
(τ)
n (k), as functions of k, electing the value

of τ which provides higher stability for large k, by means of any stability criterion.

2.2 Estimation of the scale second order parameter β

For the estimation of β we shall here consider the estimator developed in Gomes and Martins

(2002), with the functional expression,

β̂ρ̂(k) :=
(

k

n

)ρ̂

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1)
n (k)−N

(1−ρ̂)
n (k)(

1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1−ρ̂)
n (k)−N

(1−2ρ̂)
n (k)

, (2.3)

where

N (α)
n (k) :=

1
k

k∑
i=1

(
i

k

)α−1

Ui,

with Ui and ρ̂ ≡ ρ̂
(τ)
n (k) defined in (1.9) and (2.1), respectively.

2.3 Asymptotic behaviour

In this paper, we intend to use the same level k1 in (2.2) both for the estimation of ρ and β,

through the estimators in (2.1) and (2.3), respectively, and we shall formalize, without proofs,

the needed distributional properties of the second order paramers’ estimators, essentially for

the class of models in (1.4).

Proposition 2.1 (Fraga Alves et al., 2003). If the second order condition (1.12) (or equiva-

lently, (1.11)) holds, with ρ ≤ 0, k is a sequence of intermediate integers, i.e., (1.5) holds, and
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limn→∞
√

k A(n/k) = ∞, then ρ̂
(τ)
n (k) in (2.1) converges in probability towards ρ, as n → ∞.

Moreover, and now for models in (1.4), ρ̂
(τ)
n (k) − ρ = op (1/ ln(n/k))) for values k such that

√
kA2(n/k) → λA, finite and non-null, and for values k such that

√
kA2(n/k) → ∞ for some

ε > 0 and k = O(n1−ε).

Proposition 2.2 (Gomes and Martins, 2002). If the second order condition (1.12) holds with

A(t) = γ β tρ, ρ < 0, if (1.5) holds, and if
√

kA(n/k) → ∞, then, with β̂ρ̂(k) given in (2.3),

β̂ρ(k) is asymptotically normal and converges in probability towards β, as n →∞.

Proposition 2.3 (Gomes, de Haan and Rodrigues, 2005). Under the conditions in Proposition

2.2, with ρ̂
(τ)
n (k) and β̂ρ̂(k) given in (2.1) and (2.3), respectively, and ρ̂ = ρ̂

(τ)
n (k) for any τ

and k, such that ρ̂ − ρ = op(1/ lnn), as n → ∞, β̂ρ̂(k) is consistent for the estimation of β.

Moreover, β̂ρ̂(k)− β
p∼ −β ln(n/k)(ρ̂− ρ) = op(1).

Remark 2.3. We shall denote generically ρ̂ any of the estimators in (2.1), computed at k1 in

(2.2) and β̂ any estimator in (2.3), also computed at the value k1.

3 Reduced-bias estimation of γ and C

3.1 The asymptotic behaviour of the reduced-bias tail index estimators

We now state the following:

Proposition 3.1 (Caeiro et al., 2005). If the second order condition (1.11) holds, if k = kn is

a sequence of intermediate positive integers, i.e., (1.5) holds, and if
√

kA(n/k) → λ, finite and

non necessarily null, as n →∞, then

√
k
(
Hβ,ρ(k)− γ

) d−→
n→∞

Normal(0, γ2).

This same limiting behaviour holds true if we replace Hβ,ρ by H β̂,ρ̂, provided that ρ̂ − ρ =

op(1/ lnn), and we choose β̂ := β̂ρ̂(k1), with k1 and β̂ρ̂(k) given in (2.2) and (2.3), respectively.

More specifically, and with Zk an asymptotic standard normal r.v., we can then write

H β̂,ρ̂(k) d= γ +
γ√
k
Zk + op(A(n/k)).
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Remark 3.1. Notice that, contrarily to what happens in Drees’ class of functionals (Drees,

1998), where the minimal asymptotic variance of a reduced-bias tail index estimator is given

by (γ(1 − ρ)/ρ)2, we have been here able to obtain a reduced-bias tail index estimator with

an asymptotic variance equal to γ2, the asymptotic variance of Hill’s estimator, the maximum

likelihood estimator of γ for a strict Pareto model.

3.2 The asymptotic behaviour of the C-estimator

We first present the following result on the asymptotic behaviour of intermediate o.s.:

Proposition 3.2. Under the second order framework in (1.11) and for k such that (1.5) holds

Xn−k:n

U(n/k)
d= 1 +

γ√
k
Bk + op(A(n/k)), (3.1)

where Bk is asymptotically standard normal and

Cov(Bi, Bj) =
√

i j(1− j/n)
j − 1

, i < j.

Proof. Since Xn−k:n
d= U(Yn−k:n) and Yn−k:n

p∼ (n/k), where Y is a standard Pareto r.v., we

can use the second order condition (1.11) with t = n/k e x = k
nYn−k:n, and write

Xn−k:n

U(n/k)
d=
(

k

n
Yn−k:n

)γ
[
1 +

(
k
nYn−k:n

)ρ − 1
ρ

A (Yn−k:n) (1 + o(1))

]
.

Then, since xα = 1 + α(x− 1) + o(x− 1), x → 1, we have

Xn−k:n

U(n/k)
d= 1 + γ

(
k
nYn−k:n − 1

)
+ op(A(n/k)) = 1 +

γ√
k
Bk + op(A(n/k)),

where Bk =
√

k
(

k
nYn−k:n − 1

)
is an asymptotic standard normal r.v. (Arnold et al., 1992;

Falk, 1989). Since Cov (Yi:n, Yj:n) = n i/((n− i)(n− i− 1)(n− j)), i < j, the final part of the

Proposition follows as well.

Corollary 3.1. Under the conditions of Proposition 3.2, and for Hall’s class of models in (1.3),

Xn−k:n

(n/k)γ

d= C

(
1 +

γ√
k
Bk +

A(n/k)
ρ

+ op(A(n/k))
)

. (3.2)

Proof. Since Xn−k:n

(n/k)γ = Xn−k:n

U(n/k) ×
U(n/k)
(n/k)γ , the result in (3.2) follows from Proposition 3.2 and

from equation (1.3).
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We may further state the following:

Proposition 3.3. Let F be a model in Hall’s class (1.3). If we consider the Hill estimator in

(1.8) and plug it in (1.6), i.e., if we consider CH(k), the C-estimator proposed in (1.6), further

assuming that
√

kA(n/k) → λ, we have
√

k

lnn

(
CH(k)−C

C

)
d−→ N

(
−λ

(1− ρ)(1− 2ρ)
,

γ2

(1− 2ρ)2

)
.

Proof. Since CH(k) = Xn−k:n

(n/k)γ (k/n)H(k)−γ , using the result in Corollary 3.1 and applying the

delta method to (k/n)H(k)−γ , we have

CH(k) d=C

(
1 +

γ√
k
Bk +

A(n/k)
ρ

(1 + op(1))
)

(1 + ln(k/n)(H(k)− γ)(1 + op(1)))

d=C

(
1 + ln(k/n)(H(k)− γ)(1 + op(1)) +

γ√
k
Bk +

A(n/k)
ρ

(1 + op(1))
)

,

that is,
√

k

lnn

(
CH(k)−C

C

)
d=
(

ln k

lnn
− 1
)(

γZ
(1)
k +

√
kA(n/k)
1− ρ

)
+

γ

lnn
Bk +

√
kA(n/k)
ρ lnn

(1+op(1)).

As for values k such that
√

k A(n/k) → λ, finite and non-null, we have ln k/ lnn → −2ρ/(1−2ρ),

as n →∞, the result follows.

Remark 3.2. Asymptotically and for models in Hall’s class, the minimum mean squared error

of H(k) and CH(k) is attained at the same level,

k0 =
(

(1− ρ)n−ρ

β
√
−2ρ

)2/(1−2ρ)

. (3.3)

We shall now consider the r.v.’s C̃γ and Cγ , with C̃γ̂R
and C̃γ̂R

given in (1.15) and (1.16),

respectively:

Theorem 3.1. Under the second order framework in (1.12), for k values such that (1.5) holds

and for models F in (1.3),

C̃γ(k; θ) d= C

(
1 +

γσC,θ√
k

ZC
k,θ +

θ−(γ+ρ) − 1
θ−γ − 1

A(n/k)
ρ

+ op(A(n/k))

)
(3.4)
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and

Cγ(k; θ) d= C

(
1 +

γσC,θ√
k

ZC
k,θ + op(A(n/k))

)
(3.5)

where 0 < θ < 1,

σ2
C,θ = 1 +

(
1− θ

θ

)(
θ−γ

θ−γ − 1

)2

,

and with Bk in (3.1), ZC
k,θ =

(
θ−(γ+1/2)Bkθ−Bk

)
/
(
σC,θ(θ−γ−1)

)
is a sequence of asymptotically

standard normal r.v.’s.

Proof. Since in Hall’s class of models, A(n/kθ) = θ−ρA(n/k), and

C̃γ(k; θ) =
1

θ−γ − 1

(
Xn−kθ:n

( n
kθ )γ

θ−γ − Xn−k:n

(n
k )γ

)
,

one can use Corolary 3.1 and (3.4) follows.

Consequently, due to the fact that Cγ(k; θ) = C̃γ(k; θ)(1 − θ−(γ+ρ−1)
θ−γ−1

A(n/k)
ρ ), (3.5) follows

as well.

The following Corollary is important in the sense that it shows that for some intermediate

k-values, only Cγ(k; θ) has an asymptotic null mean value and keeps the same asymptotic

variance as C̃γ(k; θ).

Corollary 3.2. Under the conditions in Theorem 3.1, and for intermediate k such that
√

k A(n/k) → λ,

√
k

(
C̃γ(k; θ)− C

C

)
d−→

n→∞
N

(
λ(θ−(γ+ρ) − 1)

ρ(θ−γ − 1)
, γ2σ2

C,θ

)
and

√
k

(
Cγ(k; θ)− C

C

)
d−→

n→∞
N
(
0, γ2σ2

C,θ

)
.

In Figure 1, we picture γσC,θ =
√

V ar∞(
√

k
(
C̃γ(k; θ)− C

)
/C) as a function of θ, for a

few values of γ.

The value of θ minimizing this standard deviation depends on γ, but the value θ = 1/2

seems to be a good compromise. This is the reason why we have chosen the quantile estimator

in (1.17). In the following Theorem we will consider θ = 1/2.

11
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Figure 1: γσC as function of θ, for some values of γ.

Theorem 3.2. Under the conditions in Theorem 3.1, assume that
√

k A(n/k) → λ and γ̂R ≡

γ̂R(k) is a second order reduced-bias extreme value index estimator, such that (1.14) holds.

Then,
√

k

lnn

(
C̃γ̂

R
(k)− C

C

)
d−→

n→∞
N

(
0,

(
γσR

1− 2ρ

)2
)

. (3.6)

If we further consider second order parameters’ estimators ρ̂ and β̂ such that ρ̂−ρ = op(1/ lnn)

and β̂ − β = op(1), as n →∞,
√

k

lnn

(
C γ̂

R
(k)− C

C

)
d−→

n→∞
N

(
0,

(
γσR

1− 2ρ

)2
)

(3.7)

Proof. We can write

C̃γ̂
R
(k) = C̃γ(k)

2γ − 1
2γ̂

R − 1
e−(γ̂

R
(k)−γ) ln(n/k).

The use of the delta method enable us to write

1
2γ̂

R
(k) − 1

− 1
2γ − 1

p∼ − 2γ ln 2
(2γ − 1)2

(γ̂R(k)− γ),

and e(γ̂
R

(k)−γ) ln(k/n) − 1
p∼ (γ̂R(k)− γ) ln(k/n). We now have

C̃γ̂
R
(k) d= C

{
1 +

(
ln(k/n)− 2γ ln 2

2γ − 1

)
(γ̂R(k)− γ) +

γσC√
k

ZCk +
2γ+ρ − 1
(2γ − 1)ρ

A(n/k)(1 + op(1))
}

,

where

σC := σC,1/2 =

√
1 +

(
2γ

2γ − 1

)2

.

12



Therefore, since γ̂R(k)− γ
d= γσ

R√
k

ZR
k + op(A(n/k)),

√
k

lnn

(
C̃γ̂

R
(k)− C

C

)
d=
(

ln k

lnn
− 1
)

γσRZR
k +

γ

lnn

(
σCZ

C
k −

2γ ln 2
2γ − 1

ZR
k

)
+

2γ+ρ − 1
(2γ − 1)ρ

√
kA(n/k)
lnn

(1 + op(1)), (3.8)

If we consider k-values, such that
√

k A(n/k) → λ, non-null and finite, we have ln k/ lnn →

−2ρ/(1− 2ρ), as n →∞ and the result in equation (3.6) follows.

Now, since C γ̂
R
(k) = C̃γ̂

R
(k) ×

(
1− (2(γ̂

R
+ρ̂)−1)

2γ̂
R−1

γ̂
R

β̂ (n/k)ρ̂

ρ̂

)
, the use of the delta method

enable us to write,(
2γ̂

R
+ρ̂ − 1

2γ̂
R − 1

)
γ̂R β̂

ρ̂

(n

k

)ρ̂
=

2γ+ρ − 1
2γ − 1

A(n/k)
ρ

×

×

[
1 +
(

1− γ2γ(2ρ − 1)
(2γ − 1)(2γ+ρ − 1)

)
γ̂R − γ

γ
+

β̂ − β

β
+ (ρ̂− ρ) ln(n/k)

]
.

As γ̂R − γ = op(1), (ρ̂− ρ) ln(n/k) = op(1) and β̂ − β = op(1), we have(
2γ̂

R
+ρ̂ − 1

2γ̂
R − 1

)
γ̂R β̂

ρ̂

(n

k

)ρ̂
=

2γ+ρ − 1
2γ − 1

A(n/k)
ρ

(1 + op(1)),

and

C γ̂
R
(k) d= C

{
1 +

(
ln(k/n)− 2γ ln 2

2γ − 1

)
(γ̂R(k)− γ) +

γσC√
k

ZCk +
2γ+ρ − 1
(2γ − 1)ρ

op(A(n/k))
}

.

Therefore, we can write,

√
k

lnn

(
C γ̂

R
(k)− C

C

)
d=
(

ln k

lnn
− 1
)

γσRZR
k +

γ

lnn

(
σCZ

C
k −

2γ ln 2
2γ − 1

ZR
k

)
+op

(√
kA(n/k)
lnn

)
,

and the asymptotic result in (3.7) follows as well.

Remark 3.3. Although both C̃γ̂
R
(k) and C γ̂

R
(k) have the same limit distribution, that result is

achieved very slowy. In (3.8), the term 2γ+ρ−1
(2γ−1)ρ

√
kA(n/k)
ln n (1 + op(1)) may change the bias. Also,

the term γ
ln n

(
σCZ

C
k −

2γ ln 2
2γ−1 ZR

k

)
may increase the asymptotic variance of both estimators.
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4 The asymptotic behaviour of reduced-bias quantile estima-
tors

Details on semi-parametric estimation of extremely high quantiles for a general extreme value

index γ ∈ R may be found in de Haan and Rootzén (1993) and more recently in Ferreira et

al. (2003). Matthys and Beirlant (2003), Gomes and Figueiredo (2006), Mathys et al. (2004),

Gomes and Pestana (2005) and Beirlant et al. (2006) deal with heavy tails and reduced-bias

quantile estimation.

Since we will work only with the asympotic unbiased extreme value estimator γ̂R ≡ H in

(1.18), we shall next consider and study the high quantile estimator,

Q
(p)

H
(k) :=

Xn−[k/2]:n −Xn−k:n

2H(k) − 1

(
k

n p

)H(k)

× (1−B1/2(H(k), ρ̂, β̂)). (4.1)

We may state the following results:

Theorem 4.1. Under the second order framework in (1.12) with A(t) = γβ tρ, for intermediate

k, i.e., k such that (1.5) holds, whenever ln(np)/
√

k → 0, and
√

k A(n/k) → λ, as n →∞,

√
k

ln( k
np)

(
Q

(p)
H (k)
χ1−p

− 1

)
d−→

n→∞
Normal

(
λ

1− ρ
, γ2

)
. (4.2)

Moreover, for ρ̂ and β̂ introduced in Remark 2.3, such that ρ̂− ρ = op(1/ lnn), as n →∞,

√
k

ln( k
np)

Q
(p)

H
(k)

χ1−p
− 1

 d−→
n→∞

Normal
(
0, γ2

)
. (4.3)

Proof. Since χ1−p = U(1/p), and with γ̂ = γ̂(k) any tail index estimator, one can write

Q
(p)
γ̂ (k)− χ1−p = Xn−k:n

(
(k/np)γ̂(k)− U(1/p)

Xn−k:n

)
.

Using the second order condition (1.11) and the result in Proposition 3.2,

U(1/p)
Xn−k:n

=
U(n

k ×
k
np)

U(n
k )

×
U(n

k )
Xn−k:n

d= ( k
np)γ

(
1 +

(
k
np )ρ−1

ρ A(n/k)(1 + o(1))

)

×
(

1− γ√
k
Bk + op(A(n/k))

)
.

14



As
(

k
np )ρ−1

ρ → −1/ρ, we have

U(1/p)
Xn−k:n

d=( k
np)γ

(
1− γ√

k
Bk −

A(n/k)
ρ

(1 + op(1))
)

.

The delta method enable us to write cγ̂ d= cγ(1+ln c(γ̂−γ)(1+op(1))), for any c > 1. Therefore,

also using the result from Corollary 3.1, we get

Q
(p)
γ̂ (k)− χ1−p

d= C(1
p)γ

[
ln( k

np)(γ̂(k)− γ) +
γ√
k
Bk +

A(n/k)
ρ

(1 + o(1))
]

, (4.4)

that is, since χ1−p ∼ Cp−γ ,

√
k

ln( k
np)

Q
(p)
γ̂ (k)

χ1−p
− 1

 d=
√

k(γ̂(k)− γ) +
γBk

ln( k
np)

+

√
kA(n/k)
ρ ln( k

np)
(1 + o(1)).

Since we consider
√

k A(n/k) → λ, finite, as n → ∞, then ln( k
np) → ∞ and the asymptotic

result in (4.2) follows from (1.13).

Notice next that we can write Q
(p)

H
(k) = CH(k) p−H . Using χ1−p ∼ Cp−γ and the same

type of results used before for Q
(p)
γ̂ (k), one can write,

Q
(p)

H
(k) d= χ1−p

{
1 +

(
ln( k

np)− 2γ ln 2
2γ − 1

)
(H(k)− γ) +

γσC√
k

ZCk +
2γ+ρ − 1
(2γ − 1)ρ

op(A(n/k))
}

.

Therefore, since H(k)− γ
d= γ√

k
Zk + op(A(n/k)),

√
k

ln( k
np)

Q
(p)

H
(k)− χ1−p

χ1−p

 d= γZk +
γ

ln( k
np)

(
σCZ

C
k −

2γ ln 2
2γ − 1

Zk

)
+ op

(√
kA(n/k)
ln( k

np)

)
,

and (4.3) follows.

Remark 4.1. Notice that, in equation (4.3), we have a mean value equal to 0, even if
√

kA(n/k) → λ 6= 0, as n →∞.

Remark 4.2. Since ln( k
np) goes to infinity very slowly, we can state a better distributional

representation, for moderate k and n (pre-asymptotic case):

√
k

ln( k
np)

(
Q

(p)
H (k)
χ1−p

− 1

)
d
≈ Normal

(
λ

1− ρ

(
1 +

1− ρ

ρ ln( k
np)

)
, γ2

(
1 +

1
ln2( k

np)

))
,
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√
k

ln( k
np)

Q
(p)

H
(k)

χ1−p
− 1

 d
≈ Normal

0, γ2

{1− s1(γ)
ln( k

np)

}2

+
1 + s2(γ)
ln2( k

np)

 ,

with s1(γ) = 2γ ln 2
(2γ−1) and s2(γ) =

(
2γ

2γ−1

)2
. Notice that s1(γ) →∞ and s2(γ) →∞ as γ → 0.

5 Finite sample behavior — a simulation study

We compare the finite sample behaviour of the proposed high quantile estimator Q
(p)

H
(k) with

the one of the classical estimator Q
(p)
H (k) for p = 1/n and p = 1/(n lnn). We will also consider

the high quantile estimator Q
(p)

H
(k) based on the classical C estimador and the reduced-bias

γ-estimator, to see whether the bias reduction in the C estimator is relevant in practice.

Notice that when p = pn = 1/n we will have npn → 1 and when p = 1/(n lnn) we get

npn → 0, as assumed in equation (1.2). The results are based on 10000 samples from the

Fréchet model, with d.f.,

F (x) = 1− exp
(
− x−1/γ

)
, γ > 0, x > 0.

We assume that the second order parameters ρ and β are unknown and they are estimated

through (2.1) and (2.3), respectively, both computed at the level k1 = [n0.995], in (2.2). In

Figures 2 and 3 we show, for p = 1/n, the simulated patterns of the mean value, E[·], and the

mean squared error, MSE[·] of Q
(p)
H (k), Q

(p)

H
(k) and Q

(p)

H
(k). In Figures 4 and 5 we show the

same patterns, but now for p = 1/(n lnn).

Remark 5.1. The computation of both second order parameters’ estimators, at the high value

k1 = [n0.995], enables us to work with high quantiles’ estimators with a mean squared error

smaller than the mean squared error of the classical estimator Q
(p)
H (k), for small to moderate

values of k when γ = 0.25, or for all k values when γ = 0.5. The Figures show us that for

almost every level k, fixed, MSE[Q(p)

H
(k)] < MSE[Q(p)

H
(k)] < MSE[Q(p)

H (k)]. The reduction of

the mean squared error is a direct consequence of the bias reduction. So, as expected, Q
(p)

H
(k)

exhibits highly stable sample paths around the true value χ1−p. Only for small values of γ, like

the value γ = 0.25 and for small k we have MSE[Q(p)

H
(k)] > MSE[Q(p)

H (k)]. This may be

explained by the pre-asymptotic behavior provided in Remark 4.2.
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Figure 2: Underlying Fréchet parent with γ = 0.25 and p = 1/n.
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In Tables 1 and 2 we present, for sample sizes n = 100, 500, 1000, 2000, 10000, 20000

and 50000, and p = 1/n, the simulated optimal sample fractions, k0/n, mean values and mean

squared errors of the different estimators under study, at their optimal levels k0. Tables 3 and

4 are equivalent to Tables 1 and 2, but now with p = 1/(n lnn).

Remark 5.2. The tables show us that Q
(p)

H
(k) has almost generally the smallest minimum mean

squared error, although we need to go slightly deeper in the sample. Also, for every sample size,

E
[
Q

(p)

H
(k0)

]
is the mean value closest to the true quantile χ1−p.

6 Sensitivity to the model F : a simulation study

In this section we will study the sensivity of the new semi-parametric estimators to changes

of the underlying heavy-tailed model F , when we consider models that may be even no longer

supported by the developed theory, i.e., models that do not belong to Hall’s class of models

in (1.3). In practice, F is an unknown model, and it is thus important to know not only the

way these estimators react to changes of F , but also to detect whether their eficiency decrease

drastically. We have only considered the Log-gamma model, a model that does not belong to

Hall’s class of models in (1.3), but it is under the second order framework in (1.12), with ρ = 0.

This model has the following tail function

1− F (x) =
1

γmΓ(m)

∫ ∞
x

(lnu)m−1u−1/γ−1du

=
1

γm−1Γ(m)
x−1/γ(lnx)m−1

∞∑
k=0

( γ

lnx

)k Γ(m)
Γ(m− k)

=
x−1/γ(lnx)m−1

γm−1Γ(m)

[
1 + γ

m−1
lnx

+ γ2 (m−1)(m−2)
(lnx)2

(1 + o(1))
]

,

for γ > 0, m > 0 and x > 1. We have here chosen m = 2 and for this value the d.f. is:

1− F (x) = x−1/γ

(
1 +

lnx

γ

)
, γ > 0, x > 1.

Although we have considered the same values of n, as in the previous section, we have

decided to show results only for n = 1000 (p = 1/n and p = 1/(n lnn)). The simulation results
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Table 1: Simulated optimal sample fraction, mean value and MSE (at the optimal level) of the
estimators under study for p = 1/n and the Fréchet model with γ = 0.25.

n 100 500 1000 2000 5000 10000 20000 50000

k0(Q
(p)
H )/n 0.330 0.225 0.181 0.140 0.113 0.089 0.075 0.053

k0(Q
(p)

H
)/n 0.348 0.271 0.259 0.237 0.209 0.191 0.167 0.155

k0(Q
(p)

H
)/n 0.711 0.486 0.419 0.462 0.400 0.414 0.396 0.343

χ1−p 3.158 4.728 5.623 6.687 8.409 10.000 11.892 14.954

E
(
Q

(p)
H

)
/χ1−p 1.056 1.053 1.047 1.040 1.036 1.030 1.027 1.021

E
(
Q

(p)

H

)
/χ1−p 0.935 0.961 0.966 0.973 0.980 0.985 0.989 0.992

E
(
Q

(p)

H

)
/χ1−p 0.972 0.976 0.981 0.987 0.990 0.994 0.996 0.997

MSE
(
Q

(p)
H

)
0.344 0.411 0.426 0.444 0.451 0.446 0.436 0.447

MSE
(
Q

(p)

H

)
0.350 0.412 0.403 0.385 0.348 0.305 0.263 0.216

MSE
(
Q

(p)

H

)
0.369 0.396 0.379 0.347 0.303 0.259 0.218 0.173

Table 2: Simulated optimal sample fraction, mean value and MSE (at the optimal level) of the
estimators under study for p = 1/n and the Fréchet model with γ = 0.5.

n 100 500 1000 2000 5000 10000 20000 50000

k0(Q
(p)
H )/n 0.322 0.212 0.173 0.132 0.106 0.087 0.072 0.052

k0(Q
(p)

H
)/n 0.440 0.317 0.284 0.255 0.220 0.200 0.177 0.157

k0(Q
(p)

H
)/n 0.636 0.477 0.435 0.453 0.401 0.374 0.418 0.336

χ1−p 9.975 22.349 31.615 44.716 70.707 99.997 141.420 223.606

E
(
Q

(p)
H

)
/χ1−p 1.142 1.117 1.102 1.084 1.073 1.063 1.055 1.044

E
(
Q

(p)

H

)
/χ1−p 0.858 0.920 0.933 0.948 0.961 0.969 0.977 0.985

E
(
Q

(p)

H

)
/χ1−p 0.981 0.978 0.981 0.985 0.984 0.988 0.992 0.994

MSE
(
Q

(p)
H

)
18.239 44.686 63.589 90.649 142.123 194.614 265.661 423.613

MSE
(
Q

(p)

H

)
13.378 35.430 48.605 65.646 94.611 117.926 144.961 189.758

MSE
(
Q

(p)

H

)
12.146 29.868 40.804 54.103 75.052 91.864 109.890 139.540
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Table 3: Simulated optimal sample fraction, mean value and MSE (at the optimal level) of the
estimators under study for p = 1/(n lnn) and the Fréchet model with γ = 0.25.

n 100 500 1000 2000 5000 10000 20000 50000

k0(Q
(p)
H )/n 0.331 0.221 0.178 0.134 0.108 0.087 0.074 0.052

k0(Q
(p)

H
)/n 0.456 0.339 0.300 0.262 0.242 0.224 0.196 0.181

k0(Q
(p)

H
)/n 0.638 0.437 0.411 0.427 0.390 0.371 0.401 0.317

χ1−p 4.631 7.466 9.117 11.104 14.365 17.421 21.096 27.121

E
(
Q

(p)
H

)
/χ1−p 1.113 1.089 1.076 1.060 1.052 1.044 1.039 1.030

E
(
Q

(p)

H

)
/χ1−p 0.906 0.948 0.959 0.971 0.977 0.982 0.988 0.992

E
(
Q

(p)

H

)
/χ1−p 0.948 0.975 0.980 0.984 0.986 0.994 0.995 0.996

MSE
(
Q

(p)
H

)
1.843 2.254 2.361 2.478 2.556 2.548 2.527 2.622

MSE
(
Q

(p)

H

)
1.433 1.841 1.831 1.782 1.644 1.462 1.277 1.068

MSE
(
Q

(p)

H

)
1.376 1.702 1.683 1.608 1.447 1.261 1.082 0.876

Table 4: Simulated optimal sample fraction, mean value and MSE (at the optimal level) of the
estimators under study for p = 1/(n lnn) and the Fréchet model with γ = 0.5.

n 100 500 1000 2000 5000 10000 20000 50000

k0(Q
(p)
H )/n 0.323 0.215 0.174 0.128 0.104 0.085 0.069 0.051

k0(Q
(p)

H
)/n 0.540 0.410 0.337 0.302 0.261 0.236 0.205 0.190

k0(Q
(p)

H
)/n 0.572 0.462 0.426 0.453 0.412 0.412 0.364 0.355

χ1−p 21.448 55.739 83.110 123.294 206.362 303.485 445.050 735.519

E
(
Q

(p)
H

)
/χ1−p 1.307 1.215 1.175 1.135 1.111 1.093 1.078 1.061

E
(
Q

(p)

H

)
/χ1−p 0.836 0.893 0.923 0.938 0.953 0.963 0.974 0.981

E
(
Q

(p)

H

)
/χ1−p 0.994 0.989 0.988 0.985 0.985 0.983 0.990 0.993

MSE
(
[Q

(p)
H

)
266.23 690.34 1016.44 1496.94 2465.70 3509.42 4990.13 8363.82

MSE
(
Q

(p)

H

)
123.03 399.01 586.29 849.08 1305.39 1710.00 2212.28 3076.93

MSE
(
Q

(p)

H

)
122.99 369.55 531.61 746.43 1102.15 1406.77 1773.83 2393.19
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are presented in Figures 6, 7. These Figures are parallel to Figures 2, 3, 4 and 5, but for the

above mentioned model.
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Figure 6: Underlying Log-gamma parent with γ = 0.25 and p = 1/n.
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Figure 7: Underlying Log-gamma parent with γ = 0.25 and p = 1/n lnn.

For this model, outside Hall’s class, QH behaves slightly better than QH but not a long way

from it, both better than QH .

7 Application to Financial Data

We shall finally consider an illustration of the performance of the above mentioned estimators,

reporting results associated to the Euro-UK Pound exchange rates from January 2, 2004 until

December 29, 2006, which correspond to a sample of size n = 771. This data has been collected

by the European System of Central Banks, and was obtained from http://www.bportugal.pt/.
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The Value at Risk (VaR) is a common risk measure, defined as a large quantile of the

log-returns, i.e., of Lt = ln(Xt+1/Xt), 1 ≤ t ≤ n − 1, assumed to be stationary and weakly

dependent.

0.6

0.7

0.8

Jan-04 Jan-05 Jan-06

-0.02

-0.01

0

0.01

0.02

Jan-04 Jan-05 Jan-06

Figure 8: Daily exchange rates (left) and daily log-returns (right) on Euro vs UK pound ex-
change rate.

Working with the n− = 384 negative log-returns, we show in Figure 9 the sample paths of

the most common estimators of the second order parameters ρ and β.
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Figure 9: Estimates of the second-order parameter ρ (left) and β (right) for the Daily Log-
Returns on the Euro vs UK Pound exchange rate.

The sample paths of the ρ-estimates associated to τ = 0 and τ = 1 lead us to choose, on

the basis of any stability criterion for large values of k, the estimate associated to τ = 0. From

the experience we have with this class of estimates, this means that |ρ| ≤ 1 and the tuning

parameter τ = 0 is then advisable. We have got ρ̂ = −0.61. The use of β̂ in (2.3), computed at

the level k1 in (2.2), i.e., at k1 = (n−)0.995 = 372, leads then us to the estimate β̂ = 1.06
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The sample paths of the classical Hill estimator in (1.8), the second order reduced-bias tail

index estimator H in (1.18) and the associated Var-estimators in (1.7) and (4.1), respectively,

for p = 0.001, are pictured in Figure 10. For the Hill estimator, as we know how to estimate

the second order parameters ρ and β, we can estimate the optimal sample fraction, in (3.3),

and the extreme value index. We get k̂H
0 = 24 and H(24) = 0.16. Since we do not have yet the

possibility of adaptively estimate the optimal sample fraction associated to any second order

reduced-bias estimator, the estimate pictured, γ̂ = 0.24, is the median of the H(k) estimates for

k between kH
0 and 5× kH

0 . A similar technique led us to the quantile estimate χ0.001 = 0.0197,

as pictured in Figure 10 (right).
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Figure 10: Estimates of the first-order parameter γ (left) and of the high quantile χ0.001 (right).
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