NATURALLY ORDERED REGULAR SEMIGROUPS
WITH AN INVERSE MONOID TRANSVERSAL

T.S.BLYTH AND M. H. ALMEIDA SANTOS

ABSTRACT. The notion of an inverse transversal of a regular semigisuwgell-known.
Here we investigate naturally ordered regular semigrobgstave an inverse transversal.
Such semigroups are necessarily locally inverse and trersaevtransversal is a quasi-
ideal. After considering various general properties tledate the imposed order to the
natural order, we highlight the situation in which the isetransversal is a monoid. The
regularity of Green’s relations is also characterisedalinwe determine the structure of
a naturally ordered regular semigroup with an inverse nbtransversal.

1. Introduction.

If Sis a regular semigroup then @mverse transversadf Sis an inverse subsemigrodp
of Sthat contains a unique inverse of everyg S. We letT NV (x) = {x°} and writeT
asS = {x° | x € S}. This concept has its roots in [8], the term itself beingadurced in
[6], where the structure of regular semigroups with a mlidtgtive inverse transversal was
determined.

For a convenient summary of the basic properties of inveesesversals on a regular
semigroup we refer the reader to [1] or to [2, Chapter 14]. &ar purposes here we
mention only the following notation and general properties

(a) (VXYy€eS) (xy)° = (XXy)°X" =Y (xyy')® =y (X°Xyy’)°X".

(B) (Vxy€S) (Xy)" =YX, (X°y)° =yX".

(y) Green’s relations oBare given by

(Xy) €L <= X’x=VYy, (XY)EZ < xX =yy.

(&) The subsets
AN={x|xeS}, I={xxX]|xeS}
are sub-bands @with A right regular and | left regular.
() IN={xeS|x° € E(S)} andANI =E(S’) =S’ NIA.
({) The subsets
L={xx"|xeS}, R={x"xx|xeS}

are subsemigroups & MoreoverL is left inverse and a left ideal @&, Ris right inverse
and arightideal 0§ LNR= S, E(L) =1, andE(R) = A.
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(n) The following Venn diagram provides a useful summary:

Aeh
_

E(S)

(8) The inverse transvers& is said to be aquasi-idealif °SS C S or, equiva-
lently, Al C S; multiplicativeif Al C E(S”); andweakly multiplicativaf (Al)° C E(S)
or, equivalentlye® € E(S’) whenevee € E(S).

(1) S is multiplicative if and only if it is both weakly multiplidive and a quasi-ideal.

(k) If xe Lorye Rthen(xy)® =y°x°.

(A) Sis orthodox if and only if¥x,y € S) (xy)° = y°x°.

Throughout what follows(S; <) will denote an ordered regular semigroup with an
inverse transversal °S Moreover,<,, will denote thenatural orderon S, which is given
by

(VxyeS x<ny <= (JefcE(g) x=ey=yf.
On the subseE (S) of idempotents this reduces to
e<pf < e=ef="fe
On the inverse subsemigro®it reduces to
(Vx,yeS) x<ny <= (JecE(S)) x=ey < (3f €E(S)) x=Vyf,
of which there are many variants, for example
(WXYES) X<y <= X=XyX < xX =yX.

We say thatS; <) is naturally orderedf < extends the natural ordef, onE(S), in the

sense that
(Ve f €E(S) e<nf=e<Hf.

For our purposes here, we recall the following particulauhes:

Theorem 1. [5] Let (S;<) be an ordered regular semigroup. If, fee E(S) are such
that e< f then the products efeefe fef are all idempotent. Moreover, ifS;<) is
naturally ordered then e- efe. O

Theorem 2. [7] A regular semigroup can be naturally ordered if and only isitocally
inverse. |

Theorem 3. [3] If S is a regular semigroup with an inverse transversélt®en S is
locally inverse if and only if Sis a quasi-ideal. O

The following result is contained in the proof of [4, Theorgmn

Theorem 4. The natural order<,, on S has the following properties

(1) (VXYy€S X<ny = XX<n Yy, XX <nYY;
(2) (Ve f €E(9) e<nf < e, fof, ee <y ffe.
If, moreover, S is locally inverse then
(3) (Ve f €E(9) e<nf = &< fe. O
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2. Order properties.

In what follows, we shall assume thgg; <) is naturally ordered By Theorems 2 and 3
above the inverse transver$lis then a quasi-ideal. Consequently, @y, S° is multi-
plicative if and only if it is weakly multiplicative. We begiby considering relationships
between the imposed ordgrand the natural ordet, on S. We first note that

e on E(S) the orders< and <, coincide

To see this, leg, f € E(S”) be such thae <, f. Then sinceSis naturally ordered we have
e< f. Conversely, ife < f then by Theorem 1 we hawe= efe Since idempotents in the
inverse subsemigrou® commute, it follows thaé=ef = feand soe <, f.

In the following result we show that the ord€ralso extends the natural ordgy on the
inverse transvers&P; and, as a consequence, the assignmentx°° is always isotone.
Theorem 5. (VXx,y€S) X <ny® = xX° < V.

Proof. Suppose that,y € Sare such thax® <, y°. Then, by Theorem 4(1), iB(S’) we

havex®°x® <n y°°y°. Consequently™°x® < y*°y° and soy°x°°x° < y°. But fromx® <p y°

we obtainx®x®® = y°x°°. It therefore follows thax® = y°x°°x° < y°. O

Corollary. (Vx,yeS x<y = x° <y*°.

Proof. If x,y € Sare such that < y then, using the fact th&’ is a quasi-ideal, we have
XOO — XOOXOX)(OXOO < XOOXOy)(OXOO — XOOXOyOOXOXOO <n yOOXOXOO <n yOO

whence, by Theorem 5° < y°°. O

As for the corresponding assignment: x°, the following result shows that it is isotone
on the subsetA.

Theorem 6. (Vx,y€IA) x<y = xX° Y.

Proof. Let x,y € I\ be such thak <y. Thenx®,y° € E(S) by (&), andx® = x°xX <
X°yx°. SinceS’ is a quasi-ideal we have@yx® = x°y*°x° € E(S’). Thus, inE(S’) we have
xX° < x°y°°x°. It follows by Theorem 1 that® = x°y*°x° whencex® <, y°. Thatx® <y°
now follows by Theorem 5. O

Precisely whex — x° is isotone orSis the substance of the following result.

Theorem 7. The following statements are equivalent
(1) (WxyeS) x<y= X<y
(2) the orders< and <y, coincide on S.

Proof. (1) = (2): Suppose thafl) holds and letx,y € S be such thak® < y°. Then
x°° < y°° and consequently

yOOXO — yOOXOXOOXO < yOOXO . yOOXO < yOOyOyOOXO — yOOXO
whencey*°x® € E(S). Theny®*x® = y*°x°x*°x° < x°°x° and therefore, sinc@is naturally
ordered,y*°x° < x°°x°. Sincex°° < y*° it follows from this thaty*°x° = x*°x°> whence
X°y*ox° = x° and sox° <, Y°. Property (2) now follows by Theorem 5.
(2) = (1): If x<ythen, by the Corollary to Theorem®&; < y°°. If now (2) holds then

x*° <n y°°. Since on the ordered inverse semigrg8iy <) the assignmerd+— a1 = a°
is isotone, we then havé = x°°° <p y°°° =y* whence, by Theorem &’ < y°. O
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We now add a basic property of naturally comparable idemmisthat will be useful.
Theorem 8. If e, f € E(S) are such that ey, f then e= fefe=ee f = fef.

Proof. Sincee=ef = fewe havefe’e € E(S) with fe°e <y f, whencefe’e< f. Since
alsoe < f, it follows thate = e€e < fee= fe°ee< fe=eand sofe’e= e. Likewise
we havee€ f = e, and combining these we obtagn= fe° f. O

Using Theorem 8 we can now describe the situation in whiclagsggnmenx — x° is
antitone.

Theorem 9. The following statements are equivalent

(1) (xye§ x<y=y <X

(2) (Ve f €E(9) e<f=fo<e;

(3) Sis completely simple

(4) the inverse transversal°$s a group.

Proof. (1) = (2): Thisis clear.

(2) = (3): Lete f € E(S) be such thae <, f. Thene< f and so, by the hypothesis
and Theorem 8f = ff°f < fe°f = ewhencef = e. Thus<, is equality onE(S) and so
Sis completely simple.

(3) = (4): This is a well-known result of Saito (see [9] or [1]).

(4) = (1): If x,y € Sare such that < y then by the Corollary to Theorem 5 we have
X°° < y°°. SinceS’ is a group, it follows thay® < x°. O

Example 1. For eachx € R with x > 0 let

Q= x X|] [x O X X x 0
*“Ulx x]’[x 0]"[o o]’[0 o]
Under matrix multiplication, the s& = |J Qy is a semigroup which is regular since, for
x=0

-1
everyX € Qx (x# 0), we have{xO

o ={["o o] ope{[5 o}

which is a group with zero, is then an inverse transvers@l.of
The set of idempotents &} is

co-{[ 10 98 12 S Bp-renesor

and the natural order d&(Q) is given by
E<pnF < E=0o0r 0£E=F.

0
0] € V(X). The subset

NI NIl
= NI

2

In particular,(E(Q°); <n) consists of the 2-element chain
Id
0
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Consider now the component-wise ordewon Q, this being defined foX = [x;] and
Y = [yij] in Qby
XY = (Vi,]) %ij <Vij.
As can readily be verified,Q; <) is an ordered semigroup and the restriction<ofo
E(Q) gives the Hasse diagram

0
Since< extends<, on E(Q) we see thaQ is naturally ordered. Moreover, it follows
by Theorem 9 that the subsemigroQp{0} is completely simple.

In view of Theorem 9 it is natural to investigate the more gehsituation in which the
inverse transvers& is a monoid. This produces some properties that are sinoildise
that hold in the case whefhas a biggest idempotent (see [5]).

Theorem 10. The following statements are equivalent
(1) the inverse transversal°$s a monoid
(2) (S;<X) has a biggest idempotent
(3) 3¢ €E(S)) S =¢S5
(4) (FE€E(S))(Vxe S x*°=EXE;
(5) (3¢ €E(S)) L=S¢,R=E&S
(6) L [resp. Ris an idempotent-generated principal lgfsp. right ideal.
f.
)

Proof. (1) = (2): If (1) holds then for everg € E(S°) we havee <, 1s whencee < 1s.
(2) = (1): Suppose that2) holds and le§ = maxE(S°). For everyx° € S we have
x°x°° < & whencex®x*® <p & since< coincides with<, onE(S). Consequently,
EXO — EXOXOOXO XOXOOXO — X
and similarlyx°& = x°. Henceé = 1s.
(1) = (3): If (1) holds then we have

1Sl CSSSCS =151y C 1sSls
whenceS’ = £SE whereé = 1s.

(3) = (4): If (3) holds then for every € Swe havex™ = §x>°& = &x¢.
(4) = (1): If (4) holds then for everx € Swe have
X = (§XE)° = (E9%€°)° = £°°%° € = £x°¢

whencef x° = x° = x°& and we havégl).

(4) = (5): If (4) holds then for everx € Swe havexx’x*>® = xx°’§x¢ € S¢& whence
L C S£; and similarlyR C €S, But, as in the above, bi) we havex® = £x°& whence it
follows that

x&(XE)°(x€)° =xEX°X°E =xEXEXE =xXxE =x%&

whenceSE C L. Similarly, ESC Rand we havé5).

(5) = (3): If (5) holdstherS =LNR=SENES=ESE.

(5) = (6): Thisis clear.



(6) = (5): Suppose that = SpandR = gqSwherep andq are idempotents. Then
pe E(L) =1and sop® = p°° € E(S). Likewise,q € E(R) = A andq®° =q*° € E(S).
Consequently, = Sp=SpPp=SpPp>*° =SSP andR=9S=qq’S= g°°q°S= g°S. Now
sincep® € E(S°) C R=g°Swe havep® = g°p°; and since® € E(S°) CL =S we have
g° = g°p°. Consequently°® = g° and(5) follows. O

Theorem 11. If S°is a monoid with identity eleme@tthen the following statements are

equivalent

(1) the assignmentse x°° is a morphism
(2) (Y€ (xy)° = (x&y)";
(3) Sis orthodox.

Proof. (1) = (2): If (1) holds then by Theorem 10 we hafey)°° = x°°y*° = ExEyE =
(xEy)*°. It follows that(xy)° = (xEy)°.

(2) = (3): Sincexé € L we have, by(k), (X§y)° =y°(x§)° =y &x° = y°X°. Then(2)
and(A) give Sis orthodox.

(3) = (1): If (3) holds then, by{A), (xy)*° = (y°x°)° = x°°y*° and(1) follows. O

3. The regularity of . and Z.
Guided by Theorem 4(2) and propefty), we now consider the following concept.
Definition. We shall say thatZ [resp.#] is weakly regulaiif

(Ve f €E(S) e<f = ee<f°f respe¢ < ff°].

The weak regularity ofZ and % can be characterised in the following way, which
should be viewed in comparison with Theorem 4(3).

Theorem 12. The following statements are equivalent

(1) £ andZ are weakly regular
(2) (Ve fcE(9) e<f = e <f.

Proof. (1) = (2): Suppose that, f € E(S) are such thag < f. Then if(1) holds we have
e’e< f°f andee€ < ff° whencee® =e°e-e€ < f°f - ff° = f°.
(2) = (1): Thisis immediate. O

Corollary. If S°is (weakly) multiplicative then? and% are weakly regular.

Proof. SinceS’ is weakly multiplicative, for everg € E(S) we havee® = e*° € E(S°).
Thus, ife < f then, by the Corollary to Theorem &, = e°° < f°° = f°. It follows that.¥

andZ are weakly regular. O
Remark.Note that in Example 1 we have
120 )
[ ] ~ 15 o] FE@
and soQ° is not weakly multiplicative. However, by applying Theord®(2) toE(Q), we

see that botlZ and# are weakly regular. The converse of the above Corollanefoes
fails in general.

1

i]eE(Q) but l

NI NIl
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NI NIl
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Definition. We shall say thatZ [resp.#] is regular if
(VX,y€S) x<y= xXx< Yy [resp x¥ <yy).

Clearly, ‘regular’ implies ‘weakly regular’. In order to ahacterise the regularity o
andZ we require the following concepts.

Definition. An equivalence relatio® on an ordered sétis said to satisfy thénk property
if
aox<b = (IycA) a<yob;
and thedual link propertyif
a<xBb = (JyeA) aBGy<h.
Theorem 13. If £ [resp.Z] is regular thenZ [resp.#] satisfies the dual link property.

Proof. If a < xZb then sinceZ is regular we hava®a < x°x = b°b and soba’a < b.
Now, by Theorem 1 and proper{p), we havea®a = a’ab°ba’a = b°ba’a and so

a’a= (a’a)’a’a= (b°ba’a)’b°ba’a = (ba’a)’ba’a.
Hencea ¥ ba’a<b.
Similarly, when regularZ satisfies the dual link property. O

As the following example shows, even whé&hn is multiplicative . can be weakly
regular and satisfy the dual link property but fail to be fegu

Example 2. Letk > 1 be a fixed integer. For everyc Z let n¢ be the biggest multiple
of k that is less than or equal to On the cartesian ordered s2& Z x —N x Z define a
multiplication by

(Xv b m) (ya —q, n) = (min{x, y}a — P, Mg+ n)'

ThenSis an ordered semigroup in which the idempotents(gre p, m) wheremy = 0,
i.e. where < m< k— 1. It is readily observed tha& is naturally ordered, and that for
every(x,—p,m) € Swe have(x,0,—my + k—1) € V(x,—p,m) soSis regular. Moreover,
with (X, —p,m)° = (x,0,—m+k—1), the setS’ = {z° | z€ S} is an inverse transversal of
Swhich is a quasi-ideal. Since the product of two idempotenidempotent we see th&t
is orthodox. Henc& is also weakly multiplicative [3] and so is multiplicative.

Consider now the relatio®” which, by the Corollary to Theorem 12, is weakly regular.
Since

(Xv -b m)o(xv -b m) = (Xa 0,m— Wk)
we see thatZ is not regular. To see tha¥ satisfies the dual link property, suppose
that (x,—p,m) < (z—r,t).Z (y,—q,n). Thenx<z=y. Leta=nc—k+m—m. Then
ag=hc—kand soa—ag=m—-m. Also,a<ax+k—1=n—1<n<n Hence
(Xv -b m) Z (Xv —q, a) < (ya —q, n)'
Definition. We shall say that? is lower A-stableif
(Wxes x<leA = x°x<|;

andupperA-stableif
(Wxe8g x=leh = xXx>1.
Dually, we defineZ to be lower and upper I-stable.



Theorem 14. The following statements are equivalent
(1) Zisregular,
(2) & satisfies the dual link property and is low&rstable
(3) Zis upperA-stable.

Proof. (1) = (2): If £ is regular then by Theorem 13 it satisfies the dual link prgper
Moreover, ifx < | € A thenx°x < I°l =1 and saZ is also lower\-stable.

(2) = (1): Letx,y € Sbe such thak <y. Then fromx < y.£y°’y and the fact that?
satisfies the dual link property we have the existence®8 such thak.Zz< y°y. Then
X°x = Z’zand, since? is lowerA-stable 2z < y°y. Hence.Z is regular.

(1) = (3): Thisis clear.

(3) = (1): Observe first thafx’y)°x°y = y°(x°yy*)°X°y <n ¥°y and therefore, sincg
is naturally orderedx°y)°x°y < y°y. Suppose now tha¢< y. Thenx°x < x°y and so, by
(3), x°x < (X°y)°x°y < y°y whence we havél). O

We now pass to a consideration of the link property. Thatighigt in general satisfied
by .Z or # is shown by the following example.

Example 3. Let G be an ordered group and lete G be such thak > 1. LetH = (x)
be the subgroup generated ky Add to H a new identity elemenf together with the
single comparability k &. Thené? = & andéy =y =yé for ally € H, and we obtain the
ordered inverse semigro®with Hasse diagram

Clearly, Sis naturally ordered an& = S. Moreover, since theZ-classes (and th&z-
classes) oBareH and{¢&}, we see thatZ is regular. Nowx.Z x 1 < & but the existence
of y e Ssuch thak < y.# ¢ forcesy = & and gives the contradiction< é. Hence? does
not satisfy the link property.

A situation in which.Z [resp.#] satisfies the link property is the following.

Theorem 15. If .Z [resp.Z#] is regular and if S is upper directed the#f [resp.Z]
satisfies the link property.

Proof. Suppose thaa.Z x < b and letk € Sbe such thah, b < k. Thena’a=x°x < b°b
whencea = aa’a < kb’b. Also, b°b < k°k which, by Theorem 1 and propertg), gives
b°b = k°kb’b whence

b°b = (b°b)°b°b = (k’kb’b)°k’kb’b = (kb°b)°kb°b.
Hencea < kb°b_Zb. A similar proof holds forZ. O
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4. A structure theorem.

Our objective now is to obtain the structure of a naturallgesed regular semigroup with
an inverse monoid transversal. This we can deduce from¢iebedic structure of a locally
inverse semigroup with such a transversal, which we nowgeddo describe. For this
purpose, we recall that Bis a regular semigroup thehe Sis said to be aveak middle
unitif, for all x e Sand allx € V(x), XX = xxX andx&x = X'x. If £ is a weak middle unit
thené is necessarily idempotent; f§r= EE'E = EEE'.E =E.EE'E =EE.

Theorem 16. Let A be a regular semigroup with a weak middle énifThen the following
statements are equivalent

(1) Aislocally inverse
(2) the regular subsemigroupAé is inverse.

Proof. (1) = (2): This clear.

(2) = (1): Suppose thaf A is inverse. Ifx € Aandx € V(x) NAthenx = xXx =
xEXEx andEXEXEXE = EXE, and soéX' & € V(x) NEAE whenceV (x) NEAE £ 0. If
nowy € V(x) N EAE theny = yxy= yéx&y, andx = xyxgives&x& = ExEyExE, whence
y € V(ExE)NEAE and consequently = (x€)~L. HenceV (x) NEAE = {(§x€)~1} and
so £AE is an inverse transversal 8 SincefAE - A-EAE C EAE we see thatAf is a
quasi-ideal. Then, by TheoremAjs locally inverse. O

The structure of regular semigroups with various kinds @éise transversal has been
determined by Saito [10]. This is immensely complicatecerein the case where the
semigroup is locally inverse, i.e. the inverse transveissal quasi-ideal. The particular
situation in which the semigroup is locally inverse and therse transversal is a monoid
can be treated more simply as follows.

Theorem 17. Let L and R be regular semigroups with a common weak middleéuni
and a common inverse submonoid=TéLEé = ERE. Define a mapping RL — T by
(a,x) — aox with the following properties
(Va,be R)(Vy,ze L) a(aoy)bo z=[(acy)b&] L(aoy)b(boz);
Va,be R)(Vy,zeL) ao y(bozz= (acy)éy(boz)[Ey(boz)™ %
VaeR)(VxeL)(WvteT) aot=(ao&)(éot), tox=(to&)(&ox);
VaeR)(Vxel) a(ao&)=¢&aé, (§ox)x=E&X¢;
VacR)(Va eV(a)NR) (ao&)&aé =¢&a¢,

(Wxel)(WWeVX)NL) EXE(Eox)=EXE.
Onthe set Ux|; R={(x,a) € L x R\ &x = a&} define a multiplication by

(x,2)(y;b) = (x(@aoy)y, a(acy)b).
Then L|x|¢ R is a locally inverse semigroup that has an inverse monaidsversal.

(1)
(2)
(3)
(4)
(5)

S~ S
NN A- NG NG~

Moreover, every such semigroup is obtained in this way. Ndageisely, if S is a locally
inverse semigroup with an inverse transversalti$at is a monoid with identitg then
S =E&SE, € is a weak middle unit of bothéSand €S, the mappingSx & — S = ESE
given by(a,x) — a’axxX satisfies propertie¢l) to (5) above, and there is a semigroup
isomorphism

S~ SE [x|¢ €S



Proof. Forx,y € L anda € Rwe havex(aoy)y € LTLCL; and for alla,be Randy € L
we havea(aoy)b € RTRC R Moreover, if(x,a), (y,b) € L [x[s Rthen

éx(acy)y=aé(acy)y=a(aocy)y=a(aocy)éy=a(aoy)bé.

Consequently, the multiplication dn|x|; Ris well-defined.

We proceed in the following stages.

(i) L|x|¢Risasemigroup.
From the multiplication, we see that in|x|s R the first component of(x, a)(y,b)](z c) is
x(aoy)y[a(aoy)b o Zzwhich by (1) isx(acy)y[(aoy)b&]L(acy)bé (boz)z Using twice
the fact thab& = &y and¢ is an identity ofT, we see that this reducesxtaoy)y(boz)z
On the other hand, the first componentxfa)|[(y,b)(z c)] isx[a o y(boz)Zy(boz)zwhich
by (2) is x(aoy)&y(bo 2)[Ey(bo z)]1€y(bo )z which also reduces t&(aoc y)y(bo z)z
Thus the first components of the products are the same; anlduynso are the second
components. Thus, with the above multiplicatibrx|s Ris a semigroup.

(i) L|x|gRisregular.
Observe first that, as in Theorem 16t L andx € V(x) NL thenéX'& = (Ex€)~L
Likewise, ifa € Randa € V(a)nRthenéaé = (éaé)~L. Suppose now thax,a) €
L [x|¢ R Thenéx = a& giveséx§ = &ag and so, fox' e V(x)NL anda € V(a)NR, we
candefingB3 = éxX&E =¢&aé eT.

Then the first component of the prodygta) (8, 3)(x,a) is, as in (i),

X(@oB)B(Box)x=x(@oB)B(Bo&)(§ox)x by (3)
=X(@oP)§PEExE by (4)
=x(@o§)(§oB)Bat  by(3)
=X@o&)éBsas by (4)
=x(ao&)&a&x
=x&aéx by (5)
=xEXExX
=X.
In a similar way we can see that the second component of trduptdsa. Thus we see
that(x,a)(B,B)(x,a) = (x,a) and soL |x|¢ Ris regular.

(i) T = diag(T x T) is an inverse submonoid offk|¢ R.
Clearly, T is is a subsemigroup &f [x|¢ R, and is regular since {fy, y) € T then, by (ii),
(W evy)nT) (Y(EYEEVOYY) = (v.y).

If now (y,y) is an idempotent inT then by (3) and (4) we see that= y(yoy)y =
y(yo &)(E oy)y = yy, so thaty is idempotent inT. Furthermore, if(y,y),(3,8) € T
are idempotents then

(VVOéévvo& %)
(Y(yo&)(£00)8,y(yo&)(§08)0) by (3)
=(

(

Evféé EyEdE) by (4)
yd,Yy0).

10



Now sincey,d are idempotents ifTf they commute, and therefore it follows that so do
(v,y) and(3,5) in T. HenceT is an inverse semigroup.

Using (4) and the fact tha€ is an identity forT, it is readily seen thaté, &) is an
identity element foiT .

(iv) T is aninverse transversal of|k| :R.
First we observe that ifx,a) € L ||z Rthen, withB as in (i),

(B,B) eV(x,a)ﬂf.

In fact, we have seen in (ii) thaik,a)(3,)(x,a) = (x,a). Consider now the product
(B,B)(x,a)(B,B). The first component of this is, as in (i),

B(Box)x(aoB)B=P(Bo&)(&ox)x(@ac)(§oB)B by (3)
=&BEExE(acg)EBE by (4)
=Bé&xE(acé)p
=B&ag(ac)B  sincedxé =<ad
=pBa(ac&)p
=péaiB  by(4)
=pap
=¢a'§ada
=&a§
=p.

Similarly, the second componentis aBoThus(3,8)(x,a)(83,8) = (3,8) and therefore
V(x,a)N T contains(B, B).

Suppose now thdly, y) € V(x,a) N T. On the one handy, y) = (v,y)(x,a)(y, y) gives,
as in the abovey = y§ay = yEx&y = yxy. On the other handx,a) = (x,a)(y, y)(x,a)
gives, as in (ii)x = x(ao &)yxwhence

Xyx = X(ao &)yxyx = x(ao & )yx=X.
It follows thaty € V(x) N T whence, as in Theorem 1¢,€ V(§x§)NT and therefore
y=(£x§) t=B. ~ R

It follows from the above that (x,a) N T = {(B, )} whenceT is an inverse transversal
of L |><|g R.

(v) Tisa quasi-ideal.

If (y,y),(38,8) € T and(x,a) € L [x|¢ Rthen the produdty, y)(x,a)(d, ) is

(W(yox)x[y(yox)a o 8|3, y(yox)aly(yox)a o 5]5)
which belongs toT since&xE = £aé. ThusT(L Ix|g RT C T and hence the inverse
transversal of L Ix|¢ Ris a quasi-ideal.

In summary, from the above and Theorem 3 we havelthaf; R is a locally inverse
semigroup with an inverse monoid transversal.

To show that every such semigroup is obtained in this waySle¢ a locally inverse
semigroup with an inverse monoid transveiSall et the identity element d&& beé. By
Theorem 10(3) we hav® = £S£. Moreover, by Theorem 10(5) and propet) we see
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thatL = £ is a left inverse semigroup with right identi€y, andR = £ Sis a right inverse
semigroup with left identit¥ . Thusé is a weak middle unit of botB andéS. Moreover,
ELE = ESE = ERE. We are therefore in the initial conditions of the first pa@onsider
therefore the mappin§Sx S& — S = £SE given by

(a,x) — aox=a’axx.
To see that this satisfies property (1) above, observe that

a(aoy)bo z=ayybo z

= (ayy’b)°ayy’bzZ

= b°(ayy’)°ayy’bb’bzZ by (k) sincebe R
(&b&)°(a’ayy’)°a’ayy’béb’bzz by (a)
(avayy&bé)’atayybéb’bzz by (k)
= (a°ayy’b&)°a°ayy’béb°bz?
[(@cy)b] *(aoy)bé (bo2).
It is readily verified that (2), (3), (4), (5) also hold.

Consider now the mappin: S— S& [x|s ESgiven byd (x) = (x€, £x). Forallx,ye S
we have

F(X)B(y) = (X, €x) (¥, &y)
= (x€ (Exoy&)yE, Ex(ExoyE)Ey)
= (XEX"xYYYE, EXCXYY EY)
= (x¥¢, &xy)
=3 (xy)

and sod is a morphism.

If now 3 (x) = 3 (y) thenx& = y& and&x = &y whencex®® = {x§ = &yé = y*° and
thenx® =y°. Consequentlyy = xxX’x =xEx°Ex=yEy’Ey=yy’y=yand sod is injective.

To see thafl is also surjective, leixé, £y) € SE |x|¢ €S. Thenéx€ = £y, whencex® =
y°. Now lett =xxX°y. Thenté =xx&yé = xxXExé =x& andét = ExéExy = Eyéyy = Ey.
Thusd (t) = (t&,&t) = (x&,&y).

It follows from the above tha®~ S& ||z £S. O

Corollary. The inverse transversal in question is multiplicative ilamly if
(VI € E(ER)) (Vi € E(LE)) loicE(T).

Proof. As in the proof of Theorem 16 is an inverse transversal Bfwith a° = £a’& for
everya € V(A)NR. Consequently,

AR)={a’alacR} ={fda|acR a €V(a)NR}.

Since is a weak middle unit, it is clear th&t(R) C E(R). Conversely, ife€ E({R)
thene= £e= {ede= Ee*ewheree* = e€ € V(e). HenceA(R) = E(&R). Similarly

I(L) = {xX& | xeL, X eV(X)NL} =E(LE).
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Suppose now thdk,a) € L [x|s R. Then, as in (iv) abovex,a)® = (B,B) wheref =
§alf = &x'&. Consequently, i [x|s Rwe have

(x,@)°(x,a) = (B, B)(x,a)

= (B(Box)x, B(Box)a)
= (B(Bo&)(Eox)x, B(Bo&)(Eox)a) by (3)
gfﬁf ExE, EBE(Eox)a) by (4)
(
(

EXE.EXE, EXE(Eox)a)
Ex'xE, Ex'&a) by (5)
EX'xE, Eala) sinceéx'é =Edé.

Similarly, (y,b)(y,b)° = (yy &, £bb/&). It follows that if| € A(L |x|¢ R) andi € I(L |x|¢ R)
thenli is of the form

li = (§xXx¢, Eaa)(yy &, EbDE)
= (EXxE(Ealao yyE)yy¢E, Eaa(éaa o yyE)ELDE).

Now if the stated condition holds then we haya'acyy& € E(T). This, together with
Ex'xé =&dat e E( ) andEny &b € E(T), givesli = (y,y) € T wherey € E(T).
Then sincey, y)2 = (2, y?) = (v,y) we see thali € E(T), whence the inverse transversal
Tis multlpl|cat|ve

Conversely, ifSis a locally inverse semigroup with an inverse monoid trensalS® =
&SE thatis multiplicative then fore A =E(&S) andi € | = E(SE) we havd oi =1°lii° =
li € E(S°) whence the condition holds. O

We can apply the above theorem to obtain a structure theooematurally ordered
regular semigroups with an inverse monoid transversal.

Theorem 18. Let S be a naturally ordered regular semigroup with an inegransversal
S that is a monoid with identity elemeét Let & |x|; €S consist of the subset of the
cartesian ordered setéSx ¢S given by

S xlg §S={(x¢,&x) | x€ S}

together with the multiplication

(X, EX)(YE,&y) = (xy&, Exy).

Then § |x|¢ ¢S is an ordered regular semigroup. Moreover, if eitti€ror % is regular
on S then there is an ordered semigroup isomorphism

Proof. SinceS is locally inverse by Theorem 2, it follows immediately froheorem
10(5) and Theorem 17 that there is an algebraic isomorpflis®@— SE |x|s £ Sgiven by
9 (x) = (x&,€x). Suppose now that, for exampl@, is regular orS. If 9(x) < 9 (y) then
x¢ <y§ andéx < &y, whencex = xxX’x = x& (x)°Ex < Y& (y§)°§y =yy’y =Y. Thus we
see thak <y < 9(x) < 9(y) and so the isomorphis# is also an order isomorphism.
The same is true ifZ is regular. O
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Example 4. With the above notation, in Example 1 the identity elementhaf inverse

1
transversaQ)® is &€ = [O ol Then, by Theorem 18, we ha@~ Q¢ [x|; £ Q where

o~ o 3 &) afef 2
o [s 3o 3 o)A 2}

SinceA consists of the chain & d < c it is readily verified that? is upperA-stable.
It then follows from Theorem 14 tha¥ is regular. Consequently the above semigroup
isomorphism is also an order isomorphism.

Finally, we note that i§Sis a naturally ordered regular semigroup that contains gdsiy
idempoten€ thenShas a quasi-ideal inverse monoid transversal, nag®fy(see, for ex-
ample, [2, Theorem 13.16]). Theorem 18 therefore appli¢isi;ncase. More particularly,
it applies in the case of a naturally ordered regular Dukladotin semigroup.
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