# NATURALLY ORDERED REGULAR SEMIGROUPS WITH AN INVERSE MONOID TRANSVERSAL

T. S. BLYTH AND M. H. ALMEIDA SANTOS

ABSTRACT. The notion of an inverse transversal of a regular semigroup is well-known. Here we investigate naturally ordered regular semigroups that have an inverse transversal. Such semigroups are necessarily locally inverse and the inverse transversal is a quasiideal. After considering various general properties that relate the imposed order to the natural order, we highlight the situation in which the inverse transversal is a monoid. The regularity of Green's relations is also characterised. Finally, we determine the structure of a naturally ordered regular semigroup with an inverse monoid transversal.

## 1. Introduction.

If *S* is a regular semigroup then an *inverse transversal* of *S* is an inverse subsemigroup *T* of *S* that contains a unique inverse of every  $x \in S$ . We let  $T \cap V(x) = \{x^\circ\}$  and write *T* as  $S^\circ = \{x^\circ \mid x \in S\}$ . This concept has its roots in [8], the term itself being introduced in [6], where the structure of regular semigroups with a multiplicative inverse transversal was determined.

For a convenient summary of the basic properties of inverse transversals on a regular semigroup we refer the reader to [1] or to [2, Chapter 14]. For our purposes here we mention only the following notation and general properties:

- $(\alpha) \quad (\forall x, y \in S) \quad (xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ} = y^{\circ}(x^{\circ}xyy^{\circ})^{\circ}x^{\circ}.$
- $(\boldsymbol{\beta}) \ (\forall x, y \in S) \quad (xy^{\circ})^{\circ} = y^{\circ \circ}x^{\circ}, \ (x^{\circ}y)^{\circ} = y^{\circ}x^{\circ \circ}.$
- $(\gamma)$  Green's relations on *S* are given by

$$(x,y) \in \mathscr{L} \iff x^{\circ}x = y^{\circ}y, \quad (x,y) \in \mathscr{R} \iff xx^{\circ} = yy^{\circ}.$$

 $(\delta)$  The subsets

$$\Lambda = \{x^{\circ}x \mid x \in S\}, \quad \mathbf{I} = \{xx^{\circ} \mid x \in S\}$$

are sub-bands of S with  $\Lambda$  right regular and I left regular.

- ( $\varepsilon$ ) IA = { $x \in S \mid x^{\circ} \in E(S^{\circ})$ } and A  $\cap$  I =  $E(S^{\circ}) = S^{\circ} \cap$  IA.
- $(\zeta)$  The subsets

$$L = \{xx^{\circ}x^{\circ\circ} \mid x \in S\}, \quad R = \{x^{\circ\circ}x^{\circ}x \mid x \in S\}$$

are subsemigroups of *S*. Moreover, *L* is left inverse and a left ideal of *S*, *R* is right inverse and a right ideal of *S*,  $L \cap R = S^{\circ}$ , E(L) = I, and  $E(R) = \Lambda$ .

<sup>1991</sup> Mathematics Subject Classification. 20M20, 20M17.

Key words and phrases. regular semigroup, natural order, inverse transversal.

 $(\eta)$  The following Venn diagram provides a useful summary:



( $\vartheta$ ) The inverse transversal  $S^{\circ}$  is said to be a *quasi-ideal* if  $S^{\circ}SS^{\circ} \subseteq S^{\circ}$  or, equivalently,  $\Lambda I \subseteq S^{\circ}$ ; *multiplicative* if  $\Lambda I \subseteq E(S^{\circ})$ ; and *weakly multiplicative* if  $(\Lambda I)^{\circ} \subseteq E(S^{\circ})$  or, equivalently,  $e^{\circ} \in E(S^{\circ})$  whenever  $e \in E(S)$ .

(1)  $S^{\circ}$  is multiplicative if and only if it is both weakly multiplicative and a quasi-ideal.

( $\kappa$ ) If  $x \in L$  or  $y \in R$  then  $(xy)^{\circ} = y^{\circ}x^{\circ}$ .

( $\lambda$ ) *S* is orthodox if and only if  $(\forall x, y \in S)$   $(xy)^{\circ} = y^{\circ}x^{\circ}$ .

Throughout what follows,  $(S; \leq)$  will denote an ordered regular semigroup with an inverse transversal  $S^{\circ}$ . Moreover,  $\leq_n$  will denote the natural order on S, which is given by

$$(\forall x, y \in S) \quad x \leq_n y \iff (\exists e, f \in E(S)) \quad x = ey = yf$$

On the subset E(S) of idempotents this reduces to

$$e \leq_n f \iff e = ef = fe.$$

On the inverse subsemigroup  $S^{\circ}$  it reduces to

$$(\forall x, y \in S^{\circ}) \ x \leqslant_{n} y \iff (\exists e \in E(S^{\circ})) \ x = ey \iff (\exists f \in E(S^{\circ})) \ x = yf,$$

of which there are many variants, for example

$$(\forall x, y \in S^{\circ}) \quad x \leq_n y \iff x = xy^{\circ}x \iff xx^{\circ} = yx^{\circ}.$$

We say that  $(S; \leq)$  is *naturally ordered* if  $\leq$  extends the natural order  $\leq_n$  on E(S), in the sense that

$$(\forall e, f \in E(S)) \quad e \leq_n f \Rightarrow e \leq f.$$

For our purposes here, we recall the following particular results:

**Theorem 1.** [5] Let  $(S; \leq)$  be an ordered regular semigroup. If  $e, f \in E(S)$  are such that  $e \leq f$  then the products ef, fe, efe, fef are all idempotent. Moreover, if  $(S; \leq)$  is naturally ordered then e = efe.

**Theorem 2.** [7] A regular semigroup can be naturally ordered if and only if it is locally inverse.  $\Box$ 

**Theorem 3.** [3] If S is a regular semigroup with an inverse transversal  $S^{\circ}$  then S is locally inverse if and only if  $S^{\circ}$  is a quasi-ideal.

The following result is contained in the proof of [4, Theorem 2].

**Theorem 4.** The natural order  $\leq_n$  on *S* has the following properties:

(1)  $(\forall x, y \in S)$   $x \leq_n y \Rightarrow x^{\circ}x \leq_n y^{\circ}y, xx^{\circ} \leq_n yy^{\circ};$ 

(2)  $(\forall e, f \in E(S))$   $e \leq_n f \iff e^\circ e \leq_n f^\circ f, ee^\circ \leq_n ff^\circ.$ 

If, moreover, S is locally inverse then

$$(3) \ (\forall e, f \in E(S)) \quad e \leqslant_n f \Rightarrow e^{\circ} \leqslant_n f^{\circ}.$$

## 2. Order properties.

In what follows, we shall assume that  $(S; \leq)$  *is naturally ordered*. By Theorems 2 and 3 above the inverse transversal  $S^{\circ}$  is then a quasi-ideal. Consequently, by (t),  $S^{\circ}$  is multiplicative if and only if it is weakly multiplicative. We begin by considering relationships between the imposed order  $\leq$  and the natural order  $\leq_n$  on *S*. We first note that

• on  $E(S^{\circ})$  the orders  $\leq$  and  $\leq_n$  coincide.

To see this, let  $e, f \in E(S^{\circ})$  be such that  $e \leq_n f$ . Then since *S* is naturally ordered we have  $e \leq f$ . Conversely, if  $e \leq f$  then by Theorem 1 we have e = efe. Since idempotents in the inverse subsemigroup  $S^{\circ}$  commute, it follows that e = ef = fe and so  $e \leq_n f$ .

In the following result we show that the order  $\leq$  also extends the natural order  $\leq_n$  on the inverse transversal  $S^\circ$ ; and, as a consequence, the assignment  $x \mapsto x^{\circ\circ}$  is always isotone.

**Theorem 5.**  $(\forall x, y \in S)$   $x^{\circ} \leq_n y^{\circ} \Rightarrow x^{\circ} \leq y^{\circ}$ .

*Proof.* Suppose that  $x, y \in S$  are such that  $x^{\circ} \leq_n y^{\circ}$ . Then, by Theorem 4(1), in  $E(S^{\circ})$  we have  $x^{\circ\circ}x^{\circ} \leq_n y^{\circ\circ}y^{\circ}$ . Consequently,  $x^{\circ\circ}x^{\circ} \leq y^{\circ\circ}y^{\circ}$  and so  $y^{\circ}x^{\circ\circ}x^{\circ} \leq y^{\circ}$ . But from  $x^{\circ} \leq_n y^{\circ}$  we obtain  $x^{\circ}x^{\circ\circ} = y^{\circ}x^{\circ\circ}$ . It therefore follows that  $x^{\circ} = y^{\circ}x^{\circ\circ}x^{\circ} \leq y^{\circ}$ .

**Corollary.**  $(\forall x, y \in S) \quad x \leq y \Rightarrow x^{\circ \circ} \leq y^{\circ \circ}.$ 

*Proof.* If  $x, y \in S$  are such that  $x \leq y$  then, using the fact that  $S^{\circ}$  is a quasi-ideal, we have

$$x^{\circ\circ} = x^{\circ\circ}x^{\circ}xx^{\circ}x^{\circ\circ} \leqslant x^{\circ\circ}x^{\circ}yx^{\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ}y^{\circ\circ}x^{\circ}x^{\circ\circ} \leqslant_{n} y^{\circ\circ}x^{\circ}x^{\circ\circ} \leqslant_{n} y^{\circ\circ}$$

whence, by Theorem 5,  $x^{\circ\circ} \leq y^{\circ\circ}$ .

As for the corresponding assignment  $x \mapsto x^{\circ}$ , the following result shows that it is isotone on the subset IA.

**Theorem 6.**  $(\forall x, y \in I\Lambda)$   $x \leq y \Rightarrow x^{\circ} \leq y^{\circ}$ .

*Proof.* Let  $x, y \in I\Lambda$  be such that  $x \leq y$ . Then  $x^{\circ}, y^{\circ} \in E(S^{\circ})$  by  $(\varepsilon)$ , and  $x^{\circ} = x^{\circ}xx^{\circ} \leq x^{\circ}yx^{\circ}$ . Since  $S^{\circ}$  is a quasi-ideal we have  $x^{\circ}yx^{\circ} = x^{\circ}y^{\circ\circ}x^{\circ} \in E(S^{\circ})$ . Thus, in  $E(S^{\circ})$  we have  $x^{\circ} \leq x^{\circ}y^{\circ\circ}x^{\circ}$ . It follows by Theorem 1 that  $x^{\circ} = x^{\circ}y^{\circ\circ}x^{\circ}$  whence  $x^{\circ} \leq x^{\circ}y^{\circ}$ . That  $x^{\circ} \leq y^{\circ}$  now follows by Theorem 5.

Precisely when  $x \mapsto x^{\circ}$  is isotone on *S* is the substance of the following result.

Theorem 7. The following statements are equivalent:

- (1)  $(\forall x, y \in S) \quad x \leq y \Rightarrow x^{\circ} \leq y^{\circ};$
- (2) the orders  $\leq$  and  $\leq_n$  coincide on  $S^\circ$ .

*Proof.* (1)  $\Rightarrow$  (2): Suppose that (1) holds and let  $x, y \in S$  be such that  $x^{\circ} \leq y^{\circ}$ . Then  $x^{\circ \circ} \leq y^{\circ \circ}$  and consequently

$$y^{\circ\circ}x^{\circ} = y^{\circ\circ}x^{\circ}x^{\circ\circ}x^{\circ} \leqslant y^{\circ\circ}x^{\circ} \cdot y^{\circ\circ}x^{\circ} \leqslant y^{\circ\circ}y^{\circ}y^{\circ\circ}x^{\circ} = y^{\circ\circ}x^{\circ}$$

whence  $y^{\circ\circ}x^{\circ} \in E(S^{\circ})$ . Then  $y^{\circ\circ}x^{\circ} = y^{\circ\circ}x^{\circ}x^{\circ\circ}x^{\circ} \leqslant_n x^{\circ\circ}x^{\circ}$  and therefore, since *S* is naturally ordered,  $y^{\circ\circ}x^{\circ} \leqslant x^{\circ\circ}x^{\circ}$ . Since  $x^{\circ\circ} \leqslant y^{\circ\circ}$  it follows from this that  $y^{\circ\circ}x^{\circ} = x^{\circ\circ}x^{\circ}$  whence  $x^{\circ}y^{\circ\circ}x^{\circ} = x^{\circ}$  and so  $x^{\circ} \leqslant_n y^{\circ}$ . Property (2) now follows by Theorem 5.

 $(2) \Rightarrow (1)$ : If  $x \leq y$  then, by the Corollary to Theorem 5,  $x^{\circ\circ} \leq y^{\circ\circ}$ . If now (2) holds then  $x^{\circ\circ} \leq_n y^{\circ\circ}$ . Since on the ordered inverse semigroup  $(S^{\circ}; \leq_n)$  the assignment  $a \mapsto a^{-1} = a^{\circ}$  is isotone, we then have  $x^{\circ} = x^{\circ\circ\circ} \leq_n y^{\circ\circ\circ} = y^{\circ}$  whence, by Theorem 5,  $x^{\circ} \leq y^{\circ}$ .

We now add a basic property of naturally comparable idempotents that will be useful.

**Theorem 8.** If  $e, f \in E(S)$  are such that  $e \leq_n f$  then  $e = fe^{\circ}e = ee^{\circ}f = fe^{\circ}f$ .

*Proof.* Since e = ef = fe we have  $fe^{\circ}e \in E(S)$  with  $fe^{\circ}e \leq_n f$ , whence  $fe^{\circ}e \leq f$ . Since also  $e \leq f$ , it follows that  $e = ee^{\circ}e \leq fe^{\circ}e = fe^{\circ}ee \leq fe = e$  and so  $fe^{\circ}e = e$ . Likewise we have  $ee^{\circ}f = e$ , and combining these we obtain  $e = fe^{\circ}f$ .

Using Theorem 8 we can now describe the situation in which the assignment  $x \mapsto x^{\circ}$  is antitone.

Theorem 9. The following statements are equivalent:

(1)  $(\forall x, y \in S)$   $x \leq y \Rightarrow y^{\circ} \leq x^{\circ};$ 

(2)  $(\forall e, f \in E(S))$   $e \leq f \Rightarrow f^{\circ} \leq e^{\circ};$ 

- (3) *S* is completely simple;
- (4) the inverse transversal  $S^{\circ}$  is a group.

*Proof.*  $(1) \Rightarrow (2)$ : This is clear.

 $(2) \Rightarrow (3)$ : Let  $e, f \in E(S)$  be such that  $e \leq_n f$ . Then  $e \leq f$  and so, by the hypothesis and Theorem 8,  $f = ff^{\circ}f \leq fe^{\circ}f = e$  whence f = e. Thus  $\leq_n$  is equality on E(S) and so *S* is completely simple.

 $(3) \Rightarrow (4)$ : This is a well-known result of Saito (see [9] or [1]).

 $(4) \Rightarrow (1)$ : If  $x, y \in S$  are such that  $x \leq y$  then by the Corollary to Theorem 5 we have  $x^{\circ\circ} \leq y^{\circ\circ}$ . Since  $S^{\circ}$  is a group, it follows that  $y^{\circ} \leq x^{\circ}$ .

**Example 1.** For each  $x \in \mathbb{R}$  with  $x \ge 0$  let

$$Q_x = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix}, \begin{bmatrix} x & 0 \\ x & 0 \end{bmatrix}, \begin{bmatrix} x & x \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

Under matrix multiplication, the set  $Q = \bigcup_{x \ge 0} Q_x$  is a semigroup which is regular since, for

every 
$$X \in Q_x$$
  $(x \neq 0)$ , we have  $\begin{bmatrix} x^{-1} & 0 \\ 0 & 0 \end{bmatrix} \in V(X)$ . The subset
$$Q^\circ = \left\{ \begin{bmatrix} x^{-1} & 0 \\ 0 & 0 \end{bmatrix} \mid x > 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

which is a group with zero, is then an inverse transversal of Q.

The set of idempotents of Q is

$$E(Q) = \left\{ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \equiv \{a, b, c, d, 0\},$$

and the natural order on E(Q) is given by

$$E \leq_n F \iff E = 0 \text{ or } 0 \neq E = F.$$

In particular,  $(E(Q^{\circ}); \leq_n)$  consists of the 2-element chain

 $\begin{bmatrix} a \\ 0 \end{bmatrix}$ 

Consider now the component-wise order  $\leq$  on Q, this being defined for  $X = [x_{ij}]$  and  $Y = [y_{ij}]$  in Q by

$$X \leqslant Y \iff (\forall i, j) \ x_{ij} \leqslant y_{ij}$$

As can readily be verified,  $(Q; \leq)$  is an ordered semigroup and the restriction of  $\leq$  to E(Q) gives the Hasse diagram



Since  $\leq$  extends  $\leq_n$  on E(Q) we see that Q is naturally ordered. Moreover, it follows by Theorem 9 that the subsemigroup  $Q \setminus \{0\}$  is completely simple.

In view of Theorem 9 it is natural to investigate the more general situation in which the inverse transversal  $S^{\circ}$  is a monoid. This produces some properties that are similar to those that hold in the case where *S* has a biggest idempotent (see [5]).

**Theorem 10.** The following statements are equivalent:

- (1) the inverse transversal  $S^{\circ}$  is a monoid;
- (2)  $(S^{\circ}; \leq)$  has a biggest idempotent;
- (3)  $(\exists \xi \in E(S^\circ))$   $S^\circ = \xi S \xi;$
- (4)  $(\exists \xi \in E(S^{\circ}))(\forall x \in S) \quad x^{\circ \circ} = \xi x \xi;$
- (5)  $(\exists \xi \in E(S^{\circ}))$   $L = S\xi, R = \xi S;$
- (6) L [resp. R] is an idempotent-generated principal left [resp. right] ideal.

*Proof.* (1)  $\Rightarrow$  (2): If (1) holds then for every  $e \in E(S^{\circ})$  we have  $e \leq_n 1_{S^{\circ}}$  whence  $e \leq 1_{S^{\circ}}$ . (2)  $\Rightarrow$  (1): Suppose that (2) holds and let  $\xi = \max E(S^{\circ})$ . For every  $x^{\circ} \in S^{\circ}$  we have  $x^{\circ}x^{\circ\circ} \leq \xi$  whence  $x^{\circ}x^{\circ\circ} \leq_n \xi$  since  $\leq$  coincides with  $\leq_n$  on  $E(S^{\circ})$ . Consequently,

$$\xi x^{\circ} = \xi x^{\circ} x^{\circ \circ} x^{\circ} = x^{\circ} x^{\circ \circ} x^{\circ} = x^{\circ},$$

and similarly  $x^{\circ}\xi = x^{\circ}$ . Hence  $\xi = 1_{S^{\circ}}$ .

 $(1) \Rightarrow (3)$ : If (1) holds then we have

$$1_{S^{\circ}}S1_{S^{\circ}} \subseteq S^{\circ}SS^{\circ} \subseteq S^{\circ} = 1_{S^{\circ}}S^{\circ}1_{S^{\circ}} \subseteq 1_{S^{\circ}}S1_{S^{\circ}}$$

whence  $S^{\circ} = \xi S \xi$  where  $\xi = 1_{S^{\circ}}$ .

(3)  $\Rightarrow$  (4): If (3) holds then for every  $x \in S$  we have  $x^{\circ\circ} = \xi x^{\circ\circ} \xi = \xi x \xi$ .

 $(4) \Rightarrow (1)$ : If (4) holds then for every  $x \in S$  we have

$$x^{\circ} = (\xi x \xi)^{\circ} = (\xi^{\circ} x \xi^{\circ})^{\circ} = \xi^{\circ \circ} x^{\circ} \xi^{\circ \circ} = \xi x^{\circ} \xi$$

whence  $\xi x^{\circ} = x^{\circ} = x^{\circ} \xi$  and we have (1).

 $(4) \Rightarrow (5)$ : If (4) holds then for every  $x \in S$  we have  $xx^{\circ}x^{\circ\circ} = xx^{\circ}\xi x\xi \in S\xi$  whence  $L \subseteq S\xi$ ; and similarly  $R \subseteq \xi S$ . But, as in the above, by (4) we have  $x^{\circ} = \xi x^{\circ}\xi$  whence it follows that

$$x\xi(x\xi)^{\circ}(x\xi)^{\circ\circ} = x\xi x^{\circ}x^{\circ\circ}\xi = x\xi x^{\circ}\xi x\xi = xx^{\circ}x\xi = x\xi$$

whence  $S\xi \subseteq L$ . Similarly,  $\xi S \subseteq R$  and we have (5).

(5)  $\Rightarrow$  (3): If (5) holds then  $S^{\circ} = L \cap R = S\xi \cap \xi S = \xi S\xi$ .

 $(5) \Rightarrow (6)$ : This is clear.

(6)  $\Rightarrow$  (5): Suppose that L = Sp and R = qS where p and q are idempotents. Then  $p \in E(L) = I$  and so  $p^{\circ} = p^{\circ\circ} \in E(S^{\circ})$ . Likewise,  $q \in E(R) = \Lambda$  and  $q^{\circ} = q^{\circ\circ} \in E(S^{\circ})$ . Consequently,  $L = Sp = Sp^{\circ}p = Sp^{\circ}p^{\circ\circ} = Sp^{\circ}$  and  $R = qS = qq^{\circ}S = q^{\circ\circ}q^{\circ}S = q^{\circ}S$ . Now since  $p^{\circ} \in E(S^{\circ}) \subseteq R = q^{\circ}S$  we have  $p^{\circ} = q^{\circ}p^{\circ}$ ; and since  $q^{\circ} \in E(S^{\circ}) \subseteq L = Sp^{\circ}$  we have  $q^{\circ} = q^{\circ}p^{\circ}$ . Consequently  $p^{\circ} = q^{\circ}$  and (5) follows.

**Theorem 11.** If  $S^{\circ}$  is a monoid with identity element  $\xi$  then the following statements are equivalent:

- (1) the assignment  $x \mapsto x^{\circ \circ}$  is a morphism;
- (2)  $(\forall x, y \in S) (xy)^\circ = (x\xi y)^\circ;$
- (3) S is orthodox.

*Proof.* (1)  $\Rightarrow$  (2): If (1) holds then by Theorem 10 we have  $(xy)^{\circ\circ} = x^{\circ\circ}y^{\circ\circ} = \xi x \xi y \xi = (x\xi y)^{\circ\circ}$ . It follows that  $(xy)^{\circ} = (x\xi y)^{\circ}$ .

(2)  $\Rightarrow$  (3): Since  $x\xi \in L$  we have, by  $(\kappa)$ ,  $(x\xi y)^{\circ} = y^{\circ}(x\xi)^{\circ} = y^{\circ}\xi x^{\circ} = y^{\circ}x^{\circ}$ . Then (2) and  $(\lambda)$  give S is orthodox.

(3) 
$$\Rightarrow$$
 (1): If (3) holds then, by  $(\lambda)$ ,  $(xy)^{\circ\circ} = (y^{\circ}x^{\circ})^{\circ} = x^{\circ\circ}y^{\circ\circ}$  and (1) follows.  $\Box$ 

#### **3.** The regularity of $\mathcal{L}$ and $\mathcal{R}$ .

Guided by Theorem 4(2) and property ( $\gamma$ ), we now consider the following concept.

**Definition.** We shall say that  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] is *weakly regular* if

 $(\forall e, f \in E(S)) \quad e \leq f \Rightarrow e^{\circ}e \leq f^{\circ}f \text{ [resp. } ee^{\circ} \leq ff^{\circ}\text{]}.$ 

The weak regularity of  $\mathscr{L}$  and  $\mathscr{R}$  can be characterised in the following way, which should be viewed in comparison with Theorem 4(3).

**Theorem 12.** The following statements are equivalent:

- (1)  $\mathscr{L}$  and  $\mathscr{R}$  are weakly regular;
- (2)  $(\forall e, f \in E(S))$   $e \leq f \Rightarrow e^{\circ} \leq f^{\circ}$ .

*Proof.* (1)  $\Rightarrow$  (2): Suppose that  $e, f \in E(S)$  are such that  $e \leq f$ . Then if (1) holds we have  $e^{\circ}e \leq f^{\circ}f$  and  $ee^{\circ} \leq ff^{\circ}$  whence  $e^{\circ} = e^{\circ}e \cdot ee^{\circ} \leq f^{\circ}f \cdot ff^{\circ} = f^{\circ}$ . (2)  $\Rightarrow$  (1): This is immediate.

**Corollary.** If  $S^{\circ}$  is (weakly) multiplicative then  $\mathcal{L}$  and  $\mathcal{R}$  are weakly regular.

*Proof.* Since  $S^{\circ}$  is weakly multiplicative, for every  $e \in E(S)$  we have  $e^{\circ} = e^{\circ\circ} \in E(S^{\circ})$ . Thus, if  $e \leq f$  then, by the Corollary to Theorem 5,  $e^{\circ} = e^{\circ\circ} \leq f^{\circ\circ} = f^{\circ}$ . It follows that  $\mathscr{L}$  and  $\mathscr{R}$  are weakly regular.

*Remark.* Note that in Example 1 we have

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in E(Q) \quad \text{but} \quad \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}^{\circ} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \notin E(Q^{\circ})$$

and so  $Q^{\circ}$  is not weakly multiplicative. However, by applying Theorem 12(2) to E(Q), we see that both  $\mathcal{L}$  and  $\mathcal{R}$  are weakly regular. The converse of the above Corollary therefore fails in general.

**Definition.** We shall say that  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] is *regular* if

 $(\forall x, y \in S) \quad x \leq y \Rightarrow x^{\circ}x \leq y^{\circ}y \text{ [resp. } xx^{\circ} \leq yy^{\circ}\text{]}.$ 

Clearly, 'regular' implies 'weakly regular'. In order to characterise the regularity of  $\mathscr{L}$  and  $\mathscr{R}$  we require the following concepts.

**Definition.** An equivalence relation  $\Theta$  on an ordered set *A* is said to satisfy the *link property* if

$$a\Theta x \leq b \Rightarrow (\exists y \in A) \ a \leq y\Theta b;$$

and the dual link property if

$$a \leq x \Theta b \Rightarrow (\exists y \in A) \ a \Theta y \leq b.$$

**Theorem 13.** If  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] is regular then  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] satisfies the dual link property.

*Proof.* If  $a \leq x \mathscr{L} b$  then since  $\mathscr{L}$  is regular we have  $a^{\circ}a \leq x^{\circ}x = b^{\circ}b$  and so  $ba^{\circ}a \leq b$ . Now, by Theorem 1 and property ( $\delta$ ), we have  $a^{\circ}a = a^{\circ}ab^{\circ}ba^{\circ}a = b^{\circ}ba^{\circ}a$  and so

 $a^{\circ}a = (a^{\circ}a)^{\circ}a^{\circ}a = (b^{\circ}ba^{\circ}a)^{\circ}b^{\circ}ba^{\circ}a = (ba^{\circ}a)^{\circ}ba^{\circ}a.$ 

Hence  $a \mathscr{L} b a^{\circ} a \leq b$ .

Similarly, when regular,  $\mathcal{R}$  satisfies the dual link property.

As the following example shows, even when  $S^{\circ}$  is multiplicative  $\mathcal{L}$  can be weakly regular and satisfy the dual link property but fail to be regular

**Example 2.** Let k > 1 be a fixed integer. For every  $n \in \mathbb{Z}$  let  $n_k$  be the biggest multiple of k that is less than or equal to n. On the cartesian ordered set  $S = \mathbb{Z} \times -\mathbb{N} \times \mathbb{Z}$  define a multiplication by

$$(x, -p, m)(y, -q, n) = (\min\{x, y\}, -p, m_k + n).$$

Then *S* is an ordered semigroup in which the idempotents are (x, -p, m) where  $m_k = 0$ , i.e. where  $0 \le m \le k-1$ . It is readily observed that *S* is naturally ordered, and that for every  $(x, -p, m) \in S$  we have  $(x, 0, -m_k + k - 1) \in V(x, -p, m)$  so *S* is regular. Moreover, with  $(x, -p, m)^\circ = (x, 0, -m_k + k - 1)$ , the set  $S^\circ = \{z^\circ | z \in S\}$  is an inverse transversal of *S* which is a quasi-ideal. Since the product of two idempotents is idempotent we see that *S* is orthodox. Hence  $S^\circ$  is also weakly multiplicative [3] and so is multiplicative.

Consider now the relation  ${\mathcal L}$  which, by the Corollary to Theorem 12, is weakly regular. Since

$$(x, -p, m)^{\circ}(x, -p, m) = (x, 0, m - m_k)$$

we see that  $\mathscr{L}$  is not regular. To see that  $\mathscr{L}$  satisfies the dual link property, suppose that  $(x, -p, m) \leq (z, -r, t) \mathscr{L}(y, -q, n)$ . Then  $x \leq z = y$ . Let  $a = n_k - k + m - m_k$ . Then  $a_k = n_k - k$  and so  $a - a_k = m - m_k$ . Also,  $a \leq a_k + k - 1 = n_k - 1 < n_k \leq n$ . Hence  $(x, -p, m) \mathscr{L}(x, -q, a) \leq (y, -q, n)$ .

**Definition.** We shall say that  $\mathscr{L}$  is *lower*  $\Lambda$ *-stable* if

 $(\forall x \in S) \quad x \leq l \in \Lambda \implies x^{\circ}x \leq l;$ 

and *upper*  $\Lambda$ -stable if

$$(\forall x \in S) \quad x \ge l \in \Lambda \implies x^{\circ}x \ge l.$$

Dually, we define  $\mathscr{R}$  to be lower and upper I-stable.

**Theorem 14.** The following statements are equivalent:

- (1)  $\mathscr{L}$  is regular;
- (2)  $\mathscr{L}$  satisfies the dual link property and is lower  $\Lambda$ -stable;
- (3)  $\mathscr{L}$  is upper  $\Lambda$ -stable.

*Proof.* (1)  $\Rightarrow$  (2): If  $\mathscr{L}$  is regular then by Theorem 13 it satisfies the dual link property. Moreover, if  $x \leq l \in \Lambda$  then  $x^{\circ}x \leq l^{\circ}l = l$  and so  $\mathscr{L}$  is also lower  $\Lambda$ -stable.

 $(2) \Rightarrow (1)$ : Let  $x, y \in S$  be such that  $x \leq y$ . Then from  $x \leq y \mathscr{L} y^{\circ} y$  and the fact that  $\mathscr{L}$  satisfies the dual link property we have the existence of  $z \in S$  such that  $x \mathscr{L} z \leq y^{\circ} y$ . Then  $x^{\circ}x = z^{\circ}z$  and, since  $\mathscr{L}$  is lower  $\Lambda$ -stable,  $z^{\circ}z \leq y^{\circ}y$ . Hence  $\mathscr{L}$  is regular.

 $(1) \Rightarrow (3)$ : This is clear.

(3)  $\Rightarrow$  (1): Observe first that  $(x^{\circ}y)^{\circ}x^{\circ}y = y^{\circ}(x^{\circ}yy^{\circ})^{\circ}x^{\circ}y \leq_{n} y^{\circ}y$  and therefore, since *S* is naturally ordered,  $(x^{\circ}y)^{\circ}x^{\circ}y \leq y^{\circ}y$ . Suppose now that  $x \leq y$ . Then  $x^{\circ}x \leq x^{\circ}y$  and so, by (3),  $x^{\circ}x \leq (x^{\circ}y)^{\circ}x^{\circ}y \leq y^{\circ}y$  whence we have (1).

We now pass to a consideration of the link property. That this is not in general satisfied by  $\mathscr{L}$  or  $\mathscr{R}$  is shown by the following example.

**Example 3.** Let *G* be an ordered group and let  $x \in G$  be such that x > 1. Let  $H = \langle x \rangle$  be the subgroup generated by *x*. Add to *H* a new identity element  $\xi$  together with the single comparability  $1 < \xi$ . Then  $\xi^2 = \xi$  and  $\xi y = y = y\xi$  for all  $y \in H$ , and we obtain the ordered inverse semigroup *S* with Hasse diagram



Clearly, *S* is naturally ordered and  $S^\circ = S$ . Moreover, since the  $\mathscr{L}$ -classes (and the  $\mathscr{R}$ -classes) of *S* are *H* and  $\{\xi\}$ , we see that  $\mathscr{L}$  is regular. Now  $x \mathscr{L} x^{-1} < \xi$  but the existence of  $y \in S$  such that  $x \leq y \mathscr{L} \xi$  forces  $y = \xi$  and gives the contradiction  $x \leq \xi$ . Hence  $\mathscr{L}$  does not satisfy the link property.

A situation in which  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] satisfies the link property is the following.

**Theorem 15.** If  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] is regular and if S is upper directed then  $\mathscr{L}$  [resp.  $\mathscr{R}$ ] satisfies the link property.

*Proof.* Suppose that  $a \mathscr{L} x \leq b$  and let  $k \in S$  be such that  $a, b \leq k$ . Then  $a^{\circ}a = x^{\circ}x \leq b^{\circ}b$  whence  $a = aa^{\circ}a \leq kb^{\circ}b$ . Also,  $b^{\circ}b \leq k^{\circ}k$  which, by Theorem 1 and property ( $\delta$ ), gives  $b^{\circ}b = k^{\circ}kb^{\circ}b$  whence

$$b^{\circ}b = (b^{\circ}b)^{\circ}b^{\circ}b = (k^{\circ}kb^{\circ}b)^{\circ}k^{\circ}kb^{\circ}b = (kb^{\circ}b)^{\circ}kb^{\circ}b.$$

Hence  $a \leq kb^{\circ}b \mathcal{L}b$ . A similar proof holds for  $\mathcal{R}$ .

#### 4. A structure theorem.

Our objective now is to obtain the structure of a naturally ordered regular semigroup with an inverse monoid transversal. This we can deduce from the algebraic structure of a locally inverse semigroup with such a transversal, which we now proceed to describe. For this purpose, we recall that if *S* is a regular semigroup then  $\xi \in S$  is said to be a *weak middle unit* if, for all  $x \in S$  and all  $x' \in V(x)$ ,  $x\xi x' = xx'$  and  $x'\xi x = x'x$ . If  $\xi$  is a weak middle unit then  $\xi$  is necessarily idempotent; for  $\xi = \xi\xi'\xi = \xi\xi\xi', \xi = \xi\xi\xi'\xi = \xi\xi$ .

**Theorem 16.** Let A be a regular semigroup with a weak middle unit  $\xi$ . Then the following statements are equivalent:

- (1) A is locally inverse;
- (2) the regular subsemigroup  $\xi A \xi$  is inverse.

*Proof.*  $(1) \Rightarrow (2)$ : This clear.

(2)  $\Rightarrow$  (1): Suppose that  $\xi A \xi$  is inverse. If  $x \in A$  and  $x' \in V(x) \cap A$  then  $x = xx'x = x\xi x'\xi x$  and  $\xi x'\xi x\xi x'\xi = \xi x'\xi$ , and so  $\xi x'\xi \in V(x) \cap \xi A \xi$  whence  $V(x) \cap \xi A \xi \neq \emptyset$ . If now  $y \in V(x) \cap \xi A \xi$  then  $y = yxy = y\xi x\xi y$ , and x = xyx gives  $\xi x\xi = \xi x\xi y\xi x\xi$ , whence  $y \in V(\xi x\xi) \cap \xi A \xi$  and consequently  $y = (\xi x\xi)^{-1}$ . Hence  $V(x) \cap \xi A \xi = \{(\xi x\xi)^{-1}\}$  and so  $\xi A \xi$  is an inverse transversal of A. Since  $\xi A \xi \cdot A \cdot \xi A \xi \subseteq \xi A \xi$  we see that  $\xi A \xi$  is a quasi-ideal. Then, by Theorem 3, A is locally inverse.

The structure of regular semigroups with various kinds of inverse transversal has been determined by Saito [10]. This is immensely complicated, even in the case where the semigroup is locally inverse, i.e. the inverse transversal is a quasi-ideal. The particular situation in which the semigroup is locally inverse and the inverse transversal is a monoid can be treated more simply as follows.

**Theorem 17.** Let *L* and *R* be regular semigroups with a common weak middle unit  $\xi$  and a common inverse submonoid  $T = \xi L \xi = \xi R \xi$ . Define a mapping  $R \times L \rightarrow T$  by  $(a,x) \mapsto a \circ x$  with the following properties:

- (1)  $(\forall a, b \in R)(\forall y, z \in L) \quad a(a \circ y)b \circ z = [(a \circ y)b\xi]^{-1}(a \circ y)b\xi(b \circ z);$
- (2)  $(\forall a, b \in R)(\forall y, z \in L)$   $a \circ y(b \circ z)z = (a \circ y)\xi y(b \circ z)[\xi y(b \circ z)]^{-1};$
- (3)  $(\forall a \in R)(\forall x \in L)(\forall t \in T) \quad a \circ t = (a \circ \xi)(\xi \circ t), \quad t \circ x = (t \circ \xi)(\xi \circ x);$
- (4)  $(\forall a \in R)(\forall x \in L) \quad a(a \circ \xi) = \xi a\xi, \quad (\xi \circ x)x = \xi x\xi;$
- (5)  $(\forall a \in R)(\forall a' \in V(a) \cap R)$   $(a \circ \xi)\xi a'\xi = \xi a'\xi,$  $(\forall a \in L)(\forall a' \in V(a) \cap R)$   $\xi a'\xi = \xi a'\xi,$
- $(\forall x \in L)(\forall x' \in V(x) \cap L) \quad \xi x' \xi(\xi \circ x) = \xi x' \xi.$

*On the set*  $L |x|_{\xi} R = \{(x, a) \in L \times R \mid \xi x = a\xi\}$  *define a multiplication by* 

$$(x,a)(y,b) = (x(a \circ y)y, a(a \circ y)b).$$

Then  $L |\times|_{\mathcal{Z}} R$  is a locally inverse semigroup that has an inverse monoid transversal.

Moreover, every such semigroup is obtained in this way. More precisely, if S is a locally inverse semigroup with an inverse transversal S° that is a monoid with identity  $\xi$  then S° =  $\xi S\xi$ ,  $\xi$  is a weak middle unit of both S $\xi$  and  $\xi S$ , the mapping  $\xi S \times S\xi \rightarrow S^{\circ} = \xi S\xi$ given by  $(a,x) \mapsto a^{\circ}axx^{\circ}$  satisfies properties (1) to (5) above, and there is a semigroup isomorphism

$$S \simeq S\xi \mid \times \mid_{\xi} \xi S.$$

*Proof.* For  $x, y \in L$  and  $a \in R$  we have  $x(a \circ y)y \in LTL \subseteq L$ ; and for all  $a, b \in R$  and  $y \in L$  we have  $a(a \circ y)b \in RTR \subseteq R$ . Moreover, if  $(x, a), (y, b) \in L |x| \notin R$  then

$$\xi x(a \circ y)y = a\xi(a \circ y)y = a(a \circ y)y = a(a \circ y)\xi y = a(a \circ y)b\xi.$$

Consequently, the multiplication on  $L |\times|_{\xi} R$  is well-defined.

We proceed in the following stages.

(i)  $L |\times|_{\mathcal{E}} R$  is a semigroup.

From the multiplication, we see that in  $L |\times|_{\xi} R$  the first component of [(x,a)(y,b)](z,c) is  $x(a \circ y)y[a(a \circ y)b \circ z]z$  which by (1) is  $x(a \circ y)y[(a \circ y)b\xi]^{-1}(a \circ y)b\xi(b \circ z)z$ . Using twice the fact that  $b\xi = \xi y$  and  $\xi$  is an identity of T, we see that this reduces to  $x(a \circ y)y(b \circ z)z$ . On the other hand, the first component of (x,a)[(y,b)(z,c)] is  $x[a \circ y(b \circ z)z]y(b \circ z)z$  which by (2) is  $x(a \circ y)\xi y(b \circ z)[\xi y(b \circ z)]^{-1}\xi y(b \circ z)z$  which also reduces to  $x(a \circ y)y(b \circ z)z$ . Thus the first components of the products are the same; and similarly, so are the second components. Thus, with the above multiplication,  $L |\times|_{\xi} R$  is a semigroup.

(ii)  $L |\times|_{\xi} R$  is regular.

Observe first that, as in Theorem 16, if  $x \in L$  and  $x' \in V(x) \cap L$  then  $\xi x'\xi = (\xi x\xi)^{-1}$ . Likewise, if  $a \in R$  and  $a' \in V(a) \cap R$  then  $\xi a'\xi = (\xi a\xi)^{-1}$ . Suppose now that  $(x, a) \in L |x|_{\xi}R$ . Then  $\xi x = a\xi$  gives  $\xi x\xi = \xi a\xi$  and so, for  $x' \in V(x) \cap L$  and  $a' \in V(a) \cap R$ , we can define  $\beta = \xi x'\xi = \xi a'\xi \in T$ .

Then the first component of the product  $(x,a)(\beta,\beta)(x,a)$  is, as in (i),

$$x(a \circ \beta)\beta(\beta \circ x)x = x(a \circ \beta)\beta(\beta \circ \xi)(\xi \circ x)x \quad \text{by (3)}$$
  
=  $x(a \circ \beta)\xi\beta\xi\xix\xi \quad \text{by (4)}$   
=  $x(a \circ \xi)(\xi \circ \beta)\beta a\xi \quad \text{by (3)}$   
=  $x(a \circ \xi)\xi\beta\xi a\xi \quad \text{by (4)}$   
=  $x(a \circ \xi)\xia'\xi x$   
=  $x\xi a'\xi x \quad \text{by (5)}$   
=  $x\xi x'\xi x$   
=  $x$ .

In a similar way we can see that the second component of the product is *a*. Thus we see that  $(x,a)(\beta,\beta)(x,a) = (x,a)$  and so  $L |\times| \xi R$  is regular.

(iii)  $\widehat{T} = \text{diag}(T \times T)$  is an inverse submonoid of  $L |\times|_{\mathcal{E}} R$ .

Clearly,  $\widehat{T}$  is a subsemigroup of  $L | \times |_{\mathcal{E}} R$ , and is regular since if  $(\gamma, \gamma) \in \widehat{T}$  then, by (ii),

$$(\forall \gamma' \in V(\gamma) \cap T) \quad (\gamma, \gamma)(\xi \gamma' \xi, \xi \gamma' \xi)(\gamma, \gamma) = (\gamma, \gamma).$$

If now  $(\gamma, \gamma)$  is an idempotent in  $\widehat{T}$  then by (3) and (4) we see that  $\gamma = \gamma(\gamma \circ \gamma)\gamma = \gamma(\gamma \circ \xi)(\xi \circ \gamma)\gamma = \gamma\gamma$ , so that  $\gamma$  is idempotent in *T*. Furthermore, if  $(\gamma, \gamma), (\delta, \delta) \in \widehat{T}$  are idempotents then

$$\begin{aligned} (\gamma,\gamma)(\delta,\delta) &= \begin{pmatrix} \gamma(\gamma\circ\delta)\delta, \gamma(\gamma\circ\delta)\delta \end{pmatrix} \\ &= \begin{pmatrix} \gamma(\gamma\circ\xi)(\xi\circ\delta)\delta, \gamma(\gamma\circ\xi)(\xi\circ\delta)\delta \end{pmatrix} & \text{by (3)} \\ &= (\xi\gamma\xi\delta\xi, \xi\gamma\xi\delta\xi) & \text{by (4)} \\ &= (\gamma\delta,\gamma\delta). \end{aligned}$$

Now since  $\gamma, \delta$  are idempotents in *T* they commute, and therefore it follows that so do  $(\gamma, \gamma)$  and  $(\delta, \delta)$  in  $\hat{T}$ . Hence  $\hat{T}$  is an inverse semigroup.

Using (4) and the fact that  $\xi$  is an identity for T, it is readily seen that  $(\xi, \xi)$  is an identity element for  $\widehat{T}$ .

(iv)  $\widehat{T}$  is an inverse transversal of  $L | \times |_{\mathcal{E}} R$ .

First we observe that if  $(x, a) \in L |\times|_{\xi} R$  then, with  $\beta$  as in (ii),

$$(\boldsymbol{\beta},\boldsymbol{\beta}) \in V(x,a) \cap T$$

In fact, we have seen in (ii) that  $(x,a)(\beta,\beta)(x,a) = (x,a)$ . Consider now the product  $(\beta,\beta)(x,a)(\beta,\beta)$ . The first component of this is, as in (i),

$$\beta(\beta \circ x)x(a \circ \beta)\beta = \beta(\beta \circ \xi)(\xi \circ x)x(a \circ \xi)(\xi \circ \beta)\beta \quad \text{by (3)}$$

$$= \xi\beta\xi\xi\xix\xi(a \circ \xi)\xi\beta\xi \quad \text{by (4)}$$

$$= \beta\xi a\xi(a \circ \xi)\beta \quad \text{since } \xi x\xi = \xi a\xi$$

$$= \beta a(a \circ \xi)\beta$$

$$= \beta\xi a\xi\beta \quad \text{by (4)}$$

$$= \beta a\beta$$

$$= \xi a'\xi a\xi a'\xi$$

$$= \xi a'\xi$$

Similarly, the second component is also  $\beta$ . Thus  $(\beta,\beta)(x,a)(\beta,\beta) = (\beta,\beta)$  and therefore  $V(x,a) \cap \widehat{T}$  contains  $(\beta,\beta)$ .

Suppose now that  $(\gamma, \gamma) \in V(x, a) \cap \widehat{T}$ . On the one hand  $(\gamma, \gamma) = (\gamma, \gamma)(x, a)(\gamma, \gamma)$  gives, as in the above,  $\gamma = \gamma \xi a \xi \gamma = \gamma \xi x \xi \gamma = \gamma x \gamma$ . On the other hand,  $(x, a) = (x, a)(\gamma, \gamma)(x, a)$  gives, as in (ii),  $x = x(a \circ \xi)\gamma x$  whence

$$x\gamma x = x(a \circ \xi)\gamma x\gamma x = x(a \circ \xi)\gamma x = x.$$

It follows that  $\gamma \in V(x) \cap T$  whence, as in Theorem 16,  $\gamma \in V(\xi x \xi) \cap T$  and therefore  $\gamma = (\xi x \xi)^{-1} = \beta$ .

It follows from the above that  $V(x,a) \cap \widehat{T} = \{(\beta,\beta)\}$  whence  $\widehat{T}$  is an inverse transversal of  $L |x|_{\xi} R$ .

(v) 
$$T$$
 is a quasi-ideal.

If  $(\gamma, \gamma), (\delta, \delta) \in \widehat{T}$  and  $(x, a) \in L |x|_{\xi} R$  then the product  $(\gamma, \gamma)(x, a)(\delta, \delta)$  is

 $(\gamma(\gamma \circ x)x[\gamma(\gamma \circ x)a \circ \delta]\delta, \gamma(\gamma \circ x)a[\gamma(\gamma \circ x)a \circ \delta]\delta)$ 

which belongs to  $\widehat{T}$  since  $\xi x \xi = \xi a \xi$ . Thus  $\widehat{T}(L |\times|_{\xi} R) \widehat{T} \subseteq \widehat{T}$  and hence the inverse transversal  $\widehat{T}$  of  $L |\times|_{\xi} R$  is a quasi-ideal.

In summary, from the above and Theorem 3 we have that  $L |x|_{\xi} R$  is a locally inverse semigroup with an inverse monoid transversal.

To show that every such semigroup is obtained in this way, let *S* be a locally inverse semigroup with an inverse monoid transversal *S*°. Let the identity element of *S*° be  $\xi$ . By Theorem 10(3) we have *S*° =  $\xi S \xi$ . Moreover, by Theorem 10(5) and property ( $\zeta$ ) we see

that  $L = S\xi$  is a left inverse semigroup with right identity  $\xi$ , and  $R = \xi S$  is a right inverse semigroup with left identity  $\xi$ . Thus  $\xi$  is a weak middle unit of both  $S\xi$  and  $\xi S$ . Moreover,  $\xi L \xi = \xi S \xi = \xi R \xi$ . We are therefore in the initial conditions of the first part. Consider therefore the mapping  $\xi S \times S \xi \rightarrow S^{\circ} = \xi S \xi$  given by

$$(a,x) \mapsto a \circ x = a^\circ a x x^\circ$$

To see that this satisfies property (1) above, observe that

$$\begin{aligned} a(a \circ y)b \circ z &= ayy^{\circ}b \circ z \\ &= (ayy^{\circ}b)^{\circ}ayy^{\circ}bzz^{\circ} \\ &= b^{\circ}(ayy^{\circ})^{\circ}ayy^{\circ}bb^{\circ}bzz^{\circ} \qquad \text{by } (\kappa) \text{ since } b \in R \\ &= (\xi b\xi)^{\circ}(a^{\circ}ayy^{\circ})^{\circ}a^{\circ}ayy^{\circ}b\xi b^{\circ}bzz^{\circ} \qquad \text{by } (\alpha) \\ &= (a^{\circ}ayy^{\circ}\xi b\xi)^{\circ}a^{\circ}ayy^{\circ}b\xi b^{\circ}bzz^{\circ} \qquad \text{by } (\kappa) \\ &= (a^{\circ}ayy^{\circ}b\xi)^{\circ}a^{\circ}ayy^{\circ}b\xi b^{\circ}bzz^{\circ} \\ &= [(a \circ y)b\xi]^{-1}(a \circ y)b\xi (b \circ z). \end{aligned}$$

It is readily verified that (2), (3), (4), (5) also hold.

Consider now the mapping  $\vartheta: S \to S\xi |x|_{\xi} \xi S$  given by  $\vartheta(x) = (x\xi, \xi x)$ . For all  $x, y \in S$ we have

$$\begin{aligned} \vartheta(x)\vartheta(y) &= (x\xi,\xi x)(y\xi,\xi y) \\ &= (x\xi(\xi x \circ y\xi)y\xi,\xi x(\xi x \circ y\xi)\xi y) \\ &= (x\xi x^{\circ} xyy^{\circ} y\xi,\xi xx^{\circ} xyy^{\circ} \xi y) \\ &= (xy\xi,\xi xy) \\ &= \vartheta(xy) \end{aligned}$$

and so  $\vartheta$  is a morphism.

If now  $\vartheta(x) = \vartheta(y)$  then  $x\xi = y\xi$  and  $\xi x = \xi y$  whence  $x^{\circ\circ} = \xi x\xi = \xi y\xi = y^{\circ\circ}$  and

then  $x^{\circ} = y^{\circ}$ . Consequently,  $x = xx^{\circ}x = x\xi x^{\circ}\xi x = y\xi y^{\circ}\xi y = yy^{\circ}y = y$  and so  $\vartheta$  is injective. To see that  $\vartheta$  is also surjective, let  $(x\xi, \xi y) \in S\xi |x|_{\xi} \xi S$ . Then  $\xi x\xi = \xi y\xi$ , whence  $x^{\circ} = y^{\circ}$ . Now let  $t = xx^{\circ}y$ . Then  $t\xi = xx^{\circ}\xi y\xi = xx^{\circ}\xi x\xi = x\xi$  and  $\xi t = \xi x\xi x^{\circ}y = \xi y\xi y^{\circ}y = \xi y$ . Thus  $\vartheta(t) = (t\xi, \xi t) = (x\xi, \xi y).$ 

It follows from the above that  $S \simeq S\xi |\times|_{\xi} \xi S$ .

Corollary. The inverse transversal in question is multiplicative if and only if

$$(\forall l \in E(\xi R))(\forall i \in E(L\xi)) \quad l \circ i \in E(T).$$

*Proof.* As in the proof of Theorem 16, T is an inverse transversal of R with  $a^\circ = \xi a' \xi$  for every  $a' \in V(A) \cap R$ . Consequently,

$$\Lambda(R) = \{a^{\circ}a \mid a \in R\} = \{\xi a'a \mid a \in R, a' \in V(a) \cap R\}.$$

Since  $\xi$  is a weak middle unit, it is clear that  $\Lambda(R) \subseteq E(\xi R)$ . Conversely, if  $e \in E(\xi R)$ then  $e = \xi e = \xi e e' e = \xi e^* e$  where  $e^* = ee' \in V(e)$ . Hence  $\Lambda(R) = E(\xi R)$ . Similarly

$$\mathbf{I}(L) = \{ xx'\xi \mid x \in L, \, x' \in V(x) \cap L \} = E(L\xi).$$

Suppose now that  $(x,a) \in L |x|_{\xi} R$ . Then, as in (iv) above,  $(x,a)^{\circ} = (\beta,\beta)$  where  $\beta = \xi a'\xi = \xi x'\xi$ . Consequently, in  $L |x|_{\xi} R$  we have

$$(x,a)^{\circ}(x,a) = (\beta,\beta)(x,a)$$
  
=  $(\beta(\beta \circ x)x, \beta(\beta \circ x)a)$   
=  $(\beta(\beta \circ \xi)(\xi \circ x)x, \beta(\beta \circ \xi)(\xi \circ x)a)$  by (3)  
=  $(\xi\beta\xi.\xi x\xi, \xi\beta\xi(\xi \circ x)a)$  by (4)  
=  $(\xi x'\xi.\xi x\xi, \xi x'\xi(\xi \circ x)a)$   
=  $(\xi x'x\xi, \xi x'\xi a)$  by (5)  
=  $(\xi x'x\xi, \xi a'a)$  since  $\xi x'\xi = \xi a'\xi$ .

Similarly,  $(y,b)(y,b)^{\circ} = (yy'\xi, \xi bb'\xi)$ . It follows that if  $l \in \Lambda(L |x|_{\xi} R)$  and  $i \in I(L |x|_{\xi} R)$  then li is of the form

$$li = (\xi x' x \xi, \xi a' a) (yy' \xi, \xi bb' \xi) = (\xi x' x \xi (\xi a' a \circ yy' \xi) yy' \xi, \xi a' a (\xi a' a \circ yy' \xi) \xi bb' \xi)$$

Now if the stated condition holds then we have  $\xi a' a \circ yy' \xi \in E(T)$ . This, together with  $\xi x' x \xi = \xi a' a \xi \in E(T)$  and  $\xi yy' \xi = \xi bb' \xi \in E(T)$ , gives  $li = (\gamma, \gamma) \in \widehat{T}$  where  $\gamma \in E(T)$ . Then since  $(\gamma, \gamma)^2 = (\gamma^2, \gamma^2) = (\gamma, \gamma)$  we see that  $li \in E(\widehat{T})$ , whence the inverse transversal  $\widehat{T}$  is multiplicative.

Conversely, if *S* is a locally inverse semigroup with an inverse monoid transversal  $S^{\circ} = \xi S \xi$  that is multiplicative then for  $l \in \Lambda = E(\xi S)$  and  $i \in I = E(S\xi)$  we have  $l \circ i = l^{\circ} lii^{\circ} = li \in E(S^{\circ})$  whence the condition holds.

We can apply the above theorem to obtain a structure theorem for naturally ordered regular semigroups with an inverse monoid transversal.

**Theorem 18.** Let S be a naturally ordered regular semigroup with an inverse transversal S° that is a monoid with identity element  $\xi$ . Let  $S\xi |\times|_{\xi} \xi S$  consist of the subset of the cartesian ordered set  $S\xi \times \xi S$  given by

$$S\xi \mid \times \mid_{\mathcal{E}} \xi S = \{ (x\xi, \xi x) \mid x \in S \}$$

together with the multiplication

$$(x\xi,\xi x)(y\xi,\xi y) = (xy\xi,\xi xy)$$

Then  $S\xi |\times|_{\xi} \xi S$  is an ordered regular semigroup. Moreover, if either  $\mathcal{L}$  or  $\mathcal{R}$  is regular on S then there is an ordered semigroup isomorphism

$$S \simeq S\xi \mid \times \mid_{\xi} \xi S.$$

*Proof.* Since *S* is locally inverse by Theorem 2, it follows immediately from Theorem 10(5) and Theorem 17 that there is an algebraic isomorphism  $\vartheta : S \to S\xi |\times|_{\xi} \xi S$  given by  $\vartheta(x) = (x\xi, \xi x)$ . Suppose now that, for example,  $\mathscr{R}$  is regular on *S*. If  $\vartheta(x) \leq \vartheta(y)$  then  $x\xi \leq y\xi$  and  $\xi x \leq \xi y$ , whence  $x = xx^{\circ}x = x\xi(x\xi)^{\circ}\xi x \leq y\xi(y\xi)^{\circ}\xi y = yy^{\circ}y = y$ . Thus we see that  $x \leq y \iff \vartheta(x) \leq \vartheta(y)$  and so the isomorphism  $\vartheta$  is also an order isomorphism. The same is true if  $\mathscr{L}$  is regular.

**Example 4.** With the above notation, in Example 1 the identity element of the inverse transversal  $Q^{\circ}$  is  $\xi = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ . Then, by Theorem 18, we have  $Q \simeq Q\xi |x|_{\xi} \xi Q$  where

$$Q\xi = \left\{ \begin{bmatrix} x & 0 \\ x & 0 \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \mid x > 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\};$$
$$\xi Q = \left\{ \begin{bmatrix} x & x \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \mid x > 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

Since  $\Lambda$  consists of the chain 0 < d < c it is readily verified that  $\mathscr{L}$  is upper  $\Lambda$ -stable. It then follows from Theorem 14 that  $\mathscr{L}$  is regular. Consequently the above semigroup isomorphism is also an order isomorphism.

Finally, we note that if *S* is a naturally ordered regular semigroup that contains a biggest idempotent  $\xi$  then *S* has a quasi-ideal inverse monoid transversal, namely  $\xi S \xi$  (see, for example, [2, Theorem 13.16]). Theorem 18 therefore applies in this case. More particularly, it applies in the case of a naturally ordered regular Dubreil-Jacotin semigroup.

#### REFERENCES

- T. S. Blyth, Inverse Transversals–A Guided Tour, Proceedings of an International Conference on Semigroups, Braga (1999), World Scientific, 2000.
- [2] T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, London, 2005.
- [3] T. S. Blyth and M. H. Almeida Santos, A classification of inverse transversals, Communications in Algebra, 29, 2001, 611–624.
- [4] T. S. Blyth and M. H. Almeida Santos, Amenable orders associated with inverse transversals, Journal of Algebra, 240, 2001, 143–164.
- [5] T. S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh, 91A, 1981, 107–122.
- [6] T. S. Blyth and R. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Roy. Soc. Edinburgh, 92A, 1982, 253–270.
- [7] D. B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Australian Math. Soc., 31, 1981, 325–336.
- [8] D. B. McAlister and T. S. Blyth, Split orthodox semigroups, Journal of Algebra, 51, 1978, 491–525.
- [9] Tatsuhiko Saito, Quasi-orthodox semigroups with inverse transversals, Semigroup Forum, 36, 1987, 47–54.
- [10] Tatsuhiko Saito, Construction of regular semigroups with inverse transversals, Proc. Edin. Math. Soc., 32, 1989, 41–51.

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, SCOTLAND. *E-mail address*: tsb@st-and.ac.uk

 $\label{eq:constraint} \begin{array}{l} {\sf Departamento} \ {\sf de} \ {\sf Matemática}, \ {\sf F.C.T.}, \ {\sf Universidade} \ {\sf Nova} \ {\sf de} \ {\sf Lisboa}, \ {\sf Portugal}. \\ {\it E-mail} \ {\it address}: \ {\tt mhas@fct.unl.pt} \end{array}$