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ABSTRACT. The notion of an inverse transversal of a regular semigroupis well-known.
Here we investigate naturally ordered regular semigroups that have an inverse transversal.
Such semigroups are necessarily locally inverse and the inverse transversal is a quasi-
ideal. After considering various general properties that relate the imposed order to the
natural order, we highlight the situation in which the inverse transversal is a monoid. The
regularity of Green’s relations is also characterised. Finally, we determine the structure of
a naturally ordered regular semigroup with an inverse monoid transversal.

1. Introduction.

If S is a regular semigroup then aninverse transversalof S is an inverse subsemigroupT
of S that contains a unique inverse of everyx ∈ S. We let T ∩V(x) = {x◦} and writeT
asS◦ = {x◦

∣∣ x∈ S}. This concept has its roots in [8], the term itself being introduced in
[6], where the structure of regular semigroups with a multiplicative inverse transversal was
determined.

For a convenient summary of the basic properties of inverse transversals on a regular
semigroup we refer the reader to [1] or to [2, Chapter 14]. Forour purposes here we
mention only the following notation and general properties:

(α) (∀x,y∈ S) (xy)◦ = (x◦xy)◦x◦ = y◦(xyy◦)◦ = y◦(x◦xyy◦)◦x◦.
(β ) (∀x,y∈ S) (xy◦)◦ = y◦◦x◦, (x◦y)◦ = y◦x◦◦.
(γ) Green’s relations onSare given by

(x,y) ∈ L ⇐⇒ x◦x = y◦y, (x,y) ∈ R ⇐⇒ xx◦ = yy◦.

(δ ) The subsets
Λ = {x◦x

∣∣ x∈ S}, I = {xx◦
∣∣ x∈ S}

are sub-bands ofSwith Λ right regular and I left regular.

(ε) I Λ = {x∈ S
∣∣ x◦ ∈ E(S◦)} andΛ∩ I = E(S◦) = S◦∩ I Λ.

(ζ ) The subsets

L = {xx◦x◦◦
∣∣ x∈ S}, R= {x◦◦x◦x

∣∣ x∈ S}

are subsemigroups ofS. Moreover,L is left inverse and a left ideal ofS, R is right inverse
and a right ideal ofS, L∩R= S◦, E(L) = I, andE(R) = Λ.
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(η) The following Venn diagram provides a useful summary:

&%
'$

&%
'$

&%
'$L R

E(S)

I Λ

S◦

(ϑ) The inverse transversalS◦ is said to be aquasi-idealif S◦SS◦ ⊆ S◦ or, equiva-
lently, ΛI ⊆ S◦; multiplicativeif ΛI ⊆ E(S◦); andweakly multiplicativeif (ΛI)◦ ⊆ E(S◦)
or, equivalently,e◦ ∈ E(S◦) whenevere∈ E(S).

(ι) S◦ is multiplicative if and only if it is both weakly multiplicative and a quasi-ideal.
(κ) If x∈ L or y∈ R then(xy)◦ = y◦x◦.
(λ ) S is orthodox if and only if(∀x,y∈ S) (xy)◦ = y◦x◦.

Throughout what follows,(S;6) will denote an ordered regular semigroup with an
inverse transversal S◦. Moreover,6n will denote thenatural orderon S, which is given
by

(∀x,y∈ S) x 6n y ⇐⇒
(
∃e, f ∈ E(S)

)
x = ey= y f.

On the subsetE(S) of idempotents this reduces to

e6n f ⇐⇒ e= e f = f e.

On the inverse subsemigroupS◦ it reduces to

(∀x,y∈ S◦) x 6n y ⇐⇒
(
∃e∈ E(S◦)

)
x = ey ⇐⇒

(
∃ f ∈ E(S◦)

)
x = y f,

of which there are many variants, for example

(∀x,y∈ S◦) x 6n y ⇐⇒ x = xy◦x ⇐⇒ xx◦ = yx◦.

We say that(S;6) is naturally orderedif 6 extends the natural order6n onE(S), in the
sense that (

∀e, f ∈ E(S)
)

e6n f ⇒ e6 f .

For our purposes here, we recall the following particular results:

Theorem 1. [5] Let (S;6) be an ordered regular semigroup. If e, f ∈ E(S) are such
that e6 f then the products e f, f e,e f e, f e f are all idempotent. Moreover, if(S;6) is
naturally ordered then e= e f e. �

Theorem 2. [7] A regular semigroup can be naturally ordered if and only if itis locally
inverse. �

Theorem 3. [3] If S is a regular semigroup with an inverse transversal S◦ then S is
locally inverse if and only if S◦ is a quasi-ideal. �

The following result is contained in the proof of [4, Theorem2].

Theorem 4. The natural order6n on S has the following properties:

(1) (∀x,y∈ S) x 6n y ⇒ x◦x 6n y◦y, xx◦ 6n yy◦;
(2)

(
∀e, f ∈ E(S)

)
e6n f ⇐⇒ e◦e6n f ◦ f , ee◦ 6n f f ◦.

If, moreover, S is locally inverse then

(3)
(
∀e, f ∈ E(S)

)
e6n f ⇒ e◦ 6n f ◦. �
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2. Order properties.

In what follows, we shall assume that(S;6) is naturally ordered. By Theorems 2 and 3
above the inverse transversalS◦ is then a quasi-ideal. Consequently, by(ι), S◦ is multi-
plicative if and only if it is weakly multiplicative. We begin by considering relationships
between the imposed order6 and the natural order6n onS. We first note that

• on E(S◦) the orders6 and6n coincide.

To see this, lete, f ∈ E(S◦) be such thate6n f . Then sinceS is naturally ordered we have
e6 f . Conversely, ife6 f then by Theorem 1 we havee= e f e. Since idempotents in the
inverse subsemigroupS◦ commute, it follows thate= e f = f e and soe6n f .

In the following result we show that the order6 also extends the natural order6n on the
inverse transversalS◦; and, as a consequence, the assignmentx 7→ x◦◦ is always isotone.

Theorem 5. (∀x,y∈ S) x◦ 6n y◦ ⇒ x◦ 6 y◦.

Proof. Suppose thatx,y∈ Sare such thatx◦ 6n y◦. Then, by Theorem 4(1), inE(S◦) we
havex◦◦x◦ 6n y◦◦y◦. Consequently,x◦◦x◦ 6 y◦◦y◦ and soy◦x◦◦x◦ 6 y◦. But fromx◦ 6n y◦

we obtainx◦x◦◦ = y◦x◦◦. It therefore follows thatx◦ = y◦x◦◦x◦ 6 y◦. �

Corollary. (∀x,y∈ S) x 6 y ⇒ x◦◦ 6 y◦◦.

Proof. If x,y∈ Sare such thatx 6 y then, using the fact thatS◦ is a quasi-ideal, we have

x◦◦ = x◦◦x◦xx◦x◦◦ 6 x◦◦x◦yx◦x◦◦ = x◦◦x◦y◦◦x◦x◦◦ 6n y◦◦x◦x◦◦ 6n y◦◦

whence, by Theorem 5,x◦◦ 6 y◦◦. �

As for the corresponding assignmentx 7→ x◦, the following result shows that it is isotone
on the subset IΛ.

Theorem 6. (∀x,y∈ I Λ) x 6 y ⇒ x◦ 6 y◦.

Proof. Let x,y ∈ I Λ be such thatx 6 y. Thenx◦,y◦ ∈ E(S◦) by (ε), andx◦ = x◦xx◦ 6

x◦yx◦. SinceS◦ is a quasi-ideal we havex◦yx◦ = x◦y◦◦x◦ ∈ E(S◦). Thus, inE(S◦) we have
x◦ 6 x◦y◦◦x◦. It follows by Theorem 1 thatx◦ = x◦y◦◦x◦ whencex◦ 6n y◦. Thatx◦ 6 y◦

now follows by Theorem 5. �

Precisely whenx 7→ x◦ is isotone onS is the substance of the following result.

Theorem 7. The following statements are equivalent:

(1) (∀x,y∈ S) x 6 y ⇒ x◦ 6 y◦;
(2) the orders6 and6n coincide on S◦.

Proof. (1) ⇒ (2): Suppose that(1) holds and letx,y ∈ S be such thatx◦ 6 y◦. Then
x◦◦ 6 y◦◦ and consequently

y◦◦x◦ = y◦◦x◦x◦◦x◦ 6 y◦◦x◦ ·y◦◦x◦ 6 y◦◦y◦y◦◦x◦ = y◦◦x◦

whencey◦◦x◦ ∈E(S◦). Theny◦◦x◦ = y◦◦x◦x◦◦x◦ 6n x◦◦x◦ and therefore, sinceSis naturally
ordered,y◦◦x◦ 6 x◦◦x◦. Sincex◦◦ 6 y◦◦ it follows from this thaty◦◦x◦ = x◦◦x◦ whence
x◦y◦◦x◦ = x◦ and sox◦ 6n y◦. Property (2) now follows by Theorem 5.

(2)⇒ (1): If x6 y then, by the Corollary to Theorem 5,x◦◦ 6 y◦◦. If now (2) holds then
x◦◦ 6n y◦◦. Since on the ordered inverse semigroup(S◦;6n) the assignmenta 7→ a−1 = a◦

is isotone, we then havex◦ = x◦◦◦ 6n y◦◦◦ = y◦ whence, by Theorem 5,x◦ 6 y◦. �
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We now add a basic property of naturally comparable idempotents that will be useful.

Theorem 8. If e, f ∈ E(S) are such that e6n f then e= f e◦e= ee◦ f = f e◦ f .

Proof. Sincee= e f = f e we havef e◦e∈ E(S) with f e◦e6n f , whencef e◦e6 f . Since
alsoe6 f , it follows thate= ee◦e6 f e◦e= f e◦ee6 f e= e and sof e◦e= e. Likewise
we haveee◦ f = e, and combining these we obtaine= f e◦ f . �

Using Theorem 8 we can now describe the situation in which theassignmentx 7→ x◦ is
antitone.

Theorem 9. The following statements are equivalent:

(1) (∀x,y∈ S) x 6 y⇒ y◦ 6 x◦;
(2)

(
∀e, f ∈ E(S)

)
e6 f ⇒ f ◦ 6 e◦;

(3) S is completely simple;
(4) the inverse transversal S◦ is a group.

Proof. (1) ⇒ (2): This is clear.
(2) ⇒ (3): Let e, f ∈ E(S) be such thate6n f . Thene6 f and so, by the hypothesis

and Theorem 8,f = f f ◦ f 6 f e◦ f = e whencef = e. Thus6n is equality onE(S) and so
S is completely simple.

(3) ⇒ (4): This is a well-known result of Saito (see [9] or [1]).
(4) ⇒ (1): If x,y ∈ Sare such thatx 6 y then by the Corollary to Theorem 5 we have

x◦◦ 6 y◦◦. SinceS◦ is a group, it follows thaty◦ 6 x◦. �

Example 1. For eachx∈ R with x > 0 let

Qx =

{[
x x

x x

]
,

[
x 0

x 0

]
,

[
x x

0 0

]
,

[
x 0

0 0

]}
.

Under matrix multiplication, the setQ =
⋃

x>0
Qx is a semigroup which is regular since, for

everyX ∈ Qx (x 6= 0), we have

[
x−1 0

0 0

]
∈V(X). The subset

Q◦ =

{[
x−1 0

0 0

] ∣∣ x > 0

}
∪

{[
0 0

0 0

]}
,

which is a group with zero, is then an inverse transversal ofQ.
The set of idempotents ofQ is

E(Q) =

{[
1
2

1
2

1
2

1
2

]
,

[
1 0

1 0

]
,

[
1 1

0 0

]
,

[
1 0

0 0

]
,

[
0 0

0 0

]}
≡ {a,b,c,d,0},

and the natural order onE(Q) is given by

E 6n F ⇐⇒ E = 0 or 0 6= E = F.

In particular,
(
E(Q◦);6n

)
consists of the 2-element chain

s0
sd
4



Consider now the component-wise order6 on Q, this being defined forX = [xi j ] and
Y = [yi j ] in Q by

X 6 Y ⇐⇒ (∀i, j) xi j 6 yi j .

As can readily be verified,(Q;6) is an ordered semigroup and the restriction of6 to
E(Q) gives the Hasse diagram

s0
sd

sb sc sa
�
�
�
�

@
@

Since6 extends6n on E(Q) we see thatQ is naturally ordered. Moreover, it follows
by Theorem 9 that the subsemigroupQ\{0} is completely simple.

In view of Theorem 9 it is natural to investigate the more general situation in which the
inverse transversalS◦ is a monoid. This produces some properties that are similar to those
that hold in the case whereShas a biggest idempotent (see [5]).

Theorem 10. The following statements are equivalent:

(1) the inverse transversal S◦ is a monoid;
(2) (S◦;6) has a biggest idempotent;
(3)

(
∃ξ ∈ E(S◦)

)
S◦ = ξ Sξ ;

(4)
(
∃ξ ∈ E(S◦)

)
(∀x∈ S) x◦◦ = ξ xξ ;

(5)
(
∃ξ ∈ E(S◦)

)
L = Sξ , R= ξ S;

(6) L [resp. R] is an idempotent-generated principal left[resp. right] ideal.

Proof. (1)⇒ (2): If (1) holds then for everye∈ E(S◦) we havee6n 1S◦ whencee6 1S◦ .
(2) ⇒ (1): Suppose that(2) holds and letξ = maxE(S◦). For everyx◦ ∈ S◦ we have

x◦x◦◦ 6 ξ whencex◦x◦◦ 6n ξ since6 coincides with6n onE(S◦). Consequently,

ξ x◦ = ξ x◦x◦◦x◦ = x◦x◦◦x◦ = x◦,

and similarlyx◦ξ = x◦. Henceξ = 1S◦ .
(1) ⇒ (3): If (1) holds then we have

1S◦S1S◦ ⊆ S◦SS◦ ⊆ S◦ = 1S◦S
◦1S◦ ⊆ 1S◦S1S◦

whenceS◦ = ξ Sξ whereξ = 1S◦ .
(3) ⇒ (4): If (3) holds then for everyx∈ Swe havex◦◦ = ξ x◦◦ξ = ξ xξ .
(4) ⇒ (1): If (4) holds then for everyx∈ Swe have

x◦ = (ξ xξ )◦ = (ξ ◦xξ ◦)◦ = ξ ◦◦x◦ξ ◦◦ = ξ x◦ξ
whenceξ x◦ = x◦ = x◦ξ and we have(1).

(4) ⇒ (5): If (4) holds then for everyx ∈ S we havexx◦x◦◦ = xx◦ξ xξ ∈ Sξ whence
L ⊆ Sξ ; and similarlyR⊆ ξ S. But, as in the above, by(4) we havex◦ = ξ x◦ξ whence it
follows that

xξ (xξ )◦(xξ )◦◦ = xξ x◦x◦◦ξ = xξ x◦ξ xξ = xx◦xξ = xξ
whenceSξ ⊆ L. Similarly, ξ S⊆ Rand we have(5).

(5) ⇒ (3): If (5) holds thenS◦ = L∩R= Sξ ∩ξ S= ξ Sξ .
(5) ⇒ (6): This is clear.
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(6) ⇒ (5): Suppose thatL = SpandR = qS wherep andq are idempotents. Then
p ∈ E(L) = I and sop◦ = p◦◦ ∈ E(S◦). Likewise,q ∈ E(R) = Λ andq◦ = q◦◦ ∈ E(S◦).
Consequently,L = Sp= Sp◦p = Sp◦p◦◦ = Sp◦ andR= qS= qq◦S= q◦◦q◦S= q◦S. Now
sincep◦ ∈ E(S◦) ⊆ R= q◦Swe havep◦ = q◦p◦; and sinceq◦ ∈ E(S◦) ⊆ L = Sp◦ we have
q◦ = q◦p◦. Consequentlyp◦ = q◦ and(5) follows. �

Theorem 11. If S◦ is a monoid with identity elementξ then the following statements are
equivalent:

(1) the assignment x7→ x◦◦ is a morphism;
(2) (∀x,y∈ S) (xy)◦ = (xξ y)◦;
(3) S is orthodox.

Proof. (1) ⇒ (2): If (1) holds then by Theorem 10 we have(xy)◦◦ = x◦◦y◦◦ = ξ xξ yξ =
(xξ y)◦◦. It follows that(xy)◦ = (xξ y)◦.

(2) ⇒ (3): Sincexξ ∈ L we have, by(κ), (xξ y)◦ = y◦(xξ )◦ = y◦ξ x◦ = y◦x◦. Then(2)
and(λ ) giveS is orthodox.

(3) ⇒ (1): If (3) holds then, by(λ ), (xy)◦◦ = (y◦x◦)◦ = x◦◦y◦◦ and(1) follows. �

3. The regularity of L and R.

Guided by Theorem 4(2) and property(γ), we now consider the following concept.

Definition. We shall say thatL [resp.R] is weakly regularif
(
∀e, f ∈ E(S)

)
e6 f ⇒ e◦e6 f ◦ f [resp. ee◦ 6 f f ◦].

The weak regularity ofL andR can be characterised in the following way, which
should be viewed in comparison with Theorem 4(3).

Theorem 12. The following statements are equivalent:

(1) L andR are weakly regular;
(2)

(
∀e, f ∈ E(S)

)
e6 f ⇒ e◦ 6 f ◦.

Proof. (1)⇒ (2): Suppose thate, f ∈ E(S) are such thate6 f . Then if(1) holds we have
e◦e6 f ◦ f andee◦ 6 f f ◦ whencee◦ = e◦e·ee◦ 6 f ◦ f · f f ◦ = f ◦.

(2) ⇒ (1): This is immediate. �

Corollary. If S◦ is (weakly) multiplicative thenL andR are weakly regular.

Proof. SinceS◦ is weakly multiplicative, for everye∈ E(S) we havee◦ = e◦◦ ∈ E(S◦).
Thus, ife6 f then, by the Corollary to Theorem 5,e◦ = e◦◦ 6 f ◦◦ = f ◦. It follows thatL
andR are weakly regular. �

Remark.Note that in Example 1 we have
[

1
2

1
2

1
2

1
2

]
∈ E(Q) but

[
1
2

1
2

1
2

1
2

]◦

=

[
2 0

0 0

]
/∈ E(Q◦)

and soQ◦ is not weakly multiplicative. However, by applying Theorem12(2) toE(Q), we
see that bothL andR are weakly regular. The converse of the above Corollary therefore
fails in general.
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Definition. We shall say thatL [resp.R] is regular if

(∀x,y∈ S) x 6 y ⇒ x◦x 6 y◦y [resp. xx◦ 6 yy◦].

Clearly, ‘regular’ implies ‘weakly regular’. In order to characterise the regularity ofL
andR we require the following concepts.

Definition. An equivalence relationΘ on an ordered setA is said to satisfy thelink property
if

aΘx 6 b ⇒ (∃y∈ A) a 6 yΘb;

and thedual link propertyif

a 6 xΘb ⇒ (∃y∈ A) aΘy 6 b.

Theorem 13. If L [resp.R] is regular thenL [resp.R] satisfies the dual link property.

Proof. If a 6 xL b then sinceL is regular we havea◦a 6 x◦x = b◦b and soba◦a 6 b.
Now, by Theorem 1 and property(δ ), we havea◦a = a◦ab◦ba◦a = b◦ba◦a and so

a◦a = (a◦a)◦a◦a = (b◦ba◦a)◦b◦ba◦a = (ba◦a)◦ba◦a.

HenceaL ba◦a 6 b.

Similarly, when regular,R satisfies the dual link property. �

As the following example shows, even whenS◦ is multiplicativeL can be weakly
regular and satisfy the dual link property but fail to be regular

Example 2. Let k > 1 be a fixed integer. For everyn ∈ Z let nk be the biggest multiple
of k that is less than or equal ton. On the cartesian ordered setS= Z×−N×Z define a
multiplication by

(x,−p,m)(y,−q,n) = (min{x,y},−p,mk +n).

ThenS is an ordered semigroup in which the idempotents are(x,−p,m) wheremk = 0,
i.e. where 06 m 6 k−1. It is readily observed thatS is naturally ordered, and that for
every(x,−p,m) ∈ Swe have(x,0,−mk +k−1) ∈V(x,−p,m) soS is regular. Moreover,
with (x,−p,m)◦ = (x,0,−mk +k−1), the setS◦ = {z◦ | z∈ S} is an inverse transversal of
Swhich is a quasi-ideal. Since the product of two idempotentsis idempotent we see thatS
is orthodox. HenceS◦ is also weakly multiplicative [3] and so is multiplicative.

Consider now the relationL which, by the Corollary to Theorem 12, is weakly regular.
Since

(x,−p,m)◦(x,−p,m) = (x,0,m−mk)

we see thatL is not regular. To see thatL satisfies the dual link property, suppose
that (x,−p,m) 6 (z,−r,t)L (y,−q,n). Thenx 6 z= y. Let a = nk− k+ m−mk. Then
ak = nk − k and soa− ak = m−mk. Also, a 6 ak + k− 1 = nk − 1 < nk 6 n. Hence
(x,−p,m)L (x,−q,a) 6 (y,−q,n).

Definition. We shall say thatL is lower Λ-stableif

(∀x∈ S) x 6 l ∈ Λ ⇒ x◦x 6 l ;

andupperΛ-stableif
(∀x∈ S) x > l ∈ Λ ⇒ x◦x > l .

Dually, we defineR to be lower and upper I-stable.
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Theorem 14. The following statements are equivalent:

(1) L is regular;
(2) L satisfies the dual link property and is lowerΛ-stable;
(3) L is upperΛ-stable.

Proof. (1) ⇒ (2): If L is regular then by Theorem 13 it satisfies the dual link property.
Moreover, ifx 6 l ∈ Λ thenx◦x 6 l◦l = l and soL is also lowerΛ-stable.

(2) ⇒ (1): Let x,y∈ Sbe such thatx 6 y. Then fromx 6 yL y◦y and the fact thatL
satisfies the dual link property we have the existence ofz∈ Ssuch thatxL z6 y◦y. Then
x◦x = z◦zand, sinceL is lowerΛ-stable,z◦z6 y◦y. HenceL is regular.

(1) ⇒ (3): This is clear.
(3) ⇒ (1): Observe first that(x◦y)◦x◦y = y◦(x◦yy◦)◦x◦y 6n y◦y and therefore, sinceS

is naturally ordered,(x◦y)◦x◦y 6 y◦y. Suppose now thatx 6 y. Thenx◦x 6 x◦y and so, by
(3), x◦x 6 (x◦y)◦x◦y 6 y◦y whence we have(1). �

We now pass to a consideration of the link property. That thisis not in general satisfied
by L or R is shown by the following example.

Example 3. Let G be an ordered group and letx ∈ G be such thatx > 1. Let H = 〈x〉
be the subgroup generated byx. Add to H a new identity elementξ together with the
single comparability 1< ξ . Thenξ 2 = ξ andξ y= y= yξ for all y∈ H, and we obtain the
ordered inverse semigroupSwith Hasse diagram

sx−2

sx−1

s1

sx

sx2 sξ
�

�

...

...

Clearly, S is naturally ordered andS◦ = S. Moreover, since theL -classes (and theR-
classes) ofSareH and{ξ}, we see thatL is regular. NowxL x−1< ξ but the existence
of y∈ Ssuch thatx6 yL ξ forcesy= ξ and gives the contradictionx6 ξ . HenceL does
not satisfy the link property.

A situation in whichL [resp.R] satisfies the link property is the following.

Theorem 15. If L [resp.R] is regular and if S is upper directed thenL [resp.R]
satisfies the link property.

Proof. Suppose thataL x 6 b and letk ∈ Sbe such thata,b 6 k. Thena◦a = x◦x 6 b◦b
whencea = aa◦a 6 kb◦b. Also, b◦b 6 k◦k which, by Theorem 1 and property(δ ), gives
b◦b = k◦kb◦b whence

b◦b = (b◦b)◦b◦b = (k◦kb◦b)◦k◦kb◦b = (kb◦b)◦kb◦b.

Hencea 6 kb◦bL b. A similar proof holds forR. �
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4. A structure theorem.

Our objective now is to obtain the structure of a naturally ordered regular semigroup with
an inverse monoid transversal. This we can deduce from the algebraic structure of a locally
inverse semigroup with such a transversal, which we now proceed to describe. For this
purpose, we recall that ifS is a regular semigroup thenξ ∈ S is said to be aweak middle
unit if, for all x∈ Sand allx′ ∈V(x), xξ x′ = xx′ andx′ξ x= x′x. If ξ is a weak middle unit
thenξ is necessarily idempotent; forξ = ξ ξ ′ξ = ξ ξ ξ ′.ξ = ξ .ξ ξ ′ξ = ξ ξ .

Theorem 16. Let A be a regular semigroup with a weak middle unitξ . Then the following
statements are equivalent:

(1) A is locally inverse;
(2) the regular subsemigroupξ Aξ is inverse.

Proof. (1) ⇒ (2): This clear.
(2) ⇒ (1): Suppose thatξ Aξ is inverse. Ifx ∈ A andx′ ∈ V(x)∩A thenx = xx′x =

xξ x′ξ x andξ x′ξ xξ x′ξ = ξ x′ξ , and soξ x′ξ ∈ V(x)∩ ξ Aξ whenceV(x)∩ ξ Aξ 6= /0. If
now y∈ V(x)∩ ξ Aξ theny = yxy= yξ xξ y, andx = xyxgivesξ xξ = ξ xξ yξ xξ , whence
y∈ V(ξ xξ )∩ ξ Aξ and consequentlyy = (ξ xξ )−1. HenceV(x)∩ ξ Aξ = {(ξ xξ )−1} and
so ξ Aξ is an inverse transversal ofA. Sinceξ Aξ ·A · ξ Aξ ⊆ ξ Aξ we see thatξ Aξ is a
quasi-ideal. Then, by Theorem 3,A is locally inverse. �

The structure of regular semigroups with various kinds of inverse transversal has been
determined by Saito [10]. This is immensely complicated, even in the case where the
semigroup is locally inverse, i.e. the inverse transversalis a quasi-ideal. The particular
situation in which the semigroup is locally inverse and the inverse transversal is a monoid
can be treated more simply as follows.

Theorem 17. Let L and R be regular semigroups with a common weak middle unit ξ
and a common inverse submonoid T= ξ Lξ = ξ Rξ . Define a mapping R× L → T by
(a,x) 7→ a◦ x with the following properties:

(1) (∀a,b∈ R)(∀y,z∈ L) a(a◦ y)b ◦ z= [(a◦ y)bξ ]−1(a◦ y)bξ (b◦ z);
(2) (∀a,b∈ R)(∀y,z∈ L) a ◦ y(b◦ z)z= (a◦ y)ξ y(b◦ z)[ξ y(b◦ z)]−1;
(3) (∀a∈ R)(∀x∈ L)(∀t ∈ T) a◦ t = (a◦ ξ )(ξ ◦ t), t ◦ x = (t ◦ ξ )(ξ ◦ x);
(4) (∀a∈ R)(∀x∈ L) a(a◦ ξ ) = ξ aξ , (ξ ◦ x)x = ξ xξ ;
(5) (∀a∈ R)(∀a′ ∈V(a)∩R) (a◦ ξ )ξ a′ξ = ξ a′ξ ,

(∀x∈ L)(∀x′ ∈V(x)∩L) ξ x′ξ (ξ ◦ x) = ξ x′ξ .

On the set L|×|ξ R= {(x,a) ∈ L×R
∣∣ ξ x = aξ} define a multiplication by

(x,a)(y,b) =
(
x(a◦ y)y, a(a◦ y)b

)
.

Then L|×|ξ R is a locally inverse semigroup that has an inverse monoid transversal.

Moreover, every such semigroup is obtained in this way. Moreprecisely, if S is a locally
inverse semigroup with an inverse transversal S◦ that is a monoid with identityξ then
S◦ = ξ Sξ , ξ is a weak middle unit of both Sξ andξ S, the mappingξ S×Sξ → S◦ = ξ Sξ
given by(a,x) 7→ a◦axx◦ satisfies properties(1) to (5) above, and there is a semigroup
isomorphism

S≃ Sξ |×|ξ ξ S.
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Proof. For x,y∈ L anda∈ R we havex(a◦ y)y∈ LTL⊆ L; and for alla,b∈ R andy∈ L
we havea(a◦ y)b∈ RTR⊆ R. Moreover, if(x,a),(y,b) ∈ L |×|ξ R then

ξ x(a◦ y)y= aξ (a◦ y)y= a(a◦ y)y= a(a◦ y)ξ y= a(a◦ y)bξ .

Consequently, the multiplication onL |×|ξ R is well-defined.
We proceed in the following stages.

(i) L |×|ξ R is a semigroup.

From the multiplication, we see that inL |×|ξ R the first component of[(x,a)(y,b)](z,c) is
x(a◦y)y[a(a◦y)b ◦ z]zwhich by(1) is x(a◦y)y[(a◦y)bξ ]−1(a◦y)bξ (b◦z)z. Using twice
the fact thatbξ = ξ y andξ is an identity ofT, we see that this reduces tox(a◦y)y(b◦z)z.
On the other hand, the first component of(x,a)[(y,b)(z,c)] is x[a ◦ y(b◦z)z]y(b◦z)zwhich
by (2) is x(a◦ y)ξ y(b◦ z)[ξ y(b◦ z)]−1ξ y(b◦ z)z which also reduces tox(a◦ y)y(b◦ z)z.
Thus the first components of the products are the same; and similarly, so are the second
components. Thus, with the above multiplication,L |×|ξ R is a semigroup.

(ii) L |×|ξ R is regular.

Observe first that, as in Theorem 16, ifx ∈ L and x′ ∈ V(x)∩ L thenξ x′ξ = (ξ xξ )−1.
Likewise, if a ∈ R anda′ ∈ V(a)∩R thenξ a′ξ = (ξ aξ )−1. Suppose now that(x,a) ∈
L |×|ξ R. Thenξ x = aξ givesξ xξ = ξ aξ and so, forx′ ∈V(x)∩L anda′ ∈V(a)∩R, we
can defineβ = ξ x′ξ = ξ a′ξ ∈ T.

Then the first component of the product(x,a)(β ,β )(x,a) is, as in (i),

x(a◦β )β (β ◦ x)x= x(a◦β )β (β ◦ ξ )(ξ ◦ x)x by (3)
= x(a◦β )ξ β ξ ξ xξ by (4)
= x(a◦ ξ )(ξ ◦β )βaξ by (3)
= x(a◦ ξ )ξ β ξ aξ by (4)
= x(a◦ ξ )ξ a′ξ x
= xξ a′ξ x by (5)
= xξ x′ξ x
= x.

In a similar way we can see that the second component of the product isa. Thus we see
that(x,a)(β ,β )(x,a) = (x,a) and soL |×|ξ R is regular.

(iii) T̂ = diag(T ×T) is an inverse submonoid of L|×|ξ R.

Clearly,T̂ is is a subsemigroup ofL |×|ξ R, and is regular since if(γ,γ) ∈ T̂ then, by (ii),
(
∀γ ′ ∈V(γ)∩T

)
(γ,γ)(ξ γ ′ξ ,ξ γ ′ξ )(γ,γ) = (γ,γ).

If now (γ,γ) is an idempotent in̂T then by (3) and (4) we see thatγ = γ(γ ◦ γ)γ =

γ(γ ◦ ξ )(ξ ◦ γ)γ = γγ, so thatγ is idempotent inT. Furthermore, if(γ,γ),(δ ,δ ) ∈ T̂
are idempotents then

(γ,γ)(δ ,δ ) =
(
γ(γ ◦ δ )δ ,γ(γ ◦ δ )δ

)

=
(
γ(γ ◦ ξ )(ξ ◦ δ )δ ,γ(γ ◦ ξ )(ξ ◦ δ )δ

)
by (3)

= (ξ γξ δξ ,ξ γξ δξ ) by (4)
= (γδ ,γδ ).
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Now sinceγ,δ are idempotents inT they commute, and therefore it follows that so do
(γ,γ) and(δ ,δ ) in T̂. HenceT̂ is an inverse semigroup.

Using (4) and the fact thatξ is an identity forT, it is readily seen that(ξ ,ξ ) is an
identity element for̂T.

(iv) T̂ is an inverse transversal of L|×|ξ R.

First we observe that if(x,a) ∈ L |×|ξ R then, withβ as in (ii),

(β ,β ) ∈V(x,a)∩ T̂.

In fact, we have seen in (ii) that(x,a)(β ,β )(x,a) = (x,a). Consider now the product
(β ,β )(x,a)(β ,β ). The first component of this is, as in (i),

β (β ◦ x)x(a◦β )β = β (β ◦ ξ )(ξ ◦ x)x(a◦ ξ )(ξ ◦β )β by (3)
= ξ β ξ ξ xξ (a◦ ξ )ξ β ξ by (4)
= β ξ xξ (a◦ ξ )β
= β ξ aξ (a◦ ξ )β sinceξ xξ = ξ aξ
= βa(a◦ ξ )β
= β ξ aξ β by (4)
= βaβ
= ξ a′ξ aξ a′ξ
= ξ a′ξ
= β .

Similarly, the second component is alsoβ . Thus(β ,β )(x,a)(β ,β ) = (β ,β ) and therefore
V(x,a)∩ T̂ contains(β ,β ).

Suppose now that(γ,γ) ∈V(x,a)∩ T̂. On the one hand(γ,γ) = (γ,γ)(x,a)(γ,γ) gives,
as in the above,γ = γξ aξ γ = γξ xξ γ = γxγ. On the other hand,(x,a) = (x,a)(γ,γ)(x,a)
gives, as in (ii),x = x(a◦ ξ )γx whence

xγx = x(a◦ ξ )γxγx= x(a◦ ξ )γx= x.

It follows that γ ∈ V(x)∩ T whence, as in Theorem 16,γ ∈ V(ξ xξ )∩T and therefore
γ = (ξ xξ )−1 = β .

It follows from the above thatV(x,a)∩ T̂ = {(β ,β )} whenceT̂ is an inverse transversal
of L |×|ξ R.

(v) T̂ is a quasi-ideal.

If (γ,γ),(δ ,δ ) ∈ T̂ and(x,a) ∈ L |×|ξ R then the product(γ,γ)(x,a)(δ ,δ ) is
(
γ(γ ◦ x)x[γ(γ ◦ x)a ◦ δ ]δ , γ(γ ◦ x)a[γ(γ ◦ x)a ◦ δ ]δ

)

which belongs toT̂ sinceξ xξ = ξ aξ . Thus T̂(L |×|ξ R)T̂ ⊆ T̂ and hence the inverse

transversal̂T of L |×|ξ R is a quasi-ideal.

In summary, from the above and Theorem 3 we have thatL |×|ξ R is a locally inverse
semigroup with an inverse monoid transversal.

To show that every such semigroup is obtained in this way, letS be a locally inverse
semigroup with an inverse monoid transversalS◦. Let the identity element ofS◦ beξ . By
Theorem 10(3) we haveS◦ = ξ Sξ . Moreover, by Theorem 10(5) and property(ζ ) we see
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thatL = Sξ is a left inverse semigroup with right identityξ , andR= ξ S is a right inverse
semigroup with left identityξ . Thusξ is a weak middle unit of bothSξ andξ S. Moreover,
ξ Lξ = ξ Sξ = ξ Rξ . We are therefore in the initial conditions of the first part.Consider
therefore the mappingξ S×Sξ → S◦ = ξ Sξ given by

(a,x) 7→ a◦ x= a◦axx◦.

To see that this satisfies property (1) above, observe that

a(a◦ y)b ◦ z= ayy◦b ◦ z
= (ayy◦b)◦ayy◦bzz◦

= b◦(ayy◦)◦ayy◦bb◦bzz◦ by (κ) sinceb∈ R
= (ξ bξ )◦(a◦ayy◦)◦a◦ayy◦bξ b◦bzz◦ by (α)

= (a◦ayy◦ξ bξ )◦a◦ayy◦bξ b◦bzz◦ by (κ)

= (a◦ayy◦bξ )◦a◦ayy◦bξ b◦bzz◦

= [(a◦ y)bξ ]−1(a◦ y)bξ (b◦ z).

It is readily verified that (2), (3), (4), (5) also hold.
Consider now the mappingϑ : S→Sξ |×|ξ ξ Sgiven byϑ(x) = (xξ , ξ x). For allx,y∈S

we have

ϑ(x)ϑ(y) = (xξ ,ξ x)(yξ ,ξ y)
=

(
xξ (ξ x◦ yξ )yξ , ξ x(ξ x◦ yξ )ξ y

)

= (xξ x◦xyy◦yξ , ξ xx◦xyy◦ξ y)
= (xyξ , ξ xy)
= ϑ(xy)

and soϑ is a morphism.
If now ϑ(x) = ϑ(y) thenxξ = yξ andξ x = ξ y whencex◦◦ = ξ xξ = ξ yξ = y◦◦ and

thenx◦ = y◦. Consequently,x= xx◦x= xξ x◦ξ x= yξ y◦ξ y= yy◦y= y and soϑ is injective.
To see thatϑ is also surjective, let(xξ ,ξ y)∈Sξ |×|ξ ξ S. Thenξ xξ = ξ yξ , whencex◦ =

y◦. Now lett = xx◦y. Thentξ = xx◦ξ yξ = xx◦ξ xξ = xξ andξ t = ξ xξ x◦y= ξ yξ y◦y= ξ y.
Thusϑ(t) = (tξ ,ξ t) = (xξ ,ξ y).

It follows from the above thatS≃ Sξ |×|ξ ξ S. �

Corollary. The inverse transversal in question is multiplicative if and only if
(
∀l ∈ E(ξ R)

)(
∀i ∈ E(Lξ )

)
l ◦ i ∈ E(T).

Proof. As in the proof of Theorem 16,T is an inverse transversal ofR with a◦ = ξ a′ξ for
everya′ ∈V(A)∩R. Consequently,

Λ(R) = {a◦a
∣∣ a∈ R} = {ξ a′a

∣∣ a∈ R, a′ ∈V(a)∩R}.

Sinceξ is a weak middle unit, it is clear thatΛ(R) ⊆ E(ξ R). Conversely, ife∈ E(ξ R)
thene= ξ e= ξ ee′e= ξ e⋆ewheree⋆ = ee′ ∈V(e). HenceΛ(R) = E(ξ R). Similarly

I(L) = {xx′ξ
∣∣ x∈ L, x′ ∈V(x)∩L} = E(Lξ ).
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Suppose now that(x,a) ∈ L |×|ξ R. Then, as in (iv) above,(x,a)◦ = (β ,β ) whereβ =

ξ a′ξ = ξ x′ξ . Consequently, inL |×|ξ R we have

(x,a)◦(x,a) = (β ,β )(x,a)

=
(
β (β ◦ x)x, β (β ◦ x)a

)

=
(
β (β ◦ ξ )(ξ ◦ x)x, β (β ◦ ξ )(ξ ◦ x)a

)
by (3)

=
(
ξ β ξ .ξ xξ , ξ β ξ (ξ ◦ x)a

)
by (4)

=
(
ξ x′ξ .ξ xξ , ξ x′ξ (ξ ◦ x)a

)

= (ξ x′xξ , ξ x′ξ a) by (5)
= (ξ x′xξ , ξ a′a) sinceξ x′ξ = ξ a′ξ .

Similarly, (y,b)(y,b)◦ = (yy′ξ , ξ bb′ξ ). It follows that if l ∈ Λ(L |×|ξ R) andi ∈ I(L |×|ξ R)
thenli is of the form

li = (ξ x′xξ ,ξ a′a)(yy′ξ ,ξ bb′ξ )

=
(
ξ x′xξ (ξ a′a ◦ yy′ξ )yy′ξ , ξ a′a(ξ a′a ◦ yy′ξ )ξ bb′ξ

)
.

Now if the stated condition holds then we haveξ a′a◦ yy′ξ ∈ E(T). This, together with
ξ x′xξ = ξ a′aξ ∈ E(T) andξ yy′ξ = ξ bb′ξ ∈ E(T), givesli = (γ,γ) ∈ T̂ whereγ ∈ E(T).
Then since(γ,γ)2 = (γ2,γ2) = (γ,γ) we see thatli ∈ E(T̂), whence the inverse transversal
T̂ is multiplicative.

Conversely, ifS is a locally inverse semigroup with an inverse monoid transversalS◦ =
ξ Sξ that is multiplicative then forl ∈ Λ = E(ξ S) andi ∈ I = E(Sξ ) we havel ◦ i = l◦lii ◦ =
li ∈ E(S◦) whence the condition holds. �

We can apply the above theorem to obtain a structure theorem for naturally ordered
regular semigroups with an inverse monoid transversal.

Theorem 18. Let S be a naturally ordered regular semigroup with an inverse transversal
S◦ that is a monoid with identity elementξ . Let Sξ |×|ξ ξ S consist of the subset of the
cartesian ordered set Sξ × ξ S given by

Sξ |×|ξ ξ S= {(xξ ,ξ x)
∣∣ x∈ S}

together with the multiplication

(xξ ,ξ x)(yξ ,ξ y) = (xyξ ,ξ xy).

Then Sξ |×|ξ ξ S is an ordered regular semigroup. Moreover, if eitherL or R is regular
on S then there is an ordered semigroup isomorphism

S≃ Sξ |×|ξ ξ S.

Proof. SinceS is locally inverse by Theorem 2, it follows immediately fromTheorem
10(5) and Theorem 17 that there is an algebraic isomorphismϑ : S→ Sξ |×|ξ ξ Sgiven by
ϑ(x) = (xξ ,ξ x). Suppose now that, for example,R is regular onS. If ϑ(x) 6 ϑ(y) then
xξ 6 yξ andξ x 6 ξ y, whencex = xx◦x = xξ (xξ )◦ξ x 6 yξ (yξ )◦ξ y = yy◦y = y. Thus we
see thatx 6 y ⇐⇒ ϑ(x) 6 ϑ(y) and so the isomorphismϑ is also an order isomorphism.
The same is true ifL is regular. �
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Example 4. With the above notation, in Example 1 the identity element ofthe inverse

transversalQ◦ is ξ =

[
1 0

0 0

]
. Then, by Theorem 18, we haveQ≃ Qξ |×|ξ ξ Q where

Qξ =

{[
x 0

x 0

]
,

[
x 0

0 0

] ∣∣ x > 0

}
∪

{[
0 0

0 0

]}
;

ξ Q=

{[
x x

0 0

]
,

[
x 0

0 0

] ∣∣ x > 0

}
∪

{[
0 0

0 0

]}
.

SinceΛ consists of the chain 0< d < c it is readily verified thatL is upperΛ-stable.
It then follows from Theorem 14 thatL is regular. Consequently the above semigroup
isomorphism is also an order isomorphism.

Finally, we note that ifS is a naturally ordered regular semigroup that contains a biggest
idempotentξ thenShas a quasi-ideal inverse monoid transversal, namelyξ Sξ (see, for ex-
ample, [2, Theorem 13.16]). Theorem 18 therefore applies inthis case. More particularly,
it applies in the case of a naturally ordered regular Dubreil-Jacotin semigroup.
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