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estimation of this parameter relies essentially on the estimation of the tail index, the primary
parameter in statistics of extremes. Classical semi-parametric estimators of extreme parameters
show usually a severe bias and are known to be very sensitive to the number k of top order
statistics used in the estimation. For k small they have a high variance, and for large k a high
bias. Recently, new second-order “shape” and “scale” estimators allowed the development of
second-order reduced-bias estimators, which are much less sensitive to the choice of k. Here we
shall study, under a third order framework, minimum-variance reduced-bias (MVRB) tail index
estimators, recently introduced in the literature, and dependent on an adequate estimation of
second order parameters. The improvement comes from the asymptotic variance, which is kept
equal to the asymptotic variance of the classical Hill estimator, provided that we estimate the
second order parameters at a level of a larger order than the level used for the estimation of the
first order parameter. The use of those MVRB tail index estimators enables us to introduce
new classes of reduced-bias high quantile estimators. These new classes are compared among
themselves and with previous ones through the use of a small-scale Monte Carlo simulation.
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1 INTRODUCTION

Let X1,X2, . . . ,Xn be a set of n independent and identically distributed (i.i.d.) random variables
(r.v.’s), from a population with distribution function (d.f.) F , in the max domain of attraction
of Gγ , γ ∈ R, with

Gγ(x) =

{
exp[−(1 + γx)

− 1
γ ], 1 + γx > 0 if γ 6= 0

exp(− exp−x), x ∈ R if γ = 0.

The parameter γ is the extreme value index and we then use the notation F ∈ D(Gγ). In this
paper we shall work only with heavy-tailed models, i.e., models F ∈ D(Gγ) with γ > 0. Then
γ is often called tail index.

Let us define U(t) := F←(1 − 1/t), t > 1, with F←(x) := inf{y : F (y) ≥ x} denoting the
generalized inverse function of F . We have

F ∈ D(Gγ), γ > 0 ⇐⇒ 1 − F ∈ RV−1/γ ⇐⇒ U ∈ RVγ (1)

(Gnedenko, 1943; de Haan, 1970), where, for any real a, RVa stands for the class of regularly
varying functions at infinity with index of regular variation a, i.e. positive measurable functions
g such that limt→∞ g(tx)/g(t) = xa, for all x > 0.

We are interested in the estimation of a high quantile, χ1−p, a typical parameter in the most
diversified areas of application. Such a quantile is a value exceeded with a small probability p,
i.e., such that F (χ1−p) = 1 − p. More specifically, we want to extrapolate beyond the sample,
and to estimate

χ1−p = U(1/p), p = pn → 0, npn → K as n → ∞, K ∈ [0, 1]. (2)

Consequently, cn := k/(np) → ∞, as n → ∞. Denoting by X1:n < . . . < Xn:n the order
statistics (o.s.’s) from the original sample, Weissman (1978) proposed, for heavy-tailed models,
the following semi-parametric estimator of χ1−p,

Q
(p)
γ̂ (k) := Xn−k:n cγ̂

n, cn := k
np , (3)

where γ̂ is any consistent estimator of γ. For γ ∈ R, we can find semi-parametric high quantile
estimators in de Haan and Rootzén (1983), Ferreira et al. (2003) and Matthys and Beirlant
(2003). As usual in semi-parametric estimation of parameters from extreme value models, we
shall assume that k = kn is an intermediate sequence, i.e., a sequence of integer values in [1, n],
such that

kn → ∞, kn = o(n), as n → ∞. (4)

For heavy tails, the classical tail index estimator, usually the one which is plugged in (3) for a
semi-parametric quantile estimation, is the Hill estimator γ̂ = γ̂(k) =: H(k) (Hill, 1975),

H(k) := 1
k

k∑

i=1

Vik = 1
k

k∑

i=1

Ui, (5)
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the average of the log-excesses Vik := ln Xn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, as well as the
average of the scaled log-spacings

Ui := i (ln Xn−i+1:n − ln Xn−i:n) , 1 ≤ i ≤ k < n. (6)

We thus get the so-called classical quantile estimator, Q
(p)
H (k), based on the Hill tail index

estimator H. It is known that for intermediate k and if the first order condition (1) holds, H(k)

and Q
(p)
H (k) are consistent for the estimation of γ and χ1−p, respectively. The main problem

with these semi-parametric estimators is a high variance for small k, i.e., high thresholds, and
a high bias for large k.

To obtain information on the distributional behaviour of these estimators, we shall also
assume a second order condition, that measures the rate of convergence of ln U(tx)− ln U(t) to
γ ln x,

lim
t→∞

ln U(tx)−ln U(t)−γ ln x
A(t) = xρ−1

ρ ⇐⇒ lim
t→∞

U(tx)/U(t)−xγ

A(t) = xγ xρ−1
ρ , (7)

for all x > 0, where ρ ≤ 0 is the shape second order parameter and the function |A| must be
of regular variation with index ρ (Geluk and de Haan, 1987). To be able to reduce the bias of
these estimators, it is quite useful to assume that we are working in Hall’s class of heavy-tailed
models (Hall, 1982; Hall and Welsh, 1985) where, with γ > 0, ρ < 0, C > 0 and D1 6= 0,

U(t) = Ctγ(1 + D1t
ρ + o(tρ)) t → ∞. (8)

Then, the second order condition (7) holds with A(t) = ρD1t
ρ := γ β tρ.

Proposition 1.1 (de Haan and Peng, 1998). Under the second order framework in (7), and for
intermediate k, i.e., whenever (4) holds, we may guarantee the asymptotic normality of H(k)
in (5). Indeed, we may write,

H(k)
d
= γ + γ√

k
Zk + A(n/k)

1−ρ (1 + op(1)), (9)

with Zk =
√

k
( ∑k

i=1 Ei/k − 1
)
, and {Ei} i.i.d. standard exponential r.v.’s. Consequently, if

we choose k such that
√

k A(n/k) → λ 6= 0, finite, as n → ∞,
√

k(H(k) − γ) is asymptotically
normal, with variance equal to γ2 and a non-null mean value given by λ/(1 − ρ).

The result in (9) has recently led researchers to consider the possibility of dealing with
the asymptotic bias dominant term in an appropriate way, building second-order reduced-
bias estimators, discussed by Peng (1998), Beirlant et al. (1999), Feuerverger and Hall (1999),
Gomes et al. (2000), among others. In the above mentioned papers, authors have been able to
remove the dominant component of the asymptotic bias, but with an increase of the asymptotic
variance. More recently, Gomes et al. (2004b), Caeiro et al. (2005) and Gomes et al. (2007a)
proposed minimum-variance reduced-bias (MVRB) estimators, based on an external estimation
of second order parameters, built in such way that they were able to reduce the bias without
increasing the asymptotic variance, which is kept equal to γ2, the asymptotic variance of the
Hill estimator.

If we look at (9), we see that the dominant component of the bias of Hill’s estimator is
A(n/k)/(1 − ρ) = γβ(n/k)ρ/ρ, for models in (8). This component can be easily estimated
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and removed from Hill’s estimator, leading to any of the asymptotically equivalent estimators
(Caeiro et al., 2005),

H β̂,ρ̂(k) := H(k)
(
1 − β̂

1−ρ̂

(
n
k

)ρ̂)
, H β̂,ρ̂(k) := H(k) exp

(
− β̂

1−ρ̂

(
n
k

)ρ̂)
, (10)

where ρ̂ and β̂ need to be adequate consistent estimators of the second order parameters ρ and
β, if we want to keep the asymptotic variance at γ2. This requires an external estimation of the
second order parameters using a number of top order o.s.’s k1, larger than the number of top
o.s.’s, k, used for the tail index estimation, and an estimator ρ̂ of ρ such that ρ̂−ρ = op(1/ ln n).

On the basis of the different papers dealing with high quantile semi-parametric estimation
for heavy tails, among which we mention Gomes and Figueiredo (2006) and Caeiro and Gomes
(2007), we can state the following result.

Proposition 1.2. Under the conditions of Proposition 1.1, the validity of (2), a known tail
index γ and cn defined in (3),

Q(p)
γ (k)

d
= χ1−p

(
1 + γ√

k
Bk + 1−cρ

n
ρ A(n/k)(1 + op(1))

)
, (11)

with Bk an asymptotically standard normal r.v. Consequently, if
√

k A(n/k) → λ, finite,√
k(Q

(p)
γ (k)/χ1−p − 1) is asymptotically normal, with variance γ2 and mean value λ/ρ. If γ

is unknown and is estimated by any consistent estimator γ̂,

Q
(p)
γ̂ (k)

d
= χ1−p

(
1 + (γ̂ − γ) ln cn + γ√

k
Bk + 1−cρ

n
ρ A(n/k)(1 + op(1))

)
. (12)

Consequently, if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then√
k

ln cn
(Q

(p)
γ (k)/χ1−p − 1) has asymptotically the same distribution as

√
k(γ̂ − γ).

From (12) it is obvious that the behaviour of γ̂ rules strongly the behaviour of Q
(p)
γ̂ . The

summand (1− cρ
n)A(n/k)/ρ, asymptotically equivalent to A(n/k)/ρ and the dominant compo-

nent of the bias of Q
(p)
γ in (11), does not influence the limiting distribution of Q

(p)
γ̂ . But, as

already noticed in Matthys et al. (2004), the removal of this term for finite samples, typically
leads to an improvement in the overall stability of the quantile estimates as a function of k.
Since χ1−p/Xn−k:n

p∼ cγ
n

(
1 + (cρ

n − 1)A(n/k)/ρ
)
, we shall consider the estimators,

Q
(p)
γ̂ (k) = Q

(p)
γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂

n

(
1 + γ̂β̂

(
n
k

)ρ̂ cρ̂
n−1
ρ̂

)
, (13)

asymptotically equivalent to the estimators already proposed before by Matthys el. (2004),
Beirlant et al. (2006) and Gomes and Pestana (2007b),

Q
(p)

γ̂ (k) = Q
(p)

γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂
n exp

(
γ̂β̂

(
n
k

)ρ̂ cρ̂
n−1
ρ̂

)
. (14)

We shall replace γ̂ by any of the MVRB estimators H(k) = H β̂,ρ̂(k) and H(k) = H β̂,ρ̂(k),

generally denoted H̃(k), with H β̂,ρ̂(k) and H β̂,ρ̂(k) given in (10).
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Remark 1.1. Since cρ
n ln cn = o(1), the asymptotic behavior of (13) and (14) does not change

if we replace cρ̂
n by 0. In the simulation study, we did not notice any change in the performance

of the estimators with this replacement. Anyway, we shall keep working with the quantile esti-
mators defined in (13).

Is section 2, and assuming a third order framework in order to get full information on the
leading terms of asymptotic bias, we study the tail index estimators H̃(k) in (10), as well as

Q
(p)eH , with Q

(p)
γ̂ given in (13). In Section 3, a small-scale simulation study helps us to identify

the behaviour of the quantile estimators in (13) for finite samples. Finally, in Section 4, we
draw a short final conclusion.

2 ASYMPTOTIC PROPERTIES

2.1 Third order framework

In order to derive the asymptotic bias of the MVRB estimators under study, we shall work with
a sub-class of Hall’s class such that

U(t) = Ctγ(1 + D1t
ρ + D2t

ρ+ρ∗ + o(tρ+ρ∗)), t → ∞, (15)

C > 0, D1 6= 0, ρ < 0, ρ∗ < 0. Note that, relatively to Hall’s class in (8) we merely make explicit
the summand o(tρ). Note also that, with hθ(x) := (xθ − 1)/θ, θ < 0, A(t) = ρD1t

ρ = γβtρ,
ρ′ = max(ρ, ρ∗) ≥ ρ and

B(t) = β′tρ
′

=





((1 + ρ∗/ρ)D2/D1)t
ρ∗ , ρ < ρ∗

(2D2/D1 − D1)t
ρ, ρ = ρ∗

−D1t
ρ ρ > ρ∗ or D2 = 0

,

we may write for any x > 0,

ln U(tx)
U(t) − γ ln x = A(t)hρ(x)) + A(t)B(t)hρ+ρ′(x)(1 + o(1)), (16)

which is, for arbitrary ρ and ρ′, the third order condition used in the paper by Gomes et al.
(2004a), equivalent to the ones assumed in Gomes et al. (2002) and Fraga Alves et al. (2003).
As mentioned before, we shall essentially consider the validity of (15), which is equivalent to
consider that (16) holds with ρ ≤ ρ′ and A(t) = αtρ for some real α.

Remark 2.1. The class in (15) contains most of the heavy-tailed models used in applications,
like the Fréchet, with U(t) = (ln(t/(t − 1)))−γ , the Burr, with U(t) = (t−ρ − 1)−γ/ρ, t > 1, the
Generalized Pareto (GP ), with U(t) = (tγ − 1)/γ, t > 1, and the Student’s-tν , ν > 0, with d.f.

F (x) = F (x|ν) = Γ((ν+1)/2
Γ(ν/2)

√
πν

∫ x

−∞
(1 + z2/ν)−(ν+1)/2dz, x ∈ R, ν > 0.

Although ρ∗ = ρ′ = ρ for all these classical models, we have decided to work with a slight more
general condition, the one in (15). Indeed, it is not so hard to find examples where ρ′ 6= ρ.
Gomes and Oliveira (2003) noticed that shifting the data can change the asymptotic behavior
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of the tail and the value of the second order parameters, i.e., if X is our original parent, and
Y = X + a, then UY (t) = UX(t) + a, and consequentially,

UY (t) = Ctγ(1 + D1t
ρ + at−γ/C + D2t

ρ+ρ∗ + o(tρ+ρ∗)), t → ∞.

In Table 1 we present, for the above mentioned models, the values of the first, second and third
order parameters in (15) and the values of β and β′ in A(t) = γβtρ and B(t) = β′tρ. In this
table, cν = (νB(ν/2, 1/2))1/ν (c1 = π leading to the usually called Cauchy d.f.), where B is the
complete Beta function.

Table 1: Study of some distributions in Hall’s class

Distribution C D1 D2 γ ρ ρ∗ β β′

Fréchet 1 −γ
2 − γ

12 γ −1 −1 1
2

5
6

Burr 1 γ
ρ

γ(ρ+γ)
2ρ2 γ ρ ρ 1 1

GP
1
γ −1 0 γ −γ −γ 1 1

Student’s tν

√
vc−1

ν − (ν+1)c2ν
2(ν+2) −ν(ν+1)(ν+3)c4ν

8(ν+2)2(ν+4)
1
ν − 2

ν − 2
ν

(ν+1)c2ν
ν+2

(ν2+4ν+2)c2ν
(ν+2)(ν+4)

2.2 Estimation of second order parameters
The reduced-bias tail index and quantile estimators require the estimation of the second order
parameters ρ and β, which will be now briefly discussed.

2.2.1 Estimation of the shape second order parameter ρ
We shall consider here particular members of the class of estimators of the second order parame-
ter ρ proposed by Fraga Alves et al. (2003), but parameterized by a tuning real parameter τ (see

Caeiro and Gomes, 2006). Denoting M
(j)
n (k) := 1

k

∑k
i=1 V j

ik the j-moment of the log-excesses,
j = 1, 2, 3, these ρ-estimators depend on the statistics

T (τ)
n (k) :=





�
M

(1)
n (k)

�τ
−
�
M

(2)
n (k)/2

�τ/2�
M

(2)
n (k)/2

�τ/2
−
�
M

(3)
n (k)/6

�τ/3 , if τ 6= 0

ln
�
M

(1)
n (k)

�
−1

2 ln
�
M

(2)
n (k)/2

�
1
2 ln

�
M

(2)
n (k)/2

�
−1

3 ln
�
M

(3)
n (k)/6

� , if τ = 0

,

which converge towards 3(1−ρ)/(3−ρ) for any real τ , whenever the second order condition (7)
holds, k is such that (4) holds and

√
k A(n/k) → ∞, as n → ∞. The ρ-estimators considered

have the functional expression,

ρ̂τ (k) = ρ̂(k; τ) := −min(0 , 3(T (τ)
n (k)) − 1)/(T (τ)

n (k) − 3). (17)
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Proposition 2.1 (Fraga Alves et al., 2003). If the second order condition (7) holds, with ρ < 0,
(4) holds and

√
k A(n/k) → ∞, then ρ̂(k; τ) in (17) converge in probability to ρ, as n → ∞.

Under the third order framework in (16),

ρ̂(k; τ)
d
= ρ +

(
γσρW ρ

k√
kA(n/k)

+ υ1A(n/k) + υ2B(n/k)
)

(1 + op(1)), (18)

where W ρ
k is an asymptotically standard normal r.v., σρ = (1−ρ)3

ρ

√
(2ρ2 − 2ρ + 1),

υ1 ≡ υ1(γ, ρ, τ) =
ρ[τ(1−2ρ)2(3−ρ)(3−2ρ)+6ρ(4(2−ρ)(1−ρ)2−1)]

12γ(1−ρ)2(1−2ρ)2 , υ2 = ρ′(ρ+ρ′)(1−ρ)3

ρ(1−ρ−ρ′)3 .

Consequently, if
√

k A2(n/k) → λ
A

and
√

k A(n/k)B(n/k) → λ
B
, finite, then√

kA(n/k)(ρ̂(k; τ) − ρ)
d−→ N

(
λ

A
υ1 + λ

B
υ2, γ

2σ2
ρ

)
.

Corollary 2.1. Under the third order framework in (15), if (4) holds,
√

k A(n/k) → ∞ and√
k A(n/k)B(n/k) → λ

B
, finite, then ρ̂n(k; τ)−ρ = Op

(
1/(

√
kA(n/k))

)
. But, if we chose k such

that
√

kA(n/k)B(n/k) → ∞, then 1/(
√

kA(n/k)) = o(B(n/k)) and ρ̂n(k; τ)−ρ = Op(B(n/k)).

A comment on the choice of the tuning parameter τ . From Proposition 2.1, we can
conclude that the tuning parameter τ only affects ρ̂(k; τ) asymptotic bias. If ρ′ = ρ, and
consequentially B(n/k) = O(A(n/k)), we can always choose τ = τ0 so that the asymptotic bias
υ1A(n/k)+υ2B(n/k) in (18) is null, even when

√
kA2(n/k) → λA > 0 and

√
kA(n/k)B(n/k) →

λB 6= 0. It is enough to choose the value τ0 which is the solution of υ1γβ + υ2β
′ = 0. Such a

value is independent of γ and, with ξ = β′/β, is given by

τ0 ≡ τ0(ρ, ξ) = −6[4ξ(1−ρ5)+ρ(1−2ρ)(4(2−ρ)(1−ρ)2−1)]
(1−2ρ)3(3−ρ)(3−2ρ) . (19)

Although τ0, as a function of ρ, is not always monotone, it converges to 3(1− ξ/2), as ρ → −∞
and to −8ξ/3, as ρ → 0.

Using the available values ρ, β and β′, from Table 1, we have for the Fréchet model, ρ = −1,
ξ = 5/3 and τ0 = −217/270 ≃ −0.8. For models like the Burr and the GP , where β′ = β
and consequently ξ = 1, we present in Figure 1 (left) τ0(ρ, 1) as function of ρ. For Student’s tν
distribution, ρ, β and β′ are functions of ν, and the value τ0 in (19) can also be written as a
function of ν:

τ0(ν) = 12(384+1216ν+1440ν2+720ν3+72ν4−61ν5−21ν6−2ν7)
(1+ν)(4+ν)4(2+3ν)(4+3ν)

.

This function τ0(ν) is shown in Figure 1 (right), as a function of ν.
As an example, for the GP (γ = 0.5), we have τ0(−0.5, 1, 1) = −213/448 ≃ −0.48. In Figure

2 and to illustrate the comment above, we picture a sample path of ρ̂(k; τ) with τ = τ0 and
τ = 0, the value of τ most commonly suggested for models with |ρ| < 1. We conclude that
ρ̂τ0(k) = ρ̂(k; τ0) is indeed more stable than ρ̂0(k) = ρ̂(k; 0) around the true value ρ = −0.5.

Remark 2.2. Indeed, for an appropriate tuning parameter τ the ρ-estimators in (17) show
highly stable sample paths as functions of k, the number of top o.s. used, for a wide range of
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Figure 1: Left: τ0(ρ, 1) as function of ρ. Right: τ0(ν) for Student’s tν .
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Figure 2: Sample path of the estimator ρ̂(k; τ), τ = 0,−0.48, for one sample of size n = 25000
from the GP distribution with γ = 0.5.

large k-values. The theoretical and simulated results in Fraga Alves et al. (2003), together with
the use of these estimators in different reduced-bias statistics, has led us to advise in practice
the estimation of ρ through the estimator in (17), computed at the value

k1 :=
[
n0.995

]
, (20)

not chosen in any optimal way, and the choice of the tuning parameter τ = 0 for ρ ∈ [−1, 0) and
τ = 1 for ρ ∈ (−∞,−1). As usual, [x] denotes the integer part of x. However, practitioners
should not choose blindly the value of τ in (17), and as pointed out in Caeiro and Gomes
(2006), even negative values of τ should be possible candidates. It is indeed sensible to draw a
few sample paths of ρ̂τ (k) = ρ̂(k; τ), as functions of k, electing the value of τ which provides
the highest stability for large k, by means of any stability criterion, like the one suggested in
Gomes et al. (2005) or Gomes and Pestana (2007a). For not too small n, we are frequently
led to the above mentioned choice: ρ̂0 if ρ ≥ −1 and ρ̂1 if ρ < −1, when we consider only the
tuning parameters τ = 0 and τ = 1 as the possible alternatives. In practice, the adequate choice
of τ is much more crucial than the choice of k1, discussed in the following.

A few comments on the choice of the level k1 for the ρ-estimation. On the basis of the
results in Proposition 1.1 and Proposition 2.1, it seems sensible to estimate the second order ρ
using a number k1 of o.s.’s of a larger order than k, the number of o.s.’s used for the estimation
of the tail index γ. We now make the following comments on the choice of the value k1 that
should be used for the estimation of the second order parameter ρ.
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(1) The ideal situation would perhaps be the choice of an “optimal” k1 for the estimation of ρ,
in the sense of a value that enables the asymptotic normality of the ρ-estimator with a non-null
asymptotic bias. For models in (15), k1 is then such that

√
k1 A(n/k1)B(n/k1) → λ

B1
, finite

and non-null. We then get k1 = O
(
n−2(ρ+ρ′)/(1−2(ρ+ρ′))

)
. Denoting ρ̂ = ρ̂(k1; τ) for any ρ̂(k; τ)

in (17), ρ̂ − ρ is of the order of 1/
(√

k1A(n/k1)
)

= O
(
nρ′/(1−2(ρ+ρ′))

)
= o(1/ ln n), i.e.,

ρ̂ − ρ = op(1/ ln n), as n → ∞, (21)

a condition needed later on. In practice, such a k1 has only a “limited” interest at the current
state-of-the-art. It is however of theoretical interest.
(2) Assume next the validity of the following condition:

Condition U: There exist a tuning parameter τ∗ and a level k1, with√
k1 A(n/k1)B(n/k1) → ∞, such that, with ρ̂(k; τ) defined in (17), ρ̂∗ − ρ = ρ̂(k1; τ

∗) − ρ =
Op

(
1/

(√
k1A(n/k1)

))
.

This is obviously a strong assumption, practically equivalent to saying that for any specific
model there is a τ∗ and a k1 such that ρ̂∗ = ρ̂(k1; τ

∗) is an unbiased estimator for ρ, so that
the bias has no influence in the rate of convergence, which is kept at 1/

(√
k1A(n/k1)

)
. Indeed,

such a claim is made on the basis of the high stability of sample paths of the ρ-estimates in
(17) for a specific τ = τ∗ and large values of k (see Figure 2 and the comment made above on
the choice of τ). Then, the use of a value k1 larger than the so-called “optimal” level in item
1., but intermediate, like for instance, the one suggested in Gomes and Martins (2002),

k1 := min (n − 1, 2n/ ln lnn) , (22)

enables us to guarantee that ρ̂∗−ρ = op(1/ ln n). Indeed, if we assume the validity of Condition
U for k1 in (22), we get ρ̂∗ − ρ = Op

(
1/

(√
k1A(n/k1)

))
= Op

(
(ln ln n)(1−2ρ)/2/

√
n
)
, which is

obviously of smaller order than {1/ ln n}, i.e., (21) holds. This will be the unique situation under
which we may work with the k1 suggested in Gomes and Martins (2002), i.e, the one in (22), and
still guarantee the above mentioned property on the ρ-estimator, and a possible generalization
of the third-order results derived for H̃β,ρ to H̃β̂∗,ρ̂∗, with β̂∗ an adequate β-estimator, to be
specified later on, in Section 2.2.2.
(3) If we consider a level k1 of the order of n1−ǫ, for some small ǫ > 0, we may also guarantee
that (21) holds for a large class of models, without the need to assume a condition as strong as
Condition U. This is the reason why, such as done in Caeiro et al. (2004b), Gomes and Pestana
(2007a, b) and Gomes et al. (2004b, 2007a), we advise in practice, as a compromise between
theoretical and practical considerations, the use of an intermediate level like the one in (20) or
any other level k1 = [n1−ǫ] for some ǫ > 0, small.

2.2.2 Estimation of the scale second order parameter β

Let us introduce the notation N
(α)
n (k) := 1

k

∑k
i=1

(
i
k

)α−1
Ui, with Ui defined in (6). For the

estimation of β we shall here consider the estimator in Gomes and Martins (2002), with the
functional expression,

β̂ρ̂(k) = β̂(k; ρ̂) :=
(

k
n

)ρ̂

(
1
k

kP
i=1

(
i
k

)
−ρ̂)

N
(1)
n (k)−N

(1−ρ̂)
n (k)

(
1
k

kP
i=1

(
i
k

)
−ρ̂)

N
(1−ρ̂)
n (k)−N

(1−2ρ̂)
n (k)

. (23)
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Theorem 2.1 (Gomes et al., 2004b). If the second order condition (7) holds, with A(t) = γ β tρ,
ρ < 0, if (4) holds, and if

√
kA(n/k) → ∞, then, with ρ̂n(k; τ) and β̂ρ̂(k) given in (17) and

(23), respectively, and ρ̂ = ρ̂n(k; τ) such that (21) holds, i.e., ρ̂ − ρ = op(1/ ln n), as n → ∞,

β̂ρ̂(k) is consistent for the estimation of β. Moreover,

β̂ρ̂(k) − β
p∼ −β ln(n/k)(ρ̂ − ρ) = op(1). (24)

2.3 Asymptotic properties of the tail index estimators, under a third order

framework

We shall study now the asymptotic behaviour, under a third order framework, of the MVRB

estimators H and H, generally denoted H̃. We assume first that we know the two second order
parameters β and ρ. Next we estimate both second-order parameters externally at a level k1 of
a larger order than the level k at which we compute the tail index.

Theorem 2.2. (a) Under the second order framework in (8), and for intermediate k, i.e.,
whenever (4) holds, we may write,

H̃β,ρ(k)
d
= γ + γ√

k
Zk + op(A(n/k)), (25)

where Zk is the asymptotically standard normal r.v. in (9). Also, if we choose k such that√
k A(n/k) → λ, finite, as n → ∞,

√
k(H̃β,ρ(k) − γ) are asymptotically normal, with variance

γ2 and a null mean value, even if λ 6= 0.
(b) If we further assume (15), more information can be given for the term op(A(n/k)), and

we get the asymptotic distributional representations:

Hβ,ρ(k)
d
= γ + γ√

k
Z∗k + A(n/k)B(n/k)

1−ρ−ρ′

(
1 − (1−ρ−ρ′)A(n/k)

γ(1−ρ)2B(n/k)

)
(1 + op(1)), (26)

and
Hβ,ρ(k)

d
= γ + γ√

k
Z∗k + A(n/k)B(n/k)

1−ρ−ρ′

(
1 − (1−ρ−ρ′)A(n/k)

2γ(1−ρ)2B(n/k)

)
(1 + op(1)), (27)

with Z∗k asymptotically standard normal. If
√

k A(n/k)B(n/k) → λ
B
, finite (and then,√

k A2(n/k) → λA, also finite),
√

k
(
Hβ,ρ(k)−γ

)
and

√
k
(
Hβ,ρ(k)−γ

)
are asymptotically normal

with the same variance, equal to γ2, and asymptotic bias bH = λB/(1 − ρ − ρ′)−λA/(γ(1 − ρ)2)
and b

H
= λB/(1 − ρ − ρ′) − λA/(2γ(1 − ρ)2), respectively.

Proof. The first part of the theorem has been proved in Caeiro et al. (2005). Regarding the
second part: from the third order set-up in (16), we get

H(k)
d
= γ + γ√

k
Zk + A(n/k)

1−ρ + Op

(
A(n/k)√

k

)
+ A(n/k) B(n/k)

1−ρ−ρ′ (1 + op(1)).

Consequently, as Hβ,ρ(k) = H(k) ×
(
1 − A(n/k)/(γ(1 − ρ))

)
for models in (15),

Hβ,ρ(k)
d
= γ + γ√

k
Zk +

(
A(n/k)B(n/k)

1−ρ−ρ′ − A2(n/k)
γ(1−ρ)2

+ Op

(
A(n/k)√

k

))
(1 + op(1)),

Hβ,ρ(k)−Hβ,ρ(k)
p∼ A2(n/k)/(2γ(1−ρ)2), and the results in the theorem follow. Note that since√

kOp(A(n/k)/
√

k) → 0, for the intermediate levels k considered, the term Op(A(n/k)/
√

k) is
irrelevant for the asymptotic bias.
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Remark 2.3. Notice that H and H have the same asymptotic variance and b
H

= bH +

λA/(2γ(1 − ρ)2), with λA ≥ 0. So if both bias are positive, H should have, asymptotically,

a better performance than H.

Theorem 2.3. (a) Under the initial conditions of Theorem 2.2, let us consider the tail index
estimators H̃β̂,ρ̂ with β̂ and ρ̂ consistent for the estimation of β and ρ, respectively, both com-
puted at the level k1 of a larger order than the level k at which we compute the tail index, and
such that (21) holds. Then

√
k(H̃β̂,ρ̂(k) − γ) are asymptotically normal, with variance equal to

γ2 and a null mean value, even if
√

kA(n/k) → λ 6= 0, as n → ∞.
(b) If we work under the third order framework in (15), consider β̂ρ̂(k) in (23), β̂ =

β̂ρ̂(k1), and choose k such that
√

k A(n/k) → ∞, but
√

k A(n/k)B(n/k) → λ
B
, finite, then√

k
(
H β̂,ρ̂(k)− γ

)
and

√
k
(
H β̂,ρ̂(k)− γ

)
are asymptotically normal with variance γ2 and asymp-

totic bias bH and b
H

, respectively, given in Theorem 2.2, provided that we can guarantee that

(ρ̂− ρ) ln n = op(1/
√

kA(n/k)). This last condition on ρ̂ holds if we further assume the validity
of Condition U for k1 in (22).

Proof. If we estimate consistently β and ρ through β̂ and ρ̂ under the conditions of the theorem,
we may use Taylor’s expansion series, and as ∂H̃β,ρ/∂β

p∼ A(n/k)/(β(1 − ρ)), ∂H̃β,ρ/∂ρ
p∼

−A(n/k)(ln (n/k) + 1/(1 − ρ))/(1 − ρ), we get

H̃β̂,ρ̂(k) − H̃β,ρ(k)
p∼ −A(n/k)

1−ρ

{
β̂−β

β + (ρ̂ − ρ)
[
ln(n/k) + 1

1−ρ

]}
. (28)

The first part of the theorem, related to levels k such that
√

k A(n/k) → λ, finite, follows thus
straightforwardly from (28).

Next, from (24), (β̂ − β)/β
p∼ − ln(n/k1) (ρ̂ − ρ) = op(1/(

√
kA(n/k))),

√
k(H̃β̂,ρ̂(k) −

H̃β,ρ(k)) = op(1/
√

k) and the stated asymptotic normality of H̃β̂,ρ̂ follows as well. We may
further write

H̃β̂,ρ̂(k) − H̃β,ρ(k)
p∼ −A(n/k)

1−ρ (ρ̂ − ρ)
(
ln(k/k1) + 1

1−ρ

)
. (29)

If we assume the validity of Condition U for the level k1 in (22) and consider H̃β̂∗,ρ̂∗, we

straighforwardly guarantee that
√

k (ρ̂∗ − ρ) A(n/k) ln(k/k1) = op(1). Consequently, the use of

(29), with (β̂, ρ̂) replaced by (β̂∗, ρ̂∗), enables us to get the results in the theorem.

2.4 Asymptotic properties of the reduced-bias quantile estimators, under a

third order framework

We shall provide in theorems 2.4 and 2.5 the distributional behaviour of the quantile estimators
under study, for models in (15).

Theorem 2.4. Under the third order framework in (15), for intermediate k, i.e., whenever (4)
holds, and whenever ln(np) = o(

√
k), we can write,

Q
(p)
H(k)(k)/χ1−p

d
= 1 + (H(k) − γ) ln cn + γ√

k
Bk − hρ(cn)A(n/k)

+ Op(
A(n/k)√

k
) −

(
hρ+ρ′(cn)A(n/k)B(n/k) + 1

2h2
ρ(cn)A2(n/k)

)
(1 + op(1)), (30)

11



where Bk is an asymptotically standard normal r.v., hθ(x) = (xθ−1)/θ, θ < 0. Consequently,

if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then
√

k
ln cn

(Q
(p)
H(k)(k)/χ1−p − 1) has

asymptotically the same distribution as
√

k(H(k) − γ), i.e., it is asymptotically normal, with
variance γ2 and mean value λ/(1−ρ).

Proof. From (16), and as t → ∞, we get,

U(tx)
U(t) = xγ{1 + hρ(x)A(t) +

(
hρ+ρ′(x)A(t)B(t) + 1

2h2
ρ(x)A2(t)

)
(1 + o(1))}. (31)

Denoting by γ̂ any consistent tail index estimator and since Xn−k:n
d
= U(Yn−k:n), where Y is a

standard Pareto r.v., we can write

Q
(p)
γ̂(k)(k)/χ1−p =

(
Xn−k:n

U(1/p)

)
cγ̂(k)
n =

(
Xn−k:n

U(n/k)

)(
U(n/k)

U(ncn/k)

)
cγ̂(k)
n .

Using the delta method, together with the fact that ln cn/
√

k → 0, as n → ∞, c
γ̂(k)
n

p∼ cγ
n {1 +

(γ̂(k) − γ) ln cn}. From (31), we obtain

Q
(p)
H(k)(k)/χ1−p

d
=

(
1 + γ√

k
Bk + Op(

A(n/k)√
k

)
)
×

{
1 − hρ(cn)A(n/k)

−
(
hρ+ρ′(cn)A(n/k)B(n/k) + h2

ρ(cn)A2(n/k)/2
)
(1 + op(1))

}

× (1 + (γ̂(k) − γ) ln cn)) (1 + op(1)),

and, with γ̂ replaced byH, (30) as well as the asymptotic normality follow.

Theorem 2.5. (a) Under the conditions of Theorem 2.4, let us consider the tail index estimator
H̃ = H̃β̂,ρ̂ with (β̂, ρ̂) consistent estimators of (β, ρ), both computed at k1, with k = o(k1) and

such that (ρ̂ − ρ) ln n = op(1). Then, if
√

kA(n/k) → λ,
√

k
ln cn

(Q
(p)eH(k)

(k)/χ1−p − 1) has asymp-

totically the same distribution as
√

k(H̃(k)− γ), i.e., they are both asymptotically normal, with
variance equal to γ2 and a null mean value (even if λ 6= 0).

(b) If we choose k such that
√

kA(n/k) → ∞, but
√

kA(n/k)B(n/k) → λ
B
, finite,

√
k

ln cn
(Q

(p)eH(k)
(k)/χ1−p − 1) and

√
k(H̃(k) − γ) also have asymptotically the same distributions,

i.e., they are asymptotically normal, with variance equal to γ2 and asymptotic bias given in
Theorem 2.2, provided that we can guarantee that (ρ̂ − ρ) ln n = op(1/

√
kA(n/k)).

Proof. Let as first assume to know β and ρ. Then, since Q
(p)eHβ,ρ

(k;β, ρ) = Q
(p)eHβ,ρ

(k)
(
1 +

H̃β,ρ(k)β
(

n
k

)ρ
hρ(cn)

)
for models in (15), we can use (30) and get

Q
(p)eHβ,ρ

(k;β, ρ)/χ1−p
d
= 1 + (Hβ,ρ(k) − γ) ln cn + γ√

k
Bk + Op(

A(n/k)√
k

)

− (hρ+ρ′(cn)A(n/k)B(n/k)) + 1
2h2

ρ(cn)A2(n/k))(1 + op(1)), (32)
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Then
√

k
ln cn

(Q
(p)eHβ,ρ(k;β,ρ)

(k)/χ1−p − 1) has asymptotically the same distributions as
√

k(H̃β,ρ(k)−
γ). Since, H̃β̂,ρ̂(k) = γ(1 + op(1)), cρ

n → 0, cρ
n ln cn → 0, for any intermediate k, we may use

Cramer’s delta-method, and write

H̃β̂,ρ̂(k)β̂
(

n
k

)ρ̂
hρ̂(cn)

p∼ hρ(cn)A(n/k)
{

1 + β̂−β
β + (ρ̂ − ρ) ln(n/k)

}
.

Consequently,
(
Q

(p)eH
β̂,ρ̂

(k;β, ρ) − Q
(p)eHβ,ρ

(k;β, ρ)
)
/χ1−p

p∼
(
H̃β̂,ρ̂(k) − H̃β,ρ(k)

)
ln cn, and

(
Q

(p)eH
β̂,ρ̂

(k; β̂, ρ̂) − Q
(p)eHβ,ρ

(k;β, ρ)
)
/χ1−p

p∼
(
H̃β̂,ρ̂(k) − H̃β,ρ(k)

)
ln cn + hρ(cn)A(n/k)

{
β̂−β

β +

(ρ̂ − ρ) ln(n/k)
}

. The remaining of the proof is analogous to the proof of Theorem 2.3.

3 A SMALL-SCALE SIMULATION STUDY

We have implemented, for Fréchet underlying parents, a Monte Carlo simulation of size 5000

for RH ≡ Q
(p)
H /χ1−p, RH ≡ Q

(p)

H
/χ1−p and R

H
≡ Q

(p)

H
/χ1−p. Results for Q, not presented,

have also been simulated and almost overlap the ones for Q. For every estimator R = R(k), we
have simulated for p = 1/n and p = 1/(n ln n), the mean value, the root mean squared error
(RMSE) and the optimal sample fraction, OSFR = k0/n = arg mink{RMSE(R(k))}/n. The
second order parameters were estimated through ρ̂0 = ρ̂(k1; 0) and β̂0 = β̂ρ̂0(k1), with ρ̂(k; τ)

and β̂ρ̂(k) defined in (17) and (23), respectively, and k1 given in (20).

Table 2: Simulated mean values /RMSE at optimal levels.
n 100 500 1000 5000

Fréchet parent with γ = 0.25 and p = 1/n

RH 1.056 / 0.191 1.053 / 0.136 1.053 / 0.118 1.037 / 0.080

RH 0.969 / 0.164 0.984 / 0.116 0.988 / 0.099 0.992 / 0.061

R
H

1.007 / 0.154 1.006 / 0.108 1.004 / 0.092 1.004 / 0.057

Fréchet parent with γ = 0.25 and p = 1/(n ln n)

RH 1.106 / 0.298 1.089 / 0.259 1.085 / 0.172 1.057 / 0.112

RH 0.960 / 0.236 0.984 / 0.162 0.988 / 0.135 0.991 / 0.080

R
H

1.009 / 0.224 1.013 / 0.152 1.009 / 0.127 1.009 / 0.076

A few remarks for Fréchet parents:

• For Fréchet parents, the RMSE of RH(k)(k) and R
H(k)

(k) is always smaller (or equal)

than the RMSE of the classical quantil estimator, RH(k)(k).

• Also, the normalized quantile estimator R
H(k)

(k) has always the smallest mean squared
error.
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Figure 3: Underlying Fréchet parent with γ = 0.25, p = 1/n, and n = 1000.
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Figure 4: Underlying Fréchet parent with γ = 0.25, p = 1/(n ln n) and n = 1000.

4 CONCLUSION

The MVRB estimators proposed in this paper are bias-corrected Hill estimators which perform
better than the classical Hill estimator for all k, the number of top o.s.’s used in the estimation
of the tail index γ. Despite of this, it is sensible to understand their comparative behaviour
at optimal levels, not only for finite sample size, but also asymptotically, as recently done in
Gomes and Neves (2007) for some of the classical estimators, like the well-known Hill, moment,
maximum likelihood and the recently introduced mixed moment estimator (Fraga Alves et al.,
2007). It is thus crucial to have information on the order of the dominant component(s) of
their asymptotic bias, the main contribution in this paper, for the MVRB tail index estimators
in (10) and the associated quantile estimators in (13). The adaptive choice of the threshold is
now becoming feasible for a wide class of models, but it is outside of the scope of this paper.
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