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Abstract

The aim of this paper is to show that while all the exact distributions of the most
common likelihood ratio test (l.r.t.) statistics, that is, the ones used to test the
independence of several sets of variables, the equality of several variance-covariance
matrices, sphericity and the equality of several mean vectors, may be expressed
as the distribution of the product of independent Beta random variables or the
product of a given number of independent random variables whose logarithm has a
Gamma distribution times a given number of independent Beta random variables,
near-exact distributions for their logarithms may all be expressed as Generalized
Near-Integer Gamma distributions or mixtures of these distributions, whose rate
parameters associated with the integer shape parameters, for samples of size n,
all have the form (n − j)/n for j = 2, . . . , p, where for the first three statistics p
is the number of variables involved, while for the fourth one it is the sum of the
number of variables involved with the number of mean vectors being tested. What is
interesting is that the similarities exhibited by these statistics are even more striking
in terms of near-exact distributions than in terms of exact distributions. Moreover
all the l.r.t. statistics that may be built as products of these basic statistics also
inherit a similar structure for their near-exact distributions. To illustrate this fact,
an application is made to the l.r.t. statistic to test the equality of several multivariate
Normal distributions.

Key words: Wilks Lambda statistic, independence test, sphericity test,
Generalized Integer Gamma distribution, Generalized Near-Integer Gamma
distribution, mixtures.



1 Introduction

Although it is a rather well-known fact that the exact distributions of the
l.r.t. (likelihood ratio test) statistics used in Multivariate Statistics (under
normality assumptions) to test the independence of several sets of variables,
the equality of several variance-covariance matrices, sphericity, and the equal-
ity of several mean vectors may be expressed as distributions of the product of
independent Beta r.v.’s (random variables) raised to the power equal to one-
half the sample-size (Anderson, 2003; Hsieh, 1979), we will present for each
statistic our version of its exact distribution in the form of the distribution of
the product of a given number, closely related with the number of variables
being used, of independent r.v.’s whose logarithms have Gamma distributions
with integer shape parameters and a given number, a function of the parity
of the number of variables being tested, of independent Beta r.v.’s raised to
the power equal to one-half the sample size.

This way of looking at the exact distribution of these statistics will enable us to
show how in terms of near-exact distributions, the similarities among the dis-
tributions of these statistics are even more striking, and, based on previously
published results (as well as other submitted for publication) (Coelho, 2004;
Marques and Coelho, 2008; Coelho and Marques, 2007a, 2007b), to establish
a common strategy concerning the development of near-exact distributions for
these statistics, as well as a common formulation for such near-exact distribu-
tions.

If we think that the usual normality assumptions under which the l.r.t. statis-
tics and their distributions are derived are too restrictive, we should bear in
mind the results in Anderson et all. (1986), Anderson and Fang (1990) and An-
derson (2003), which show that such statistics are still the l.r.t. statistics for
the same hypotheses when the underlying distributions for the samples are
multivariate elliptically contoured and that under the null hypotheses such
statistics have the same distributions as in the normal case, this way making
the results presented somewhat more comprehensive.

2 Exact distributions of the l.r.t. statistics

2.1 The l.r.t. statistic to test independence among m sets of variates

If we assume that

X = [X1, . . . , Xk, . . . , Xm]′ ∼ Np(µ, Σ)
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where

µ =
[
µ

1
, . . . , µ

k
, . . . , µ

m

]′
and Σ =




Σ11 · · · Σ1k · · · Σ1m

...
. . .

...
...

Σk1 · · · Σkk · · · Σkm

...
...

. . .
...

Σm1 · · · Σmk · · · Σmm




of course with

Xk ∼ Npk
(µ

k
, Σkk) (k = 1, . . . , m) , and p =

m∑

k=1

pk ,

and we want to test the null hypothesis

H01 : Σ = diag(Σ11, . . . , Σkk, . . . , Σmm)

⇐⇒ Σij = 0pi×pj
, i 6= j; i, j ∈ {1, . . . ,m}

(1)

that is the null hypothesis of independence among the m sets of variates Xk

(k = 1, . . . , m), the l.r.t. statistic to test (1), based on a sample of size n from
X, is

Λ1 =




|A|
m∏

k=1
|Akk|




n/2

, (2)

where A is the m.l.e. (maximum likelihood estimator) of Σ and Akk is the
m.l.e. of Σkk (k = 1, . . . , m).

From Coelho (1992, 2004), we may write the exact c.f. (characteristic function)
of W1 = − log Λ1, under H01 in (1), as

ΦW1(t) =
m−1∏

k=1

pk∏

j=1

Γ(ajk + bk) Γ
(
ajk − n

2
it

)

Γ(ajk) Γ
(
ajk + bk − n

2
it

)

=
p∏

j=2

(
n− j

n

)rj (
n− j

n
− it

)−rj

︸ ︷︷ ︸
Φ1,W1

(t) 
Γ

(
n−1

2

)
Γ

(
n−1

2
− 1

2
− n

2
it

)

Γ
(

n−1
2
− 1

2

)
Γ

(
n−1

2
− n

2
it

)



k∗

︸ ︷︷ ︸
Φ2,W1

(t)

(3)
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where k∗ =
⌊

`
2

⌋
, with ` denoting the number of Xk’s with an odd number of

variates, and where, for j = 1, . . . , pk and k = 1, . . . , m− 1,

ajk =
n− qk − j

2
, bk =

qk

2
with qk = pk+1 + . . . + pm (4)

and

rj =





0 j = 2

m−1∑

k=1

r∗k,pk+qk+1−j j = 3, . . . , p
(5)

where

r∗k,pk+qk+1−j =





0 j = pk + qk + 1, . . . , p

rk,pk+qk+1−j j = 3, . . . , pk + qk

(6)

with

rk,j =





hkj j = 1, 2

rk,j−2 + hkj j = 3, . . . , pk + qk − 2
(7)

where, for j = 1, . . . , pk + qk − 2,

hkj = (number of elements in {pk, qk} greater or equal to j)− 1 . (8)

The c.f. of W1, in (3), is either the c.f. of the sum of
∑m−1

k=1 pk independent
Logbeta r.v.’s with the parameters in (4), multiplied by n/2, or the c.f. of the
sum of p−2 independent Gamma r.v.’s with rate parameters n−j

n
(j = 3, . . . , p)

and shape parameters rj given by (5) through (8), plus k∗ independent Logbeta
r.v.’s with parameters n/2 and 1/2, multiplied by n/2. This shows that the
distribution of Λ1 in (2) is the same as the distribution of the product of∑m−1

k=1 pk independent r.v.’s with Beta distributions, more precisely, the same
distribution as the distribution of

m−1∏

k=1

pk∏

j=1

(Yjk)
n/2 with Yjk ∼ Beta (ajk, bk)

where ajk and bk are defined in (4) and where Yjk are independent for j =

1, . . . , pk and k = 1, . . . , m−1, or alternatively that Λ1 has, for k∗ =
⌊

`
2

⌋
, where
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` is the number of Xk’s with an odd number of variates, the same distribution
as

(Y )
n
2

k∗
p∏

j=3

eZj , where Y ∼ Beta
(

n

2
,
1

2

)
and Zj ∼ Γ

(
n− j

n
, rj

)
,

with rj given by (5) through (8), being the Zj all independent (j = 3, . . . , p)
and independent of Y .

If at most one of the m Xk’s has an odd number of variates, Coelho (1998,
1999) has shown that in this case the exact c.f. of W1 = − log Λ1 may be
written, for a sample of size n, as

ΦW1(t) =
p∏

j=2

(
n− j

n

)rj (
n− j

n
− it

)−rj

where

rj =





0 j = 2

hj−2 j = 3, 4

rj−2 + hj−2 j = 5, . . . , p

(9)

with

hj = (# of pk (k = 1, . . . ,m) ≥ j)− 1 , j = 1, . . . , p− 2 , (10)

what is the c.f. of the sum of p−1 independent Gamma r.v.’s with rate param-
eters n−j

n
and shape parameters rj (j = 2, . . . , p), that is a GIG distribution

of depth p− 1 (see Appendix A) with those rate and shape parameters.

Alternatively, in this case, the exact c.f. of W1 may be given by the second
expression in (3), with the shape parameters rj given by (5) through (8), and
where for k∗ = 0, Φ∗

2(t) vanishes.

2.2 The l.r.t. statistic to test the equality of several variance-covariance ma-
trices

If we assume that

Xk ∼ Np(µk
, Σk) , k = 1, . . . , q
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and we want to test the null hypothesis

H02 : Σ1 = . . . = Σq (11)

that is, the null hypothesis of equality of the q variance-covariance matrices.
From Anderson (2003, sec. 10.4) and Coelho and Marques (2007) we may
write the l.r.t. statistic to test H02 in (11), for samples of sizes n from each
Xk (k = 1, . . . , q), as

Λ2 =


qpq

q∏
k=1

|Ak|
|A|q




n/2

(12)

where Ak is the m.l.e. of Σk (k = 1, . . . , q) and A = A1 + . . . + Aq.

From Anderson (2003) and Coelho and Marques (2007) we may write the c.f.
of W2 = − log Λ2, under H02 in (11), either as

ΦW2(t) =
p∏

j=1

q∏

k=1

Γ
(

n
2

+ 1−j
2q

+ k−1
q

)
Γ

(
n+1−j

2
− n

2
it

)

Γ
(

n
2

+ 1−j
2q

+ k−1
q
− n

2
it

)
Γ

(
n+1−j

2

) , (13)

where we should note that for j = k = 1 the term in the product yields the
value 1, or alternatively as

ΦW2(t) =
bp/2c∏

j=1

q∏

k=1

Γ(aj + bjk)

Γ(aj + bjk − nit)

Γ(aj − nit)

Γ(aj)

×



q∏

k=1

Γ(ap + bpk)

Γ
(
ap + bpk − n

2
it

)
Γ

(
ap − n

2
it

)

Γ(ap)




p⊥⊥2

=
p∏

j=2

(
n− j

n

)rj (
n− j

n
− it

)−rj

︸ ︷︷ ︸
Φ1,W2

(t)

×
bp/2c∏

j=1

q∏

k=1

Γ(aj + bjk)

Γ(aj + b∗jk)

Γ(aj + b∗jk − nit)

Γ(aj + bjk − nit)

×



q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ
(
ap + b∗pk − n

2
it

)

Γ
(
ap + bpk − n

2
it

)



p⊥⊥2

︸ ︷︷ ︸
Φ2,W2

(t)

(14)
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for p ⊥⊥ 2 =
⌊

p+1
2

⌋
−

⌊
p
2

⌋
being the remainder of the integer division of p by 2,

aj = n− 2j , bjk = 2j − 1 +
k − 2j

q
, (15)

ap =
n− p

2
, bpk =

pq − q − p + 2k − 1

2q
, (16)

b∗jk = bbjkc , b∗pk = bbpkc , (17)

and

rj =





r∗j−1 for j = 2, . . . , p,

except for j = p−2α1

r∗j−1+(p⊥⊥2)(α2 − α1)(
q− p−1

2
+ q

⌊
p
2q

⌋)
for j = p− 2α1

(18)

with

r∗j =





γj for j = 1, . . . , α + 1

q
(⌊

p
2

⌋
−

⌊
j
2

⌋)
for j = α + 2, ... , min(p− 2α1, p− 1)

and j = 2+p−2α1, ... , 2
⌊

p
2

⌋
−1, step 2

q
(⌊

p+1
2

⌋
−

⌊
j
2

⌋)
for j = 1+p−2α1, ... , p−1, step 2 ,

(19)

and

α =

⌊
p− 1

q

⌋
, α1 =

⌊
q − 1

q

p− 1

2

⌋
, α2 =

⌊
q − 1

q

p + 1

2

⌋
, (20)

where,

γj =
⌊
q

2

⌋ (
(j−1)q−2 ((q+1)⊥⊥2)

⌊
j

2

⌋)
+

⌊
q

2

⌋⌊
q + j ⊥⊥ 2

2

⌋

for j =1, ... , α

(21)
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and

γα+1 = −
(⌊

p

2

⌋
− α

⌊
q

2

⌋)2

+ q
(⌊

p

2

⌋
−

⌊
α + 1

2

⌋)

+(q⊥⊥2)

(
α

⌊
p

2

⌋
+

α ⊥⊥ 2

4
− α2

4
− α2

⌊
q

2

⌋)
,

(22)

which shows that the exact distribution of Λ2 in (12) may either be seen, from
(13), as the distribution of the n/2 power of the product of pq−1 independent
Beta r.v.’s, more precisely the distribution of

p∏

j=1

q∏

k=1

(Ykj)
n/2 where Ykj ∼ Beta

(
n + 1− j

2
,
j(q − 1)− q − 1 + 2k

2q

)

and where the Ykj are independent for k = 1, . . . , q and j = 1, . . . , p and for
j = k = 1 yield a degenerate r.v. with the value 1, or alternatively, based on
the first expression in (14), as the distribution of



bp/2c∏

j=1

q∏

k=1

(Yjk)
n/2


×

( q∏

k=1

(Y ∗
k )n/2

)p⊥⊥2

where

Yjk ∼ Beta(aj, bjk) and Y ∗
k ∼ Beta(ap, bpk)

for aj, bjk, ap and bpk given by (15) and (16), with all the r.v.’s involved being
independent, that is, the Yjk independent for j = 1, . . . , bp/2c and k = 1, . . . , q
and independent from Zk (k = 1, . . . , q), which are also independent among
themselves, and where the r.v.’s Zk are not present if p is even; or yet, based
on the second expression of (14), that the distribution of Λ2 may be seen as
the distribution of





p∏

j=2

eZj








bp/2c∏

j=1

q∏

k=1

(Yjk)
n





{ q∏

k=1

(Y ∗
k )n/2

}p⊥⊥2

where

Zj ∼ Γ
(

n− j

n
, rj

)
, Yjk ∼ Beta

(
aj + bjk, bjk − b∗jk

)

and

Y ∗
k ∼ Beta(ap + bpk, bpk − b∗pk)

8



for rj given by (18) through (22), aj, bjk, ap, apk, b∗jk and b∗pk are given by
(15) through (17) and where the r.v.’s Zj, Yjk and Y ∗

k are all independent and
where the r.v.’s Y ∗

k only exist if p is odd.

2.3 The l.r.t. statistic for sphericity

If we assume that

X ∼ Np(µ, Σ)

and we want to test

H03 : Σ = σ2Ip (σ2 unspecified) , (23)

based on a sample of size n from X, the l.r.t. statistic is (Mauchly, 1940;
Anderson, 2003)

Λ3 =


 |A|(

tr 1
p
A

)p




n/2

(24)

where A is the m.l.e. of Σ.

From Mauchly (1940), Anderson (2003), Marques and Coelho (2008) and
Coelho and Marques (2008), the c.f. of W3 = − log Λ3 may be written as

ΦW3(t) =
p∏

j=2

Γ
(

n−1
2

+ j−1
p

)
Γ

(
n−j

2
− n

2
it

)

Γ
(

n−1
2

+ j−1
p
− n

2
it

)
Γ

(
n−j

2

)

=
p∏

j=2

(
n− j

n

)r∗j (
n− j

n
− it

)−r∗j

︸ ︷︷ ︸
Φ1,W3

(t)

×
p∏

j=2

Γ(aj + b∗j + cj)

Γ(aj + b∗j)

Γ
(
aj + b∗j − n

2
it

)

Γ
(
aj + b∗j + cj − n

2
it

)

︸ ︷︷ ︸
Φ2,W3

(t)
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=
p∏

j=2

(
n− j

n

)rj
(

n− j

n
− it

)−rj

︸ ︷︷ ︸
Φ1,W3

(t)

×




p−k∗∏

j=1

Γ
(

n−1
2

+ j−1
p

)
Γ

(
n−1

2
− n

2
it

)

Γ
(

n−1
2

)
Γ

(
n−1

2
+ j−1

p
− n

2
it

)




×




p∏

j=p−k∗+1

Γ
(

n−1
2

+ j−1
p

)
Γ

(
n
2
− n

2
it

)

Γ
(

n
2

)
Γ

(
n−1

2
+ j−1

p
− n

2
it

)




︸ ︷︷ ︸
Φ2,W3

(t)

,

where k∗ = bp/2c and, for j = 2, . . . , p,

aj =
n− j

2
, b∗j =

⌊
j − 1

p
+

j − 1

2

⌋
=





j−1
2

j odd

j−2
2

j − 1 < p
2
, j even

j
2

j − 1 ≥ p
2
, j even ,

(25)

cj =





j−1
p

j odd

j−1
p

+ 1
2

j − 1 < p
2
, j even

j−1
p
− 1

2
j − 1 ≥ p

2
, j even ,

(26)

r∗j =





⌊
p−j
2

+ 1
⌋

j = 3 , . . . p
⌊

p
4

+ 1
2

⌋
j = 2, p even

⌊
p
4

⌋
j = 2, p odd .

(27)

and

rj =
⌊
p− j + 2

2

⌋
j = 2, . . . , p , (28)

what shows that the distribution of Λ3 is the same as the distribution of the
power n/2 of the product of p− 1 independent Beta r.v.’s, more precisely, the
distribution of

p∏

j=2

(Yj)
n/2 where Yj ∼ Beta

(
n + 1− j

2
,
j − 1

p
+

j − 1

2

)

10



and where the Yj are independent for j = 2, . . . , p, or, alternatively, the same
distribution as





p∏

j=2

eZj









p∏

j=2

(Yj)
n/2





where

Zj ∼ Γ
(

n− j

n
, r∗j

)
and Yj ∼ Beta(aj + b∗j , cj)

for r∗j given by (27) and aj, b∗j and cj given by (25) and (26), and where all the
Zj and Yj r.v.’s are independent, or yet alternatively the same distribution as
the distribution of





p∏

j=2

eZj









p−k∗∏

j=1

(Yj)
n/2









p∏

j=p−k++1

(
Y ∗

j

)n/2





where

Zj ∼ Γ
(

n− j

n
, rj

)
, Yj ∼ Beta

(
n− 1

2
,
j − 1

p

)

and

Y ∗
j ∼ Beta

(
n

2
,
j − 1

p
− 1

2

)

for rj given by (28) and where all the Zj, Yj and Y ∗
j r.v.’s are independent.

2.4 The l.r.t. statistic to test the equality of several mean vectors

Let us suppose we have q independent samples from the q multivariate Normal
distributions Np(µj

, Σ) (j = 1, . . . , q), the sample from the j-th population

being of size nj. Then the l.r.t. to test the null hypothesis

H04 : µ
1

= . . . = µ
q

(29)

may be written as (Kshirsagar, 1972, Ch. 10, sec. 10.1)

Λ4 =

( |G|
|G + H|

)n/2

(30)
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where n = n1+. . .+nq and G and H are two p×p Wishart matrices which under
H04 in (29) are independent, both with parameter matrix Σ and respectively
n− q and q − 1 degrees of freedom.

The distribution of Λ4 under H0 in (29) is thus the same as the distribution of
Λ1 in subsection 2.1 for m = 2, taking p1 = p and p2 = q − 1. Thus, we have
the exact distribution for W4 = − log Λ4 for Λ4 in (30) above either for even p
or odd q, given under the form of a GIG distribution of depth p + q− 1, with
the c.f. of W4 = − log Λ4 being in this case given by

ΦW4(t) =
p+q−1∏

j=2

(
n− j

n

)rj (
n− j

n
− it

)−rj

(31)

where

rj =





0 j = 2

hj−2 j = 3, 4

rj−2 + hj−2 j = 5, . . . , p + q − 1

(32)

with

hj = (# of elem.’s in {p, q − 1} ≥ j)− 1 , j = 1, . . . , p + q − 3 (33)

or, equivalently

hj =





1 j = 1, . . . , min(p, q − 1)

0 j = 1 + min(p, q − 1), . . . , max(p, q − 1)

−1 j = 1 + max(p, q − 1), . . . , p + q − 3 ,

(34)

what shows that in this case the exact distribution of Λ4 may be seen as being
the same as the distribution of

p+q−1∏

j=2

eYj where Yj ∼ Γ
(
rj,

n− j

n

)
are independent r.v.’s. (35)

We may note that in (31) we may write the product through p + q instead of
p + q − 1, considering then the rj defined as in (32), where in the last line j
runs from 5 through p+ q, as long as the hj are defined as in (33) or (34) with
j running through p + q. This would yield indeed rp+q = 0.

12



If p is odd and q is even, then the exact c.f. of W4 is given by

ΦW4(t) =
p∏

j=1

Γ
(

n−j
2

)
Γ

(
n−q+1−j

2
− n

2
it

)

Γ
(

n−j
2
− n

2
it

)
Γ

(
n−q+1−j

2

)

=
p+q−1∏

j=1

(
n− j

n

)rj (
n− j

n
− it

)−rj

︸ ︷︷ ︸
Φ1,W4

(t)

×
Γ

(
n−1

2

)
Γ

(
n−2

2
− n

2
it

)

Γ
(

n−1
2
− n

2
it

)
Γ

(
n−2

2

)

︸ ︷︷ ︸
Φ2,W4

(t)

for rj defined as above by (32) and (33) or (34), what shows that in this case
the distribution of W4 may be seen as the same as the distribution of the sum
of p independent Logbeta r.v.’s with parameters

n− q + 1− j

2
and

q − 1

2
(j = 2, . . . , p) (36)

multiplied by n/2, or as the distribution of the sum of a GIG distribution
of depth p + q − 1 with rate parameters n−j

n
and shape parameters rj (j =

2, . . . , p) given by (32) and (33) or (34) with an independent Logbeta r.v. with
parameters

n− 1

2
and

1

2
, (37)

and that thus the distribution of Λ4 is in this case the same as the distribution
of





p+q−1∏

j=1

eZj



× Y

where

Zj ∼ Γ
(

n− j

n
, rj

)
and Y ∼ Beta

(
n− 1

2
,
1

2

)

for rj given by (32) and (33) and where the p + q − 2 r.v.’s Zj and Y are all
independent.
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2.5 About the distributions of the modified l.r.t. statistics and about the l.r.t.
statistics for elliptically contoured distributions

This subsection is devoted to two brief notes, one concerning the distribution
of the modified l.r.t. statistics and the other concerning the l.r.t. statistics
and their distributions when sampling from multivariate elliptically contoured
distributions.

In the previous subsections our choice was to consider the unmodified l.r.t.
statistics. However, it is known that the modified l.r.t. statistics yield unbiased
tests. In every case presented in the previous subsections, if we consider Λ
as denoting the unmodified l.r.t. statistic, the modified l.r.t. statistic will be
denoted by

Λ∗ = Λ(n−1)/n

so that if W ∗ = − log Λ∗, the c.f. of W ∗ will be given by

ΦW ∗(t) = ΦW

(
n− 1

n
t
)

so that in each case if we want to devise the exact distribution of W ∗ or Λ∗ we
only have to consider Φ2,W

(
n−1

n
t
)

instead of Φ2,W (t) and Φ1,W

(
n−1

n
t
)

instead

of Φ1,W (t), where we may note that Φ1,W

(
n−1

n
t
)

may be written as

Φ1,W

(
n− 1

n
t
)

=
p∗∏

j=2

(
n− j

n− 1

)rj (
n− j

n− 1
− it

)rj

,

that is, instead of considering the Gamma r.v.’s considered in the previous
subsections, multiplied by n−1

n
, we may alternatively consider Gamma r.v.’s

with rate parameters equal to n−j
n−1

and the same shape parameters that were
considered in each of the previous subsections.

As shown by Anderson et all (1986), Anderson and Fang (1990) and Ander-
son (2003, Sec.’s 8.11, 9.11, 10.11), if we consider sampling from multivariate
elliptically contoured or left-spherical distributions, instead of sampling from
the multivariate Normal distribution, not only will the l.r.t. statistics to test
the null hypotheses discussed in the previous subsections remain the same as
for the Normal case but also their distributions under the null hypothesis will
remain unchanged. Because of this, the results presented in the present paper
may be applied without change in these more general settings.
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3 Near-exact distributions for the l.r.t. statistics

3.1 Preamble

Like the asymptotic distributions, near-exact distributions for a given statistic
may usually be obtained under several different forms. The near-exact distri-
butions we will focus our attention on in this paper are near-exact distributions
that are derived from a factorization of the exact c.f. of the logarithm of the
statistic under study, Wk = − log Λk (where k ∈ {1, . . . , 4} denotes the l.r.t.
statistic in subsection k of section 2) of the form

ΦWk
(t) = Φ1,Wk

(t) Φ2,Wk
(t) , (38)

where Φ1,Wk
(t) is the part of ΦWk

(t) that will be left unchanged and Φ2,Wk
(t)

is the part of ΦWk
(t) that will be replaced by an asymptotic result, which is

intended to be asymptotic both in terms of sample size and also in terms of
the overall number of variables involved, in the sense that

lim
n→∞

∞∫

−∞

∣∣∣∣∣
ΦWk

(t)− ΦWk
(t; n, p)

t

∣∣∣∣∣ dt = 0

and

lim
p→∞

∞∫

−∞

∣∣∣∣∣
ΦWk

(t)− ΦWk
(t; n, p)

t

∣∣∣∣∣ dt = 0

where ΦWk
(t) represents the exact c.f. of the negative logarithm of the l.r.t.

statistic and ΦWk
(t; n, p) represents the near-exact c.f. of the same statistic,

seen as a function of n (the sample size) and p (the overall number of variables
involved). In (38), Φ1,Wk

(t) is the c.f. of a sum of independent Logbeta random
variables (multiplied by n/2, for samples of size n) which may also be expressed
as a c.f. of the sum of independent Gamma random variables, all with integer
shape parameters, while Φ2,Wk

(t) is the c.f. of another sum of independent
Logbeta random variables (also multiplied by n/2) which is not possible to
express as a sum of independent Gamma random variables with integer shape
parameters.

This way the near-exact distributions we will be dealing with in this paper
will have c.f.’s of the form

Φ1,Wk
(t) Φ∗

2,Wk
(t) , (39)
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where Φ1,Wk
(t) is the same as in (38) and will be written under the form of the

c.f. of a GIG distribution of a given depth, that is, the c.f. of the sum of a given
number of independent Gamma r.v.’s, all with integer shape parameters, while
Φ∗

2,Wk
(t) may be either the c.f. of a single Gamma distribution or of a mixture of

two or three Gamma distributions, depending on the number of exact moments
we want to match. The c.f. Φ∗

2,Wk
(t) will indeed have, accordingly, the same 2,

4 or 6 first derivatives (with respect to t at t = 0) as the part of the exact c.f.
of the statistic under study that will be replaced, that is, Φ2,Wk

(t). In other
words, we will have

dj

dtj
Φ∗

2,Wk
(t)

∣∣∣∣∣
t=0

=
dj

dtj
Φ2,Wk

(t)

∣∣∣∣∣
t=0

, j = 1, . . . , h (40)

for h = 2, 4 or 6, according to the case of Φ∗
2,Wk

(t) being the c.f. of a single
Gamma distribution, or the c.f. of a mixture of 2 or 3 Gamma distributions
with the same rate parameter, that is,

Φ∗
2,Wk

(t) =
h/2∑

k=1

pk λsk (λ− it)−sk , (41)

with

ph/2 = 1−
h/2−1∑

k=1

pk . (42)

While if Φ∗
2,Wk

(t) is the c.f. of a single Gamma distribution, equating the two
first derivatives of Φ2,Wk

(t) at t = 0, there is a simple analytical solution for the
problem of equating moments, with the rate and shape parameters of Φ∗

2,Wk
(t)

being given by

λ =
m1

m2 −m2
1

and s1 =
m1

m2 −m2
1

,

where

m1 =
1

i

d

dt
Φ2,Wk

(t)

∣∣∣∣∣
t=0

and m2 = − d2

dt2
Φ2,Wk

(t)

∣∣∣∣∣
t=0

,

if Φ∗
2,Wk

(t) is the c.f. of a mixture of two Gamma distributions it is possible
to prove (through quite long and tedious calculations) that there is always
one unique analytic real solution, or rather, a pair of conjugate real solutions,
with the values for the two shape parameters and corresponding weights inter-
changed, and if Φ∗

2,Wk
(t) is the c.f. of a mixture of three Gamma distributions,
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it is believed that there is also always one only real solution with all positive
parameters, or rather, a six-tuple of conjugate solutions, although this is not
easy to prove analytically. Anyway, for the cases where Φ∗

2,Wk
(t) is the c.f. of

a mixture of 2 or 3 Gamma distributions (respectively for h = 4 or h = 6) we
advocate the numerical solution of the system of equations (40).

As already remarked in Marques & Coelho (2008) and Coelho & Marques
(2007), the replacement of Φ2,Wk

(t) by Φ∗
2,Wk

(t), that is, the replacement of
a sum of independent Logbeta random variables (multiplied by a constant)
by a single Gamma distribution or a mixture of 2 or 3 Gamma distributions,
matching the first 2, 4 or 6 exact moments is a much adequate decision, since,
as it is shown in Coelho et al. (2006), a single Logbeta distribution may be
represented either under the form of an infinite mixture of Exponential or GIG
distributions, and thus a sum of independent Logbeta random variables may
thus be represented under the form of an infinite mixture of sums of Expo-
nential or GIG distributions, which are themselves GIG distributions, while
the GIG distribution may itself be seen as a mixture of Gamma distributions
(Coelho, 2007).

Φ1,Wk
(t) in (39) will have, for samples of size n, the form

Φ1,Wk
(t) =

p∏

j=2

(
n− j

n

)rj,k
(

n− j

n
− it

)−rj,k

(43)

where p is the overall number of variables involved and the rj,k are the integer
shape parameters of the Gamma r.v.’s involved and will be obtained under
specific forms, according to the l.r.t. statistic under study. This amounts to be
able to write the near-exact c.f. of the logarithm of the l.r.t. statistics under
consideration in the form

Φ∗
2,Wk

(t) ×
p∏

j=2

(
n− j

n

)rj,k
(

n− j

n
− it

)−rj,k

, (44)

where Φ∗
2,Wk

(t) is either the c.f. of a Gamma distribution or the c.f. of a
mixture of 2 or 3 Gamma distributions, being thus the near-exact distributions
obtained in this way, correspondingly a GNIG distribution of depth at most
p + 1 (see Appendix A) or a mixture of two or three GNIG distributions of
depth at most p + 1, which have very manageable expressions, allowing this
way for an easy computation of very accurate near-exact quantiles.
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3.2 Expressions for the near-exact p.d.f.’s and c.d.f.’s of the l.r.t. statistics

Expressions for the near-exact p.d.f.’s and c.d.f.’s of the l.r.t. statistics Λk in
section 2 (where k denotes the subsection k of section 2 where Λk is studied)
may thus be obtained, using the notation in Appendix A, under the form

fΛk
(`) =

h/2∑

ν=1

pν f GNIG

(
− log `|rik , ... , rfk

, sν ;
n− ik

n
, ... ,

n− fk

n
, λ; dk

)
1

`
,

and

FΛk
(`)=1−

h/2∑

ν=1

pν F GNIG

(
− log `|rik , ... , rfk

, sν ;
n− ik

n
, ... ,

n− fk

n
, λ; dk

)
,

where the weights pν are subject to the relation (42) and where

ik =





3 k = 1, 4

2 k = 2, 3
, fk =





p k = 1, 2, 3

p + q − 1 k = 4 ,
(45)

being

dk = fk − ik + 2 (46)

and

r3, . . . , rp given by (5)-(8) for k = 1

r2, . . . , rp given by (18)-(22) for k = 2

r2, . . . , rp given by (27) or (28) for k = 3

r3, . . . , rp+q−1 given by (32)-(33) for k = 4.

(47)

We should briefly note here that, as referred in the previous section, there are
situations in which we may have the exact distribution of some Λk given under
the form of a GIG distribution (Coelho, 1998, 1999), with p.d.f.’s and c.d.f.’s
respectively given by

fΛk
(`) = fGIG

(
− log `|rik , . . . , rfk

;
n− ik

n
, . . . ,

n− fk

n
; dk − 1

)
1

`
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and

FΛk
(`) = 1− F GIG

(
− log `|rik , . . . , rfk

;
n− ik

n
, . . . ,

n− fk

n
; dk − 1

)

with ik, fk and dk given by (45) and (46) above and rik , . . . , rfk
given by (47)

above, for k = 1 when there is at most one set of variables with an odd number
of variables and for k = 4 when p is even or q is odd.

4 The l.r.t. statistic to test the equality of several p-multivariate
Normal distributions

Let us suppose we want to test if q multivariate Normal distributions
Np(µj

, Σj) (j = 1, . . . , q) are equal, that is, we want to test the null hypothesis

H05 : µ
1

= . . . = µ
q
, Σ1 = . . . = Σq , (48)

based on q independent samples, each of size nj (j = 1, . . . , q).

We will decompose, as it is indeed usual, the above null hypothesis as

H05 : H04|02
o H02

where ’o’ is to be read as ’after’ or ’composed with’ and where

H02 : Σ1 = . . . = Σq

H04|02 : µ
1

= . . . = µ
q

given that Σ1 = . . . = Σq(= Σ)
(49)

and use the induced factorization on the test statistic to obtain near-exact
distributions for the overall test statistic. Now the overall l.r.t. statistic to test
H05 in (48) may be written as

Λ5 = Λ2 Λ4

where Λ2 is the l.r.t. statistic treated in subsection 2.2 and used here to test
H02 in (49) and Λ4 is the l.r.t. statistic in subsection 2.4, to test H04|02 in (49),
that is the same statistic treated in subsection 2.4, and where Λ4 and Λ2 are
independent under H0 in (48).
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If we take nj = n for all j = 1, . . . , q, we may then write, for the case of even
p, taking α ∈ IN , the exact c.f. of W5 = − log Λ5 as

ΦW5(t) =

p+q−1∏

j=2
j 6=αq

(
n− j/q

n

)rj
(

n− j/q

n
− it

)−rj

×
p∏

j=2

(
n− j

n

)uj (
n− j

n
− it

)−uj





Φ1,W5(t)

×
p/2∏

j=1

q∏

k=1

Γ (aj + bjk) Γ
(
aj + b∗jk − nit

)

Γ
(
aj + b∗jk

)
Γ (aj + bjk − nit)





Φ2,W5(t)

(50)

where aj and bjk are given by (16) with b∗jk = bbjkc, the rj are given by (32)
and (33) or (34) and

uj =





r∗j j 6= αq

r∗j + rαq j = αq , α = 1, . . . ,
⌊

p
q

⌋

where r∗j are given by (19) and the rαq are given by (32) and (33) or (34).

For odd q and any p (that is, either even or odd p) we may write the exact
c.f. of W5 as

ΦW5(t) =

p+q−1∏

j=2
j 6=αq

(
n− j/q

n

)rj
(

n− j/q

n
− it

)−rj

×
p∏

j=2

(
n− j

n

)uj (
n− j

n
− it

)−uj





Φ1,W5(t)

×
bp/2c∏

j=1

q∏

k=1

Γ (aj + bjk) Γ
(
aj + b∗jk − nit

)

Γ
(
aj + b∗jk

)
Γ (aj + bjk − nit)

×



q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ
(
ap + b∗pk − n

2
it

)

Γ
(
ap + bpk − n

2
it

)



p⊥⊥2





Φ2,W5(t)

(51)
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and for even q and odd p as

ΦW5(t) =

p+q−1∏

j=2
j 6=αq

(
n− j/q

n

)rj
(

n− j/q

n
− it

)−rj

×
p∏

j=2

(
n− j

n

)uj (
n− j

n
− it

)−uj





Φ1,W5(t)

×
Γ

(
nq−1

2

)
Γ

(
nq−2

2
− nq

2
it

)

Γ
(

nq−1
2
− nq

2
it

)
Γ

(
nq−2

2

)

×
(p−1)/2∏

j=1

q∏

k=1

Γ (aj + bjk) Γ
(
aj + b∗jk − nit

)

Γ
(
aj + b∗jk

)
Γ (aj + bjk − nit)

×
q∏

k=1

Γ(ap + bpk)

Γ(ap + b∗pk)

Γ
(
ap + b∗pk − n

2
it

)

Γ
(
ap + bpk − n

2
it

)





Φ2,W5(t)

where ap, bpk and b∗pk are given by (16) and (17).

Thus, following the exposition in the previous section, near-exact distributions
for Λ5 may be obtained with p.d.f.’s and c.d.f.’s related with mixtures of GNIG
distributions of depth 2p + q − 3−

⌊
p
q

⌋
, respectively given by

fΛ5
(`) =

h/2∑

ν=1

pν fGNIG

(
− log `| r3, ... , rj, ... , rp+q−1︸ ︷︷ ︸

j 6=αq, α∈IN

, u2, ... , up, sν ;

n− 3/q

n
, ... ,

n− j/q

n
, ... ,

n− (p + q − 1)/q

n︸ ︷︷ ︸
j 6=αq, α∈IN

,
n− 2

n
, ... ,

n− p

n
, λ;

2p + q − 3−
⌊
p

q

⌋ )
1

`

and

FΛ5
(`) = 1−

h/2∑

ν=1

pν F GNIG

(
− log `| r3, ... , rj, ... , rp+q−1︸ ︷︷ ︸

j 6=αq, α∈IN

, u2, ... , up, sν ;

n− 3/q

n
, ... ,

n− j/q

n
, ... ,

n− (p + q − 1)/q

n︸ ︷︷ ︸
j 6=αq, α∈IN

,
n− 2

n
, ... ,

n− p

n
, λ;

2p + q − 3−
⌊
p

q

⌋ )
.
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5 Numerical Studies

The measure

∆ =

+∞∫

−∞

∣∣∣∣∣
ΦW (t)− Φn(t)

t

∣∣∣∣∣ dt

where ΦW (t) and Φn(t) represent respectively the c.f.’s of the r.v.’s W and
Wn, with corresponding c.d.f.’s FW (w) and Fn(w) and where Φn(t) may be
seen as a function of some parameter n, is related to the Berry-Esseen upper
bound (Berry, 1941; Esseen, 1945; Loève, 1977, Chap. VI, Sec. 21; Hwang,
1998), with

∆ ≥ max
w∈S

|FW (w)− Fn(w)|

and

∆−→
n→∞ 0 ⇐⇒ Wn

d−→
n→∞

W ,

where S represents the common support of W and Wn.

We will use the measure ∆ to assess the closeness of the near-exact distri-
butions (with c.f.’s Φn(t)) to the exact distribution (with c.f. ΦW (t)) and we
will show that when combining tests we either do not loose much precision
or we may even in some cases gain some precision (that is, the near-exact
distributions for the overall test statistic will have only slightly less good ∆
values than the corresponding near-exact distributions for the elementary test
statistics the overall test statistic is factorized into, or even in some cases, they
may exhibit even lower values of ∆ for the overall test statistic than at least
for one or some of the elementary test statistics) or we will even gain precision
whenever we have the exact distribution available for one of the elementary
test statistics the overall test statistic is factorized into. Actually, the way the
near-exact distributions for the l.r.t. statistic to test the equality of several
p-multivariate Normal distributions were built enables us to take advantage
from the fact that we have the exact distribution for the logarithm of the
l.r.t. statistic to test the equality of the mean vectors for even p or odd q. We
may note that if we have a l.r.t. statistic for the overall test whose logarithm
W = W1 + W2 has a c.f.

ΦW (t) = ΦW1(t) ΦW2(t)
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where we will only approximate the c.f. of W2 by ΦW ∗
2
(t), thus approximating

the distribution of W by the distribution of W ∗ = W1 + W ∗
2 , then we have

that,

∆(W ) =

+∞∫

−∞

∣∣∣∣∣
ΦW (t)− ΦW ∗(t)

t

∣∣∣∣∣ dt =

+∞∫

−∞

∣∣∣∣∣
ΦW1(t)ΦW2(t)− ΦW1(t)ΦW ∗

2
(t)

t

∣∣∣∣∣ dt

=

+∞∫

−∞
|ΦW1(t)|︸ ︷︷ ︸

≤1

∣∣∣∣∣
ΦW2(t)− ΦW ∗

2
(t)

t

∣∣∣∣∣ dt

≤
+∞∫

−∞

∣∣∣∣∣
ΦW2(t)− ΦW ∗

2
(t)

t

∣∣∣∣∣ dt = ∆(W2) .

(52)

In the tables ahead we will use W4 to denote the logarithm of the l.r.t. statistic
to test the equality of several (more precisely q) p-multivariate Normal distri-
butions, that is, the null hypothesis H05 in (48), and W1 and W2 to denote
the logarithm of the l.r.t. statistics to test the null hypotheses H01|02 and H02

in (49), respectively.

For the cases where we have the exact distribution of W1 under the form of a
GIG distribution, that is, for even p or odd q, we have, of course, computed
the values of ∆ only for W2 and W4.

We will denote hereon respectively by GNIG, M2GNIG and M3GNIG the
near-exact distributions corresponding to a GNIG or a mixture of two or
three GNIG distributions.

Table 1 – values of ∆ for p = 5 and q = 4, 12

p = 5

q = 4 q = 12

W1 W2 W4 W1 W2 W4

n=p + 2

GNIG 9.78×10−7 4.15×10−5 4.69×10−5 1.36×10−8 1.61×10−5 1.47×10−5

M2GNIG 3.36×10−9 1.84×10−7 2.49×10−7 4.51×10−12 3.65×10−8 3.21×10−8

M3GNIG 6.37×10−12 1.06×10−9 1.82×10−9 1.63×10−15 1.36×10−10 1.12×10−10

n=p + 20

GNIG 8.52×10−8 4.02×10−6 4.41×10−6 1.24×10−9 1.46×10−6 1.18×10−6

M2GNIG 9.62×10−11 1.47×10−9 1.70×10−9 1.31×10−13 6.21×10−10 3.94×10−10

M3GNIG 1.17×10−13 8.33×10−13 2.81×10−12 1.72×10−17 5.63×10−13 2.50×10−13
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Table 2 – values of ∆ for p = 11 and q = 4, 12

p = 11

q = 4 q = 12

W1 W2 W4 W1 W2 W4

n=p + 2

GNIG 7.25×10−8 2.52×10−6 2.72×10−6 1.24×10−9 2.57×10−7 2.65×10−7

M2GNIG 6.01×10−11 1.93×10−9 2.21×10−9 1.05×10−13 3.02×10−11 3.23×10−11

M3GNIG 4.71×10−14 2.31×10−12 2.71×10−12 1.83×10−18 4.47×10−15 4.71×10−15

n=p + 20

GNIG 1.51×10−8 1.12×10−6 1.16×10−6 2.41×10−10 1.59×10−7 1.51×10−7

M2GNIG 6.11×10−12 3.37×10−10 3.38×10−10 9.26×10−15 9.58×10−12 8.43×10−12

M3GNIG 2.85×10−15 1.77×10−13 1.24×10−13 4.53×10−19 9.79×10−16 5.76×10−16

Tables 1 and 2 refer to cases where we do not have the exact distribution
available under a manageable form for the statistic W1. From the results in
these tables we may see how the values of ∆ for W4 are in most cases only
slightly higher than the values of ∆ for W2, hapenning that in the other cases,
that is, for p = 5 and q = 12 the values of ∆ are even slightly smaller for W4

than for W2, what also happens for p = 11, for the larger sample size for q = 12
and also for q = 4, in this latter case only for the M3GNIG distribution.

Table 3 – values of ∆ for p = 4 and q = 4, 12

p = 4

q = 4 q = 12

W2 W4 W2 W4

n=p + 2

GNIG 1.15×10−5 8.90×10−6 8.69×10−6 7.11×10−6

M2GNIG 1.70×10−8 1.07×10−8 1.13×10−8 8.02×10−9

M3GNIG 3.84×10−10 1.94×10−10 2.45×10−11 1.50×10−11

n=p + 20

GNIG 1.25×10−6 7.87×10−7 7.45×10−7 4.79×10−7

M2GNIG 8.18×10−10 3.81×10−10 1.80×10−10 8.62×10−11

M3GNIG 1.07×10−12 3.74×10−13 1.33×10−13 4.77×10−14
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Table 4 – values of ∆ for p = 10 and q = 4, 12

p = 10

q = 4 q = 12

W2 W4 W2 W4

n=p + 2

GNIG 1.58×10−6 1.47×10−6 1.34×10−7 1.25×10−7

M2GNIG 7.83×10−10 6.85×10−10 6.64×10−12 5.93×10−12

M3GNIG 5.18×10−13 4.27×10−13 6.85×10−17 5.84×10−17

n=p + 20

GNIG 7.24×10−7 5.95×10−7 8.34×10−8 6.90×10−8

M2GNIG 1.12×10−10 8.08×10−11 1.18×10−12 8.59×10−13

M3GNIG 1.99×10−14 1.26×10−14 3.35×10−16 2.15×10−16

Tables 3 through 6 refer to cases where we have the exact distribution of W1

available under the form of a GIG distribution, either because p is even (tables
3 and 4) or because q is odd (tables 5 and 6). In all these cases, the way the
near-exact distributions for W4 were built, being able to profit from this fact,
leads these distributions to exhibit smaller values of ∆ than the corresponding
near-exact distributions for W2, as it was actually expected, from the result
in (52).

Table 5 – values of ∆ for p = 5 and q = 5, 11

p = 5

q = 5 q = 11

W2 W4 W2 W4

n=p + 2

GNIG 3.68×10−5 3.08×10−5 1.79×10−5 1.53×10−5

M2GNIG 1.53×10−7 1.12×10−7 4.36×10−8 3.34×10−8

M3GNIG 9.43×10−10 6.02×10−10 1.74×10−10 1.19×10−10

n=p + 20

GNIG 3.50×10−6 2.40×10−6 1.63×10−6 1.12×10−6

M2GNIG 1.72×10−9 9.19×10−10 7.29×10−10 3.95×10−10

M3GNIG 2.25×10−12 9.45×10−13 7.03×10−13 2.99×10−13
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Table 6 – values of ∆ for p = 11 and q = 5, 11

p = 11

q = 5 q = 11

W2 W4 W2 W4

n=p + 2

GNIG 5.60×10−7 5.25×10−7 2.71×10−7 2.56×10−7

M2GNIG 8.73×10−11 7.81×10−11 3.29×10−11 2.97×10−11

M3GNIG 3.60×10−15 3.07×10−15 4.95×10−15 4.29×10−15

n=p + 20

GNIG 3.57×10−7 2.99×10−7 1.68×10−7 1.42×10−7

M2GNIG 3.29×10−11 2.97×10−11 1.02×10−11 7.68×10−12

M3GNIG 1.64×10−14 1.08×10−14 1.05×10−15 7.06×10−16

Analysing the overall set of tables we may see how the near-exact distributions
proposed show an asymptotic behavior, for all of the statistics involved, not
only for increasing sample sizes but also for increasing values of p (the number
of variables involved) and q (the number of Normal distributions involved for
W4 or covariance matrices for W2 or mean vectors for W1). Only for the cases
of p = 10 and q = 12 or p = 11 and q = 5 it seems that the distribution
M3GNIG somehow exhibits too small values of ∆ for the smaller sample sizes.

6 Conclusions

Although other authors had already shown or referred that all the l.r.t. statis-
tics considered in this paper have the same distribution as the product of a
given number of independent r.v.’s, which are either Beta r.v.’s or functions of
Beta r.v.’s (see for example, Anderson (2003), Hsieh (1979)), we have shown
that indeed all those statistics have the same distribution as the product of
independent Beta r.v.’s with different parameters, according to the statistic
considered.

On the other hand, we have also shown that not only can one obtain near-exact
distributions for all the ’basic’ l.r.t. statistics used in Multivariate Analysis in
a uniform manner, but also the same general strategy permits the develop-
ment of near-exact distributions for more elaborate l.r.t. statistics, retaining
a similar structure and formulation.

The development of near-exact distributions as very close, although manage-
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able, approximations to the exact distribution of these l.r.t. statistics seems
most useful since their exact distributions do not have manageable closed
forms (see for example, Aslam & Rocke (2005)).

Two good features of the near-exact distributions are the facts that, opposite
to the usual asymptotic distributions, they show a very good fit even for small
samples and their closeness to the exact distribution even improves when the
dimension increases.
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Appendix A

The Gamma, GIG (Generalized Integer Gamma) and GNIG
(Genealized Near-Integer Gamma) distributions

We will use this Appendix to establish some notation concerning distributions
used in the paper, as well as to give the expressions for the p.d.f.’s (probability
density functions) and c.d.f.’s (cumulative distribution functions) of the GIG
(Generalized Integer Gamma) and GNIG (Generalized Near-Integer Gamma)
distributions.

We will say that the r.v. X has a Gamma distribution with rate parameter
λ > 0 and shape parameter r > 0, if its p.d.f. may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0)

and we will denote this fact by

X ∼ Γ(r, λ) .

Let
Xj ∼ Γ(rj, λj) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parameters rj ∈
IN and rate parameters λj > 0, with λj 6= λj′ , for all j, j′ ∈ {1, . . . , p}. We
will say that then the r.v.

Y =
p∑

j=1

Xj

27



has a GIG (Generalized Integer Gamma) distribution of depth p, with shape
parameters rj and rate parameters λj, (j = 1, . . . , p), and we will denote this
fact by

Y ∼ GIG(rj, λj; p) .

The p.d.f. and c.d.f. (cumulative distribution function) of Y are respectively
given by (Coelho, 1998)

fGIG(y|r1, . . . , rp; λ1, . . . , λp; p) = K
p∑

j=1

Pj(y) e−λj y , (y > 0) (53)

and

F GIG(y|r1, . . . , rj; λ1, . . . , λp; p) = 1−K
p∑

j=1

P ∗
j (y) e−λj y , (y > 0) (54)

where

K =
p∏

j=1

λ
rj

j , Pj(y) =
rj∑

k=1

cj,k yk−1 (55)

and

P ∗
j (y) =

rj∑

k=1

cj,k (k − 1)!
k−1∑

i=0

yi

i! λk−i
j

with

cj,rj
=

1

(rj − 1)!

p∏

i=1
i 6=j

(λi − λj)
−ri , j = 1, . . . , p , (56)

and

cj,rj−k =
1

k

k∑

i=1

(rj − k + i− 1)!

(rj − k − 1)!
R(i, j, p) cj,rj−(k−i) ,

(k = 1, . . . , rj − 1; j = 1, . . . , p)

(57)

where

R(i, j, p) =
p∑

k=1
k 6=j

rk (λj − λk)
−i (i = 1, . . . , rj − 1) . (58)

The GNIG (Generalized Near-Integer Gamma) distribution of depth p + 1
(Coelho, 2004) is the distribution of the r.v.
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Z = Y1 + Y2

where Y1 and Y2 are independent, Y1 having a GIG distribution of depth p and
Y2 with a Gamma distribution with a non-integer shape parameter r and a
rate parameter λ 6= λj (j = 1, . . . , p). The p.d.f. (probability density function)
of Z is given by

fGNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ; p + 1) =

Kλr
p∑

j=1

e−λjz
rj∑

k=1

{
cj,k

Γ(k)

Γ(k+r)
zk+r−1

1F1(r, k+r,−(λ−λj)z)

}
,

(z > 0)

(59)

and the c.d.f. (cumulative distribution function) given by

F GNIG(z|r1, ... , rp, r; λ1, ... , λp, λ; p+1) =
λr zr

Γ(r+1)
1F1(r, r+1,−λz)

−Kλr
p∑

j=1

e−λjz
rj∑

k=1

c∗j,k
k−1∑

i=0

zr+iλi
j

Γ(r+1+i)
1F1(r, r+1+i,−(λ− λj)z)

(z > 0)

(60)

where

c∗j,k =
cj,k

λk
j

Γ(k)

with cj,k given by (56) through (58) above. In the above expressions 1F1(a, b; z)
is the Kummer confluent hypergeometric function. This function typically has
very good convergence properties and is nowadays easily handled by a number
of software packages.

References

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis,
3rd ed., J. Wiley & Sons, New York.

Anderson, T. W., Fang, K.-T., Hsu, H. (1986). Maximum-likelihood estimates
and likelihood-ratio criteria for multivariate elliptically contoured distribu-
tions. Canadian Journal of Statistics, 14, 55-59.

Anderson, T. W., Fang, K.-T. (1990). Inference in multivariate elliptically
contoured distributions based on maximum likelihood. Statistical Inference
in Elliptically Contoured and Related Distributions, K.-T. Fang, T. W.
Anderson, eds., 201-216.

29



Aslam, S., Rocke, D. M. (2005). A robust testing procedure for the equality
of covariance matrices. Comput. Stat. and Data Anal., 49, 863-874.

Berry, A., 1941. The accuracy of the Gaussian approximation to the sum of
independent variates. Trans. Amer. Math. Soc. 49, 122-136.

Coelho, C. A. (1992). Generalized Canonical Analysis. Ph.D. Thesis, The
University of Michigan, Ann Arbor, MI.

Coelho, C. A. (1998). The Generalized Integer Gamma distribution – a basis
for distributions in Multivariate Statistics. J. Multivariate Analysis, 64, 86-
102.

Coelho, C. A. (1999). Addendum to the paper ’The Generalized Integer
Gamma distribution – a basis for distributions in Multivariate Statistics’.
J. Multivariate Analysis, 69, 281-285.

Coelho, C. A. (2004). The Generalized Near-Integer Gamma distribution: a
basis for ’near-exact’ approximations to the distributions of statistics which
are the product of an odd number of independent Beta random variables.
Journal of Multivariate analysis, 89, 191-218.

Coelho, C. A. & Marques, F. J. (2007a). Near-exact distributions for the like-
lihood ratio test statistic for testing equality of several variance-covariance
matrices. The New University of Lisbon, Mathematics Department, Techni-
cal Report #12/2007 (submitted for publication).

Coelho, C. A. & Marques, F. J. (2007b). Near-exact distributions for the inde-
pendence and sphericity likelihood ratio test statistics. The New University
of Lisbon, Mathematics Department, Technical Report #20/2007 (submit-
ted for publication).

Esseen, C.-G., 1945. Fourier analysis of distribution functions. A mathemat-
ical study of the Laplace-Gaussian Law. Acta Math. 77, 1-125.

Hsieh, H. K. (1979). On asymptotic optimality of likelihood ratio tests for
multivariate normal distributions. Annals of Statistics, 7, 592-598.

Hwang, H.-K., 1998. On convergence rates in the central limit theorems for
combinatorial structures. European J. Combin. 19, 329-343.

Kshirsagar, A. M. (1972). Multivariate Analysis. Marcel Dekker, Inc., New
York.
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